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Abstract

Linguistic units are organized at multiple levels: words combine to form phrases, which combine 

to form sentences. Ding et al. (2016a) discovered that the brain tracks units at each level of 

hierarchical structure simultaneously. Such tracking requires knowledge of how words and phrases 

are structurally related. Here we asked how neural tracking emerges as knowledge of phrase 

structure is acquired. We recorded electrophysiological (MEG) data while adults listened to a 

miniature language with distributional cues to phrase structure or to a control language which 

lacked the crucial distributional cues. Neural tracking of phrases developed rapidly, only in the 

condition in which participants formed mental representations of phrase structure as measured 

behaviorally. These results illuminate the mechanisms through which abstract mental 

representations are acquired and processed by the brain.
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1 Introduction

Linguistic units are organized at multiple levels, producing layers of structure: word 

combinations form phrases, which combine to form sentences. Continuous speech lacks 
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definitive physical cues to the boundaries between these units (Lehiste, 1970; Morgan & 

Demuth, 1996). Nevertheless, recent experiments reveal that the brain tracks the presentation 

of linguistic units in real time, “entraining” to multiple levels of hierarchical structure 

simultaneously.

Ding et al. (2016a) recorded magnetoencephalography (MEG) data while native speakers of 

English or Mandarin Chinese listened to sequences of words, phrases, or sentences in each 

language. The units at each level of organization occurred periodically, at a specific 

frequency. The neural response to units at each hierarchical level was extracted by 

calculating the MEG power spectrum at each frequency. Results revealed concurrent 

tracking (time-locked neural activity) of phrases and sentences in the native language, but 

not in a foreign language. The authors emphasized that neural tracking reflects knowledge of 

an abstract mental grammar rather than low-level statistical information. However, this 

grammar was acquired through a learning process. At some earlier stage there must have 

been a transition where learners began to represent serially ordered material hierarchically. 

When during this transition does the brain begin to track hierarchical structure in real time?

Learners can organize continuous speech into smaller units through statistical learning. For 

example, learners use transition probabilities between syllables to identify word boundaries 

(Saffran, Aslin, & Newport, 1996). However, knowledge of these boundaries does not 

necessarily lead to neural tracking of the corresponding units. Buiatti et al. (2009) report 

neural tracking of newly segmented words only when boundaries were marked with 

subliminal (25 ms) pauses, and not in conditions without pauses, even though participants 

discriminated words from part-words in both conditions. Subliminal pauses also marked 

word boundaries in a study by Kabdebon et al. (2015) on neural tracking in infants. One 

adult statistical learning study (Batterink & Paller, 2017) reported tracking without 

perceptual cues, but that study used simple and repetitive materials designed by Saffran et al. 

(1996) for 8-month-old infants. (The entire 12-minute exposure session consisted of four 

repeating trisyllabic words, which infants learn after two minutes.) Neural tracking of this 

highly repetitive speech stream seems different from the type of response reported by Ding 

et al. (2016a), which varied with the abstract hierarchical structure of the materials. Indeed, 

Batterink and Paller (2017) report that the same learners also tracked sequences of 

trisyllables that did not form words, and interpret tracking in their study as a perceptual 

phenomenon.

Thus, neural tracking of abstract linguistic structure in the absence of perceptual cues has 

been convincingly demonstrated only in native speakers of natural languages (Ding et al. 

2016a). Such abstract linguistic representations must have been acquired from something 

more concrete. When during this transition does neural tracking begin? Does neural tracking 

emerge only after extensive experience with a natural language, which would suggest that it 

depends on well-established linguistic representations? Or does neural tracking emerge as 

soon as learners can identify linguistic units in the speech stream? Our study addresses this 

question using a miniature language paradigm that leads adult learners to form abstract 

representations of phrases.
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1.1 The present study

We measured neural activity using MEG using the technique developed by Ding et al. 

(2016a) while adults learned a miniature language designed by Thompson and Newport 

(2007). In the target condition, sentences contained a number of language-like distributional 

cues to phrase structure. In a control condition, sentences lacked such cues. In Thompson 

and Newport’s study, only learners in the target condition formed phrase-structure 

representations of the sentences in the miniature language. Here we asked whether learners 

in this condition would neurally track the acquired phrase structure, and if so, when this 

response would emerge.

