Skip to main content
. 2018 Oct 18;9:477. doi: 10.3389/fgene.2018.00477

Table 1.

Performance of four classifiers using the training dataset.

Feature selection + classifier Feature type Feature number AUC Average accuracy Average AUC
ANOVA + SVM GE 56 0.9962 0.7553 0.8446
CNA 30 0.6586 0.5937 0.5159
ANOVA + naïve bayes GE 46 0.9299 0.6755 0.8291
CNA 24 0.6019 0.5234 0.5506
ANOVA + logistic regression GE 44 0.9703 0.7059 0.6053
CNA 15 0.6782 0.6135 0.5699
Xgboost GE 64 0.9602 0.7338 0.8025
CNA 30 0.954 0.6559 0.6317

GE, gene expression; CAN, copy number alteration; ANOVA, analysis of variance; SVM, support vector machine; AUC, area under the curve; Average accuracy, average of the accuracies from 10-fold cross-validation. Average AUC, average of the AUC values from 10-fold cross-validation.