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Bacteria that cause infections in humans can develop or acquire resistance to antibiotics 

commonly used against them1,2. Antimicrobial resistance causes significant morbidity 

worldwide, and some estimates indicate attributable mortality could reach up to 10 million 

by 20502–4. Antibiotic resistance in bacteria is believed to develop largely under the 

selective pressure of antibiotic use; however, other factors may contribute to population level 

increases in antibiotic resistance1,2. We explored the role of climate (temperature) and 

additional factors on the distribution of antibiotic resistance across the United States, and 

here we show that increasing local temperature as well as population density were associated 

with increasing antibiotic resistance (percent resistant) in common pathogens. We found that 

an increase in temperature of 10oC across regions was associated with increases in antibiotic 

resistance of 4.2%, 2.2%, and 2.7% for the common pathogens Escherichia coli, Klebsiella 
pneumoniae, and Staphylococcus aureus. The associations between temperature and 

antibiotic resistance in this ecologic study were consistent across most classes of antibiotics 

and pathogens and may be strengthening over time. These findings suggest that current 

forecasts of the burden of antibiotic resistance could be significant underestimates in the face 

of a growing population and climate change4.

Since the discovery of Penicillin by Alexander Fleming in 1928, antibiotics have had 

immeasurable impact on the reduction of bacterial infections and associated morbidity and 
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mortality1,2. However, their global use (and overuse) has supported the spread of bacterial 

resistance to these agents1,2, with the possibility of entering a ‘post-antibiotic era’ in which 

antibiotics are no longer a treatment option2–4. Despite the potential dire implications for 

human health posed by antibiotic resistance over the next century, we have a limited 

understanding of the factors that drive the transmission of antibiotic resistance amongst 

populations, including the potential impact of climate change1,5.

Antibiotic resistance can spread by the horizontal transmission of specific genomic 

resistance mechanisms and the selection/propagation of resistant strains1,6, and this is known 

to occur (often asymptomatically) between humans, animals, and the environment1 (we will 

collectively refer to this movement as ‘transmission’). While antibiotic use has been 

assumed to be the main force behind the rise of antibiotic resistance in populations, other 

factors may act to facilitate transmission of antibiotic resistance and drive regional spread1,7. 

Temperature has long been known to affect bacterial growth in-vitro as well as modulate 

transfer of genomic material, including genes encoding (or conferring) antibiotic 

resistance8,9, but empirical evidence of the impact of climate on population level resistance 

is lacking. Here, we investigated whether local climate, in the form of local temperature, 

could explain differences in antibiotic resistance across geographic regions in the United 

States at high spatial resolution. In addition, we sought to evaluate whether local 

characteristics such as population density, antibiotic prescription rates, specific patient 

populations, and laboratory standards could also account for observed differences in 

antibiotic resistance patterns.

We developed a large database of antibiotic resistance patterns across different geographic 

regions in the United States using antibiotic resistance indices (index of resistance by 

antibiotic and bacterial pathogen) generated from information sourced from hospitals, 

laboratories, and surveillance units10. Resistance indices were linked with facility 

characteristics, such as inpatient/outpatient type, as well as regional prescribing rates11 and 

population density12. We studied three common community and hospital-acquired bacterial 

pathogens, including two Gram-negative species (Escherichia coli and Klebsiella 
pneumoniae) and one Gram-positive species Staphylococcus aureus 13,14. The final dataset 

represented over 1.6 million clinically relevant bacterial pathogens, from 602 unique indices, 

spanning 223 facilities, across 41 states, for the years 2013–2015.

We explored the relationships between regional patterns of antibiotic resistance (here 

defined as percent of pathogens not susceptible to a particular antibiotic) and both latitude 

and local historical climate variables (mean and minimum temperature, averaged over 1980–

2010) (Supplementary Fig. 1)15. Historical climate variables were chosen in order to match 

best with the periods of time over which antibiotic resistance patterns have developed. 