2 Methods

2.1 Design

2.1.1 Transitional probabilities cueing phrase structure—In natural languages, 

syntax operates on phrasal constituents, with the words within phrases acting as a unit (e.g., 

words within prepositional phrases can be omitted or moved together: The box (on the 
counter) is red. The box is sitting (on the counter)). Over a corpus, the consistent syntactic 

behavior of words within phrases creates a specific pattern of transitional probabilities 

between word categories.1 Categories that form a phrase (such as prepositions, articles, and 

nouns: on the counter) tend to have high transitional probabilities; categories that span a 

phrase boundary (such as nouns and verbs: counter is) have lower transitional probabilities. 

Thompson and Newport (2007) showed that learners use this contrast between highly 

probable and less probable sequences of categories to identify which categories form phrases 

in a miniature language. No acoustic, prosodic, or semantic cues were necessary.

2.1.2 Miniature language structure—The language was identical to that in 

Experiment 4 of Thompson and Newport (2007). The basic sentence structure is ABCDEF. 

Each letter represents a grammatical category (such as Noun) with 2 or 4 monosyllabic 

lexical items (e.g., “hox”, “lev”). We formed complex sentences by applying syntactic 

patterns found in natural languages (omission, repetition, movement, or any combination of 

these) to pairs of words in the basic structure (Table 1). To create the phrasestructure 

language, all of these transformations were applied to consistent pairs of words (AB, CD, 

and EF). This produced the critical pattern of high transitional probability within phrases 

and dips in transitional probability at phrase boundaries. Within phrases in our miniature 

language, transitional probabilities between categories are perfect: every A word is always 

followed by a B word, every C word is followed by a D word, and so on.2 Between phrases, 

transition probabilities are lower, since, for example, B words can be followed by C words, 

E words, or A words. A control language without phrase structure was created by applying 

the same transformations to any adjacent pair of words. Because no word categories were 

consistently grouped together (e.g., A could be followed by B, D, or F), there were no peaks 

and dips in transitional probabilities and no cues from these statistics to phrase structure.

1Transitional probability is a statistic that measures the predictiveness among adjacent elements. The forward transitional probability 
of successive elements XY is defined as the probability of XY divided by the probability of X.
2Since each category contains 2 or 4 words, word-level transition probabilities will differ from category-level transition probabilities. 
Peaks and dips in transition probability are clearest when defined across categories, as in natural languages.
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The exposure set for each language consisted of 39 sentences, 5% with the basic ABCDEF 

structure and 95% with a transformed structure. The sentences in each exposure set were 

randomly ordered, and this ordered set was looped 18 times.

2.1.3 Phrase Test—A two-alternative forced-choice test assessed whether participants 

had learned to group words into phrases. On each of 18 trials, participants heard two 

sequences of words. Both choices were legal two-word sequences and occurred during 

exposure for both languages. In the phrasestructure language, one sequence formed a phrase 

(AB) while the other spanned a phrase boundary (BC). The phrase occurred first or second 

equally often. Neither sequence formed a phrase in the control language because that 

language did not have phrases. Participants were asked to choose the pair that formed a 

better group in the language. The phrasal sequence was considered “correct” for scoring 

purposes.1

2.2 Materials

We synthesized individual monosyllabic words using the Alex voice in MacInTalk, without 

prosody, and edited them to control acoustic features.2Words were then concatenated to 

create 39-sentence (132 s) exposure sets. This process was blind to sentence structure and 

did not produce acoustic cues at phrase boundaries. Sentences were separated by 784 ms 

silence (the duration of a phrase). Each exposure set was looped 18 times, for a total of 40 

minutes of exposure.

Because the languages shared a vocabulary and because the process for creating sentences 

did not physically alter these words, the two exposure sets had the same basic acoustic 

properties. Therefore, any differences in neural tracking across conditions cannot be 

attributed to physical differences in the materials and must instead reflect higher-level 

knowledge of the language’s structure–information that is not encoded in the physical 

speech signal.

2.3 Procedure

Thirty-two adults at New York University (right handed, 15 male, mean age 23, SD = 4) 

listened to the phrase-structure language (Group PS: n=16) or the control language (Group 

C: n=16) while we recorded MEG. Subjects were invited to take a brief break halfway 

through exposure. To ensure attention, participants were asked to press a button after every 

4-word sentence. Participants fixated on a target to reduce eye movement artifacts in the 

MEG signal. After the 40minute exposure session, participants completed the Phrase Test 

described in 2.1.3.

