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Biological interpretation of GWAS data frequently involves assessing whether SNPs linked to a 

biological process, e.g., binding of a transcription factor (TF), show unsigned enrichment for 

disease signal. However, signed annotations quantifying whether each SNP allele promotes or 

hinders the biological process can enable stronger statements about disease mechanism. We 

introduce a method, signed LD profile regression, for detecting genome-wide directional effects of 

signed functional annotations on disease risk. We validate the method via simulations and 

application to molecular QTL in blood, recovering known transcriptional regulators. We apply the 

method to eQTL in 48 GTEx tissues, identifying 651 TF-tissue associations including 30 with 

robust evidence of tissue specificity. We apply the method to 46 diseases and complex traits 

(average N=290K), identifying 77 annotation-trait associations representing 12 independent TF-

trait associations, and characterize the underlying transcriptional programs using gene-set 

enrichment analyses. Our results implicate new causal disease genes and new disease mechanisms.

Introduction

Mechanistic interpretation of GWAS data has become a central challenge for understanding 

the biological underpinnings of disease. One successful paradigm for such efforts has been 

GWAS enrichment, in which a genome annotation containing SNPs that affect some 

biological process is shown to be enriched for GWAS signal1–7. However, there are instances 

in which experimental data allow us not only to identify SNPs that affect a biological 

process, but also to predict which SNP alleles promote the process and which SNP alleles 

hinder it, enabling us to assess whether there is a systematic association between SNP 

alleles’ direction of effect on the process and their direction of effect on a trait. Transcription 

factor (TF) binding, which plays a major role in human disease1,8–12, represents an 

important case in which such signed functional annotations are available: because TFs have 

a tendency to bind to specific DNA sequences, it is possible to estimate whether the 

sequence change introduced by a SNP allele will increase or decrease binding of a TF1,13–19.

Detecting genome-wide directional effects of TF binding on disease would constitute a 

significant advance in terms of both evidence for causality and understanding of biological 

mechanism. Regarding causality, this is because directional effects are not confounded by 

simple co-localization in the genome (e.g., of TF binding sites with other regulatory 

elements), and thus provide stronger evidence for causality than is available using unsigned 

enrichment methods. Regarding biological mechanism, it is currently unknown whether 

disease-associated TFs regulate only a few key disease genes or whether broad 

transcriptional programs comprising many target genes are responsible for TF associations; 

a genome-wide directional effect implies the latter model (Discussion).

Here we introduce a new method, signed LD profile (SLDP) regression, for quantifying the 

genome-wide directional effect of a signed functional annotation on polygenic disease risk, 

and apply it with 382 annotations each reflecting predicted binding of a particular TF. Our 

method requires only GWAS summary statistics20, accounts for linkage disequilibrium and 

untyped causal SNPs, and is computationally efficient. We validate the method via extensive 

simulations and further validate it by applying it to molecular QTL in blood21, recovering 

known transcriptional regulators. We then apply the method to eQTL in 48 tissues from the 
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GTEx consortium22 and to 46 diseases and complex traits, demonstrating genome-wide 

directional effects of TF binding in both settings. We further characterize the transcriptional 

programs underlying our complex trait associations via gene-set enrichment analyses using 

gene sets from the Molecular Signatures Database23,24 (MSigDB).

Results

Overview of methods

Our method for quantifying directional effects of signed functional annotations on disease 

risk, SLDP regression, relies on the fact that the signed marginal association of a SNP to 

disease includes signed contributions from all SNPs tagged by that SNP. Given a signed 

functional annotation with a directional effect on disease risk, the vector of marginal SNP 

effects on disease risk will therefore be proportional (in expectation) to a vector quantifying 

each SNP’s aggregate tagging of the signed annotation, which we call the signed LD profile 
of the annotation. Thus, our method detects directional effects by assessing whether the 

vector of marginal SNP effects and the signed LD profile are systematically correlated 

genome-wide.