Average minimum temperature showed higher correlations than average temperature and 

latitude across the three pathogens and antibiotics (Supplementary Fig. 1), with correlations 

up to 0.7. Minimum temperature is a commonly used climate variable when describing the 

survival of species within environments16 and may be of particular importance in 

identifying: (1) regions that can support persistence of environmental and/or colonizing 

bacteria; and (2) regions with enhanced growth and resistance transmission potential. Given 

these factors, and the relative strength of its relationship with antibiotic resistance, we 
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focused our analysis on the association between minimum temperature and antibiotic 

resistance.

Using both unadjusted and multivariable adjusted weighted linear models, we evaluated 

multiple aspects of the association between minimum temperature and antibiotic resistance. 

We found that increasing minimum temperature was associated with increasing antibiotic 

resistance, and this was consistent across most classes of antibiotics and pathogens (Figs. 1–

2, Supplementary Figs. 2–4). In unadjusted analysis (Table 1), an increase of 10 °C across 

regions was associated with an increase in antibiotic resistance of 5.1% (p< 0.0001), 3.4% 

(p< 0.0001), and 3.1% (p=0.002) for E.coli, K. pneumoniae, and S. aureus, respectively. 

Notably, changes in minimum temperature lead to larger increases in antibiotic resistance in 

subsequent years of observations, when analysing all antibiotics and pathogens, both for oral 

and intravenous (IV) formulations (Fig. 2). The measure of association between minimum 

temperature and antibiotic resistance may increase with earlier time of introduction in the 

United States (Supplementary Fig. 5). The geographic pattern of antibiotic resistance in the 

common pathogen E.coli is shown in Fig. 1, and in Supplementary Figs. 3–4 for K. 
pneumoniae and S. aureus respectively.

Multivariable analysis of antibiotic resistance versus minimum temperature was performed 

for each pathogen across all tested antibiotics (Table 1). After adjusting for acquisition 

source, prescription rate (available for a subset of tested antibiotics), population density, and 

laboratory standard, we found that a 10 °C increase in minimum temperature across regions 

was associated with an increase in antibiotic resistance of 4.2% (p<0.0001), 2.2% 

(p<0.0001), and 2.7% (p=0.21) for E. coli, K. pneumoniae, and S. aureus, respectively. 

When we removed penicillin (an uncommon and sporadically tested antibiotic) susceptibility 

results for S. aureus, we found that minimum temperature was associated with an increase in 

antibiotic resistance of 5.1% (p<0.0001) (Table 1). We also looked at S. aureus resistance to 

specific antibiotics including cloxacillin, an older antibiotic which is used to differentiate 

methicillin-susceptible from methicillin-resistant S. aureus (MRSA). In multivariable 

adjusted analysis, we found increases in antibiotic resistance to cloxacillin, 

fluoroquinolones, and macrolides, of 5.8% (p<0.0001), 3.7% (p=0.096), and 6.0% (p<0.001) 

respectively for a 10 °C increase in minimum temperature across regions (Supplementary 

Table 1). These multivariable results generally support the univariate associations seen.

Geographic variability in antibiotic prescribing has been documented in outpatient facilities 

between broad regions within the United States17,18, where an increased incidence of 

antibiotic prescriptions has been observed across a number of southern states 17. Given these 

patterns, we examined the effects of spatial distributions of antibiotic prescribing on 

resistance for four common antibiotic classes penicillins, cephalosporins, fluoroquinolones, 

and macrolides. We found that increased prescribing was associated with increasing 

antibiotic resistance for the antibiotics evaluated across all three pathogens (Supplementary 

Fig. 6, Table 1). Moreover, the relationship between minimum temperature and antibiotic 

use did not change by amount (tertile) of antibiotic prescribing (Supplementary Fig. 7).

In multivariable adjusted analyses (Table 1) we found that an increase in population density 

by 10,000 persons per square mile (e.g. from Bismarck, North Dakota to Boston, 
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Massachusetts) was associated with a 6% increase in antibiotic resistance for K. pneumoniae 
(p< 0.0001) and 3% for E. coli (p= 0.086). This may reflect increased transmission rates 

within dense populations19. Sources containing outpatient antibiotic resistance data were 

associated with lower resistance for all pathogens, and this association was significant in 

adjusted models for S. aureus (−4.24%, p=0.0003), but not for E. coli (−2.98%, p= 0.06) or 

K. pneumoniae (−2.88%, p=0.17) (Table 1). Reported laboratory standard only demonstrated 

a significant association with antibiotic resistance in the adjusted analyses of S. aureus 
isolates. We found no change in the relationship between minimum temperature and 

antibiotic resistance across levels of the other evaluated covariates (Supplementary Fig. 7). 