2.4 MEG analysis

MEG recordings were made with a 157-sensor system (KIT). Signals were sampled at 1 kHz 

(200 Hz low-pass filter, 60 Hz notch). The neural signals were bandpass filtered between 0.7 

Hz and 6 Hz using a FIR filter and resampled to 200 Hz offline before analysis. 

Environmental noise was removed using time-shift principal component analysis (de 

Cheveigne & Simon, 2007). The neural recordings during exposure were segmented into 64 

38s epochs. For each MEG channel, values deviating from the mean by more than 9 SD 
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were considered saturated. To extract response components phase-locked to the stimulus, we 

decomposed the data using denoising source separation (DSS); the bias response was chosen 

as the response averaged over all 38s epochs (de Cheveigne & Simon, 2008). The first DSS 

component, which has the most reliable response waveform across epochs, was used for 

further analysis. To eliminate transient neural responses evoked by sentence boundaries, the 

neural recordings in a 1520 ms window centered at the sentence onset (covering the 760 ms 

pause before a sentence and the first two words of each sentence) were removed from the 

analysis. To calculate the response spectrum with an appropriate frequency resolution, the 

data were re-epoched into 32 word epochs. MEG signals were transformed into the 

frequency domain using DFT without any smoothing window, resulting in a frequency 

resolution of 0.082 Hz. Since DSS components have arbitrary polarities, to average across 

participants the DSS polarity was aligned using multiset Canonical Correlation Analysis 

(mCCA) (Zhang & Ding, 2017). The mCCA aligns polarity by maximizing the correlation 

between the re- sponse waveforms from all pairs of participants.

3 Results

3.1 Neural tracking reflects knowledge of phrase structure

3.1.1 Phrasal knowledge—The Phrase Test measured behaviorally whether subjects 

acquired the phrase structure of the language. Participants chose between word sequences 

that, in the phrase-structure language, either formed a phrase (AB) or spanned a phrase 

boundary (BC). Participants exposed to the phrase structure language (PS) chose the phrase 

sequence significantly more than the control group (C) (Figure 1; 70% vs. 55%, t(30) = 

2.5302, p = .009, one-tailed), while Group C did not differ from chance (t(30) = 1.4035, p 

> .15). These results indicate that Group PS, but not Group C, acquired phrase-structure 

representations.

3.1.2 Neural tracking—Figure 2 shows the MEG response (power spectrum of the first 

DSS component, which is a weighted average of data from all MEG sensors) averaged over 

the 40-minute exposure period. The phrase-rate response at 1.3 Hz was significantly stronger 

in Group PS than Group C (t(30) = 4.75, p < .001, two-sample t-test). Because the words of 

the two languages were the same—only the sentence structure differed—Group PS’s 

stronger phrase-rate response indicates tracking of the language’s phrase structure.3 The 

word-rate response was not significantly different between groups (t(30) = 0.18, p = 0.85, 

two-sample t-test).

when listening to the materials, but computing statistics over word classes to determine 

which pairs consistently co-occur and then identifying those pairs on a test. This is a much 

more stringent test of whether participants learned phrases. The strong performance of 

Group PS on our test demonstrates that they acquired knowledge of these consistent 

3The weak response present in Group C may reflect a tendency to group words into twoword units. We have repeatedly observed a 
binary grouping tendency in behavioral experiments; this allowed participants in Group C to surpass chance on the phrase test when 
50% of the sentences had a stable word order (ABCDEF; Thompson & Newport, 2007). This tendency may also underlie the weak 
phrase-rate MEG response in Group C and the very early phrase-rate response in Group PS. However, our behavioral measure requires 
not just hearing binary groups
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groupings, whereas Group C did not. Thus knowledge of these groupings must be driving 

the much more robust phrasal response in Group PS.

3.1.3 Individual variation—There was more overlap across groups on our behavioral 

measure than on our neural measure (Figure 3). Nearly all participants in Group PS 

demonstrated strong neural tracking, regardless of behavioral score, suggesting that the brain 

response to phrase structure may be less variable than the behavioral one.

3.2 Tracking of phrases increases as knowledge develops

We examined how neural tracking emerged by analyzing the MEG response in 22-second 

bins (5 to 8 sentences) over the exposure (Figure 4). In Group PS, a robust phrase-rate 

response built gradually, peaking after approximately three and a half minutes (10 bins). A 

much smaller phrasal response in Group C plateaued after approximately one minute (3 

bins).