Furthermore, we found no strong correlations between minimum temperature and other 

covariates (Supplementary Table 2).

While the mechanisms underlying the observed associations between resistance and 

temperature require further elucidation, several hypotheses are proposed. Firstly, 

temperature may facilitate horizontal gene transfer, occurring through exchange of resistance 

genes (e.g. plasmid-borne extended spectrum-beta lactamases - ESBLs) or uptake of free 

genetic material8,9,20. European countries in the southern latitudes have a higher incidence 

of infections due to ESBL producing enterobacteriaceae21, which has generally been 

attributed to antibiotic use and selective pressure, but which may be facilitated by climate 

factors including temperature. Many recent emergences of highly mobile genetic elements of 

resistance have originated from central latitudes9,22,23. Increased gene transfer (occurring 

either at sites of colonization on a host24, or in the environment9), might then be expected to 

facilitate population transmission. Secondly, temperature is one of the most potent modifiers 

of bacterial growth rates24,25, and may drive increased carriage26 and transmission of 

resistant strains of between humans and animals. For both Gram-positive and Gram-negative 

human pathogens, seasonal patterns of infection have been identified and carriage may play 

a role 27,28. In a similar fashion, temperature may support environmental growth of resistant 

strains leading to enhanced transmission from food/agriculture and environmental sources 
29. Increased population level transmission may thus facilitate population level selection of 

resistant strains30. Interestingly, we also found that fluoroquinolones and beta-lactams 

generally demonstrated the strongest associations between temperature and resistance (Figs. 

1, Supplementary Figs. 3–4). This would support mechanism specific impacts of 

temperature on resistance. Lastly, potential temperature effects may be rooted in more 

complex factors (e.g. behavioural, social) occurring across humans, animals, and agriculture/

environment, as embodied by the OneHealth perspective.

While a major limitation of our approach is that we compare climate and predictor data with 

antibiotic resistance at regional levels, and thus cannot infer causality, our approach is suited 

to identifying ecological associations which may be particularly relevant for antibiotic 

resistance (e.g. antibiotic prescriptions across population vs. individual) and is a commonly 

used design when studying antibiotic resistance over large populations and geographies21.

The World Health Organization has identified climate change as a major driver of emerging 

infectious diseases globally5, though vector-borne and enteric infections such as cholera 

have typically been identified as most likely to be impacted. Our findings suggest that the 

spread of antibiotic resistance may be modified and potentially accelerated by regional 
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temperature and future climate change. Based upon our findings, a 10oC increase in 

temperature, a conceivable scenario for parts of the United States by the end of this 

century31, could yield additional increases in resistance on the order of 10% for certain 

antibiotics (Fig. 1, Supplementary Table 1). If the relationship between minimum 

temperature and antibiotic resistance is indeed present and increasing over time, this could 

support a more rapid progression towards a ‘post-antibiotic era’. Further research is needed 

to confirm these relationships and elucidate the role of climate in antibiotic resistance 

spread. Our findings would suggest that in the presence of climate change and population 

growth, already dire predictions of the impact of antibiotic resistance on global health may 

be significant underestimates4.

Methods

Patterns of Antibiotic Resistance

To identify regional patterns of antibiotic resistance across the United States, we utilized a 

continuously-updated database of spatially localized annual indices of inpatient and 

outpatient antibiotic resistance for common clinically relevant bacterial pathogens from 

human clinical isolates for years 2013–201510. Data entry into this database was performed 

by analysts blind to the research questions evaluated in this study. Each antibiotic resistance 

index corresponded to a particular health/surveillance network, hospital, or laboratory 

facility. Relevant variables captured in this database include antibiotic susceptibility, 

bacterial species, year, location, acquisition sources (inpatient only or containing outpatient 

isolates), and laboratory standard (clinical laboratory standards institute [CLSI] or other/not 

reported). Percent antibiotic resistance was defined as the percentage of bacterial isolates 

that were non-susceptible to a given antibiotic. Minimum inhibitory concentration (MIC) 

values were not available/evaluated in this dataset. Antibiotics evaluated for each pathogen 

are shown in Supplementary Table 3, including classification as intravenous (IV) 

formulation or available in a regularly used oral formulation. For specific drugs where 

testing of intravenous versions approximate susceptibility for oral equivalents, we 

substituted the oral drug name (which are more commonly used). These included 

amoxicillin and cephalexin in lieu of ampicillin and cefazolin. We restricted our analysis to 

the continental United States and focused on three important pathogens in community and 

nosocomial infections, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus 
13,14. The distribution of pathogen specific data points are shown in Supplementary Fig. 8. 

After restricting to these three bacterial species, the final dataset represented over 1.6 million 

bacterial pathogens corresponding to up to 22.8 million susceptibility test results, from 602 

unique indices, spanning 223 facilities, across 41 states throughout the continental United 

States. The number of indices contributing data for the pathogens E. coli, K. pneumoniae, 

and S. aureus were 595, 551 and 307 respectively, representing approximately 1.1 million, 

0.2 million, and 0.3 million bacterial pathogens tested, respectively. Of this dataset, mean 

population density was 2,462 persons/mi2, 77.4% of indices contained outpatient data, and 

70.8% of indices reported using CLSI standards (versus other/not reported). For analysis of 

the impact of prescription rates, we used a subset of the data based on availability of 

prescribing rates for relevant drug classes (fluoroquinolones, cephalosporins, penicillins, and 

macrolides), and this subset contained 446 indices, across 40 states, totaling 1.3 million 
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bacterial pathogens, where mean prescribing rate was 139.8 prescriptions per 1,000 persons, 

mean population density was 2,583 persons/mi2, 78% of indices contained outpatient data, 

and 70% of indices reported using CLSI standards (versus other/not reported). A validation 

assessment of these datasets was performed, with a review of antibiotic resistance and 

descriptor data values randomly selected across indices from a 10% sample of facilities 

included in the database, and yielded a concordance of 97% with original data sources.

Predictors and Confounders

We selected relevant predictors and confounders that help predict antibiotic resistance based 

on previous literature and plausible biologic mechanisms1,13,18,25,28,32. We linked each 

location by nearest zip code with climate data, including 30-year normals (1980–2010) of 

minimum temperature (30-year average of daily minimum temperature) and mean 

temperature (30-year average of mean daily temperature) from the United States National 

Climatic Data Center15. To account for spatial variability in antibiotic use, outpatient 

antibiotic prescriptions (annual prescriptions per 1000 persons) by class (fluoroquinolones, 

cephalosporins, penicillins, and macrolides) for the years 2013–2014 were linked to index 

location by antibiotic tested at the state-level, using data derived from Xponent database 

from QuintilesIMS (Danbury, Connecticut) via CDC antibiotic Resistance Patient Safety 

Atlas11. We assume that current distributions of antibiotic prescription rates are reflective of 

recent historical distributions as complete prescription data over a potentially relevant time 

course is not reasonably identifiable/attainable. Moreover, we assume that the prescribing 

measures and linear relationship we use adequately approximates the underlying 

relationships, and that we have captured the most relevant predictors/confounders. Finally, 

we linked the data with population density throughout the United States by zip code based 

on 2010 census data12.

Data Analysis

For all figures and analyses in this ecologic study, we used location/facility specific data 

points, prepared by weighted averages of antibiotic resistance indices by organism, drug, 

acquisition sources (inpatient or outpatient containing), and year, for the particular location. 

Where applicable, data markers were scaled proportional to the total number of isolates 

tested for a given organism at a particular location/facility and this was denoted in the 

legends. For ease of trend visualization of antibiotic resistance across multiple different 

antibiotics, we centered the data about the mean and normalized by the standard deviation 

(Fig. 2, Supplementary Figs. 2, 6–7). Trend bars represent weighted linear fitted models with 

standard confidence regions in grey. The effect of minimum temperature on antibiotic 

resistance was plotted within levels of the covariates (prescription rate - tertile, acquisition 

location, laboratory standard, and population density - tertile) in order to qualitatively assess 

for potential confounding and effect modification (Supplementary Fig. 7). Log scales were 

utilized for population density given the large spread of values (Supplementary Fig. 6). All 

plots were generated using R (Version 3.3.2, Vienna, Austria).