To identify when the group difference in phrase-rate response emerged, we compared the 

phrase-rate response over three-bin (~1 minute) intervals. The groups did not differ 

significantly during bins 1–3 (F(1,30) = .43 ,p = .52) or bins 4–6 (F(1,30) = .97, p = .33), 

confirming that group differences were not present initially and instead reflected learning by 

Group PS that occurred during exposure. A significant between-groups difference emerged 

in bins 7–9 (F(1,30) = 4.43, p = .04). In separate unpublished experiments, where we have 

measured subjects’ knowledge behaviorally after varying amounts of exposure to these 

languages, significant behavioral differences begin to emerge after 8–10 bins of exposure 

(176–220 seconds, or during the second loop of the 132-second exposure set). These results 

indicate that, at a group level, brain responses indicating representations of phrase structure 

appear around the same time as—or perhaps just before— this knowledge begins to manifest 

behaviorally.

4 Discussion & Conclusions

4.1 Summary

We measured neural tracking of linguistic structure (Ding et al., 2016a) during exposure to a 

miniature language with distributional cues to phrase structure or to a control language 

(Thompson & Newport 2007). Tracking of phrases was observed only for learners of the 

phrase-structure language. Because cues to the phrase boundaries were not present in the 

acoustic signal, this tracking must reflect abstract knowledge of the sentences’ phrasal 

structure. The results suggest that statistically learned phrases are represented abstractly and 

constructed online during language processing.

4.2 Time course of neural tracking during learning

Brain responses to phrase structure developed rapidly: within four minutes. In contrast, 

Buiatti et al. (2009) observed neural tracking of learned words after nine minutes of 

exposure only when boundaries were marked with subliminal pauses. This suggests that our 

participants’ representations somehow differed from those in that study, such that our 

participants built representations online while theirs did not. Buiatti et al.’s (2009) 
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participants could explicitly recall learned words only in the condition containing pauses, 

suggesting that participants in the nopauses condition learned probabilities over syllable 

sequences (thus distinguished words from part-words) but did not as successfully code the 

sequence into units. Of course, pauses cannot be required for such coding, since our 

participants did succeed in learning the higher-level organization of the sentence without 

pauses (and natural languages do not have pauses between linguistic units). But the 

distributional cues in our study were different: the words that formed a phrase were not only 

linearly adjacent, they also appeared, disappeared, and moved together—and perhaps this 

was critical. Understanding how the brain codes the output of different types of statistical 

computations is an intriguing area for future research. In general, the rapid development of a 

phrase-rate response in our study is consistent with other evidence of rapid statistical 

learning (Saffran et al., 1996; Aslin & Newport 2012, 2014).

In contrast to phrases, tracking of acoustically identifiable words decreased over time in both 

groups, possibly reflecting loss of attention.4

4.3 Local temporal dynamics of neural responses

What aspect of phrase structure is the brain tracking? In an exploratory analysis, we asked 

whether group differences emerged at specific points during sentence processing. Group 

differences appeared to be localized temporally to the within-phrase transitions (Figure 5). 

The same high transition-probability pattern forms a cue to phrase structure in natural 

languages. This suggests that attention to high-probability transitions—perhaps in 

anticipation of the completion of a grammatical phrase—could underlie the global phrase-

rate response in this experiment as well as in Ding et al. (2016a).

This possibility is intriguing because it holds the potential to refine our understanding of 

neural tracking. However, caution is warranted.5 Exploring this pattern in future research 

could reveal further details about neural tracking of linguistic structure.

4.4 Rules and statistics

Ding et al. (2016a,b) argued that knowledge of abstract phrase structure, not “mere 

statistics,” drives neural tracking. On the other hand, Thompson and Newport (2007) argued 

that abstract phrase structure is acquired on the basis of statistics such as transitional 

probabilities. These views may appear contradictory, so we take this opportunity to clarify 

that they are not. Learners certainly use distributional information to acquire the phrase 

structure of their language. However, simple statistics such as bigram frequency do not lead 

to brain responses to phrase structure or to mental representations of that structure (Kam et 

al., 2008; Thompson & Newport, 2007). Rather, we propose that a correlated set of 

distributional cues underlies the transition to representing serially ordered material in terms 