We generated heatmaps of normalized antibiotic resistance (Fig. 1, Supplementary Figs. 3–

4) for each pathogen, based on average normalized resistance within zip codes containing 

antibiotic resistance data. We utilized reference 30-year minimum temperature normals for 
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these same zip codes to generate the minimum temperature map (Fig. 1, Supplementary 

Figs. 3–4). Gaussian kernel smoothing was performed with least-squares cross-validated 

bandwidth selection. Map projections were obtained using the R packages “maptools” and 

“maps,” and visualizations were performed using the package “spatstat.”.

We used weighted linear regression of location specific antibiotic resistance with clustering 

by state and latitude quintile to account for correlated errors, and determined unadjusted and 

adjusted model parameters for relevant predictors (Table 1). Weighting was based on the 

total number of isolates tested for a given pathogen. All analyses were performed using R 

(Version 3.3.2, Vienna, Austria).

Sensitivity Analyses

In order to assess the potential impact of possible ‘double counting’ that could occur in 

regions where a large surveillance body may overlap with a hospital or laboratory, we 

evaluated the association of minimum temperature and antibiotic resistance using 

multivariable weighted regression, but restricted to the subset of health system, hospital, and 

laboratory data only. There were no major changes in overall interpretation of the data, and 

the results are shown in Supplementary Table 4.

To evaluate whether time trends in effect of minimum temperature on antibiotic resistance 

could be due to non-random sampling, we applied the same multivariable regression analysis 

as described in the main paper, but restricted to institutions that provided data for more than 

one year. There were no major changes in overall interpretation of the data, and the 

multivariable model results are shown in Supplementary Table 4.

To assess whether different isolate sources could impact the association between antibiotic 

resistance and temperature, we ran an additional multivariable linear weighted regression 

models, with the same parameters as the full model in Table 1 (minimum temperature, 

prescription rate, outpatient containing, laboratory standard, and population density) but also 

included binary predictors of isolate sources contained within the indices, namely: Urine; 

Blood; Respiratory; Other sterile (e.g. cerebrospinal fluid, pleural fluid, peritoneal fluid); 

and Other non-sterile (e.g. wound swabs). In order to accommodate these additional 

predictors, this model was run in the dataset prior to collapsing across the variables of 

interest. There were no major changes in overall interpretation of the data, and the results are 

shown in Supplementary Table 4.

To evaluate whether socioeconomic status could have an impact on the association between 

antibiotic resistance and temperature, we ran additional multivariable weighted linear 

regression models, with the same parameters as the full model, but with either the 

replacement of population density with median income or addition of median income 

(Supplemental Table 4). We found no significant changes to the overall model findings, 

although median income may be a relevant factor for E.coli resistance. Median income data 

was extracted from the US Census Bureau American Census Survey (ACS), 5-year estimate 

from 2015, and linked by zipcode. To evaluate the possible impact of imputation of 

cephalexin susceptibility on cloxacillin results, we ran additional multivariable weighted 
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linear regression models for S. aureus with cephalexin susceptibilities removed. We found 

no major changes to the overall interpretation of the results (Supplementary Table 4).

Limitations

As previously noted, due to the nature of this descriptive ecologic study, and potential for 

ecologic bias, we cannot infer causality. We have selected confounders based on their 

potential relevance in antibiotic resistance transmission, however residual/unmeasured 

confounding is possible. Selecting important factors governing population level distribution 

of antibiotic resistance is challenging, as they are generally poorly understood. We also only 

included prescribing rates for antibiotic classes matching the antibiotic susceptibility and did 

not consider selection effects of other classes. Lastly, our dataset may be subject to selection 

bias, although, it is unlikely that minimum temperature would be associated with inclusion 

into the dataset.

Data Availability

Antibiotic resistance data is derived from open sources and is queryable at 

www.resistanceopen.com10. Climate data is available through the United States National 

Climatic Data Center15. Antibiotic prescription rates are available from Xponent database 

from QuintilesIMS (Danbury, Connecticut) via CDC antibiotic Resistance Patient Safety 

Atlas11. Population density values are available through 2010 census data12.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Antibiotic resistance increases with increasing temperature.
(A) A heatmap of mean normalized antibiotic resistance for E. coli for all antibiotics across 

the United States. (B) A heatmap of 30-year average minimum temperature (°C) across the 

United States. (C) A scatter plot of antibiotic resistance versus minimum temperature (°C) 

by acquisition type for E. coli and amoxicillin. Unadjusted weighted linear trend line is 

shown in blue. (D) Slope of unadjusted relationship (% Resistance/°C) between minimum 

temperature and antibiotic resistance by antibiotic for E. coli. Antibiotic class coded by color 

shading.
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Figure 2. Change in the relationship between minimum temperature and antibiotic resistance 
over time.
(A) Mean normalized antibiotic resistance versus minimum temperature (°C) for all 

pathogens and antibiotics, stratified by year (2013–2015). Unadjusted weighted linear 

relationships for years 2013–2015 are shown. (B) Mean normalized antibiotic resistance 

versus minimum temperature (°C) for all pathogens and antibiotics, stratified by year and 

route (oral versus IV). (C) Density distributions of association measures (slopes) between 

antibiotic resistance and minimum temperature, stratified by time and with median densities 

(by year) marked by vertical dashed lines
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Table 1

Weighted multivariable regression analysis of evaluated predictors of antibiotic resistance.

Bacteria Variable  Unadjusted  Unadjusted*  Adjusted*

E. coli Minimum temp 0.512 0.598 0.419

(<0.0001) (<0.0001) (<0.0001)

Prescription rate -- 0.120 0.121

(<0.0001) (<0.0001)

Outpatient -3.280 -4.590 -2.980

(0.14) (0.09) (0.06)

Lab standard -4.240 -4.900 -3.240

(0.08) (0.06) (0.16)

Population density 0.00027 0.00035 0.00027

0.006 (<0.0001) (0.086)

K. pneumoniae Minimum temp 0.341 0.397 0.219

(<0.0001) (<0.0001) (<0.0001)

Prescription rate -- 0.030 0.034

(<0.0001) (<0.0001)

Outpatient -2.640 -3.006 -2.880

(0.17) (0.24) (0.17)

Lab standard -1.760 -2.220 -0.371

(0.17) (0.22) (0.75)

Population density 0.00051 0.00063 0.0006

(<0.0001) (<0.0001) (<0.0001)

S. aureus Minimum temp 0.305 0.571 0.273

(0.002) (0.004) (0.21)

Prescription rate -- 0.133 0.134

(<0.0001) (<0.0001)

Outpatient -5.800 -5.570 -4.243

(<0.0001) (<0.0001) (0.0003)

Lab standard -1.780 -3.450 -3.922

(0.08) (0.08) (0.03)

Population density 0.00014 0.00015 0.00005

(0.15) (0.07) (0.69)

S. aureus** Minimum temp 0.405 0.762 0.514

(<0.0001) (<0.0001) (<0.0001)

Prescription rate -- 0.068 0.066

(0.0006) (<0.0001)

Outpatient -6.338 -6.520 -4.570

(0.0005) (<0.0001) (0.01)

Lab standard -2.305 -4.910 -3.840

(<0.0001) (0.008) (0.01)

Population density 0.0002 0.0002 0.00004
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Bacteria Variable  Unadjusted  Unadjusted*  Adjusted*

(0.035) (0.009) (0.27)

Unadjusted and adjusted multivariable regression parameters for historical (30-year) mean minimum temperature (°C), antibiotic class specific 
prescription rate (annual prescriptions/1000 population), acquisition source (containing outpatient isolates), laboratory standard (CLSI vs. other/not 

reported), and population density (persons/mi2). P-values are shown in parentheses ().

*
Restricted to subset of antibiotic susceptibilities for dates and classes of antibiotics corresponding to available prescribing rate data.

**
Analysis with Penicillin susceptibility removed.
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