4In other studies, increases in tracking of higher-level units alongside decreases in tracking of lower-level units was interpreted as 
evidence that the higher-level responses “suppressed” the lower-level ones (Buiatti et al., 2009; Batterink & Paller, 2017). However, 
here the lower-level (word) response decreased whether or not a phrase-level response emerged (the decrease was observed in both 
groups). One reason our results might differ from those studies is that our exposure period was much longer (40 vs. 9–12 minutes). A 
second reason might be that tracking in prior studies reflects a shift in perceptual grouping (as suggested by Batterink & Paller, 2017), 
while in this study tracking reflects the processing of an additional layer of structure.
5With a periodic neural response, it is impossible to distinguish a short-latency response to a recent event from a longer-latency 
response to a temporally more distant event.
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of a more abstract grammar. As learners begin to represent their language in terms of phrase 

structure, we believe that is when they show knowledge of which words form phrases as 

well as a brain response to those phrases in a stream of speech, as in the present experiment. 

This transition depends on using complex statistical distributions to acquire such 

representations; but the crucial product of learning is abstract phrase representations and not 

merely the statistics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Performance on phrase test (n=32). Error bars: SEM. Subjects in Group PS preferred phrases 

to legal non-phrase sequences, indicating phrasal representations.
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Figure 2. 
MEG response and groups differences. The MEG response shown is the first DSS 

component. The 2.6 Hz peak corresponds to word boundaries, which have physical 

correlates in the acoustic signal. Both groups track these units. The 1.3 Hz peak corresponds 

to phrase boundaries, which are not marked physically. Tracking of phrases is strongest in 

Group PS. Shaded area: 2 SEM over subjects on each side. The response topographies iare 

shown on the right. Stronger responses are seen for Group PS at 1.3 Hz than Group C. The 

responses at 2.6 Hz show a similar bilateral pattern for both groups.
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Figure 3. 
Relationship between MEG phrasal-rate response and behavioral performance. The Y-axis 

represents average power at the phrase (1.3 Hz) rate minus average power in a neighboring 

frequency region (1Hz) in order to correct for differences across subjects. The behavioral 

performance is the same as shown in Fig. 2. The inter-quartile ranges of behavioral and 

neural scores are plotted as horizontal and vertical lines respectively. The two horizontal 

lines overlap, whereas the two vertical lines do not, indicating more pronounced group 

differences for the neural measure than the behavioral one.
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Figure 4. 
Building of neural response over time. MEG responses were divided into bins of 22 seconds 

(graphed on a logarithmic scale). Neighboring bins were averaged into blocks (markers). 

Left, Phrasal rate; right, word rate. The Y-axis represents average power at the phrase 

(1.3Hz) rate or word (2.6Hz) rate minus average power in a neighboring frequency region 

(1Hz), in order to correct for differences across subjects.
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Figure 5. 
Temporal dynamics of the MEG response, averaged across the entire exposure period. The 

offset of each phrase is shown by a thick dashed line, the offset of other words is shown by a 

thin dashed line. Top: response time course for the two conditions. Bottom: difference 

between conditions. Significant differences are marked by yellow (Group PS < Group C) 

and cyan (Group PS > Group C) bars (unpaired t-test, FDR corrected across the shown 

duration, p< .05). The differences are observed at important points in the phrase structure. 

Just before the within-phrase transition, Group PS’s response latency is shifted relative to 

Group C (left side of the thin dashed lines). Afterwards, Group PS’s response amplitude is 

lower (right side of the thin dashed lines).
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Table 1.

Structure of miniature languages. The two languages had the same vocabulary and basic sentence structure 

(ABCDEF). Complex sentences were created by applying transformations to pairs of words. In the phrase-

structure language (PS: top row), transformations were applied to consistent pairs of words, creating a 

distributional cue to phrase structure: high transition probabilities within phrases and low transition 

probabilities across phrase boundaries. In the control language (C: bottom row), transformations were applied 

to any adjacent pair of words or to AF (to ensure that the statistical distributions of A and F were similar to 

those of the other adjacent form classes). This created a pattern of relatively flat transition probabilities and no 

cues to a phrase structure. All sentences in both languages were 4, 6, or 8 words long.

Word pairs for
transformations Example complex sentences

Transition probabilities
for basic sentence structure

AB, CD, EF ABEF merA levB kerE navF

EFCDCD rudE sibF tidC lumD relC zorD

CDEFABCD tidC zorD kerE navF dazA nebB sotC lumD

AB, BC, CD, CFDE jesC sibF zorD tafE

DE, EF, AF AFDECD merA sibF lumD rudE relC zorD

BCADEFAB levB tidC kofA zorD kerE sibF merA nebB
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