More precisely, under a polygenic model25 in which true causal SNP effects are correlated 

with a signed functional annotation, we show that

E α|v = r f hg
2Rv (1)

where α is the vector of marginal correlations between SNP alleles and a trait, v is the signed 

functional annotation (re-scaled to norm 1) reflecting, e.g., the signed effect of a SNP on TF 

binding, R is the LD matrix, hg
2 is the SNP-heritability of the trait, and rf is the correlation 

between the vector v and the vector of true causal effects of each SNP, which we call the 

functional correlation. Equation (1), together with an estimate of hg
2, allows us to estimate rf 

by regressing α on the signed LD profile Rv of v. To improve power, we use generalized 

least-squares regression to account for redundancy among linked SNPs. We assess statistical 

significance by randomly flipping the signs of entries of v, with consecutive SNPs being 

flipped together in large blocks (~300 blocks total), to obtain a null distribution and 

corresponding P-values and false discovery rates (FDRs). We perform a multiple regression 

that explicitly conditions on a “signed background model” corresponding to directional 

effects of minor alleles in five equally sized minor allele frequency (MAF) bins, which could 

reflect confounding due to genome-wide negative selection or population stratification. We 

note that SLDP regression requires signed effect size estimates α and quantifies directional 

effects, in contrast to stratified LD score regression5, which analyzes unsigned χ2 statistics 

and quantifies unsigned heritability enrichment. Details of and intuition for the method are 

described in the Methods section and the Supplementary Note; we have released open-

source software implementing the method (URLs).

We applied SLDP regression using a set of 382 signed annotations v, constructed using the 

Basset software19, each quantifying the predicted effects of SNP alleles on binding of a 
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particular TF in a particular cell line. The resulting annotations were sparse, with only 0.2% 

of SNPs having nonzero entries on average. (Methods and Supplementary Table 1.)

Simulations

We performed simulations with real genotypes, simulated phenotypes, and our 382 signed 

TF binding annotations to assess null calibration, robustness to confounding, and power 

(Methods).

We first performed null simulations involving a heritable trait with no unsigned enrichment 

or directional association to any of our 382 annotations. The resulting P-values were well-

calibrated (Figure 1a, Supplementary Table 2, and Supplementary Figure 1a).

We next performed null simulations involving a trait with unsigned enrichment but no 

directional effects; these simulations were designed to mimic unsigned genomic 

confounding as might arise from the co-localization of TF binding sites with other enriched 

regulatory elements5,13 (Methods). We again observed well-calibrated P-values (Figure 1b). 

It is notable that our method is well-calibrated even though it has no knowledge of the 

unsigned genomic confounder; this contrasts with unsigned enrichment approaches, in 

which unsigned genomic confounders must be carefully accounted for and modeled5.

We next performed null simulations to assess whether our method remains well-calibrated in 

the presence of confounding due to genome-wide directional effects of minor alleles on both 

disease risk and TF binding, which could arise due to genome-wide negative selection or 

population stratification (Methods). P-values were well-calibrated for the default version of 

the method, which conditions on the 5-MAF-bin signed background model, but were not 

well-calibrated without conditioning on this model (Figure 1c). The incorrect calibration that 

we observe when we do not include our signed background model could potentially be 

explained by genome-wide negative selection against decreased TF binding26 resulting in a 

bias in the sign of the entries of our annotations (Supplementary Figure 2). We condition on 

the signed background model in all analyses in this paper unless stated otherwise.

Finally, we performed causal simulations with true directional effects to assess the power 

and establish the unbiasedness of SLDP regression (Methods). The method is well-powered 

to detect directional effects corresponding to a functional correlation of 2–6% (Figure 2a, 

Supplementary Table 3, and Supplementary Figures 3–5), similar to values observed in 

analyses of real traits (see below). Notably, the power of the method is improved 

dramatically by its use of generalized least-squares to account for redundant information 

(Figure 2a) as well as by its modelling of untyped causal SNPs via the signed LD profile 

(Supplementary Figure 3). In all instances, our method produced either unbiased or nearly 

unbiased estimates of functional correlation and related quantities (Figure 2b and 

Supplementary Figure 6).

Analysis of molecular traits in blood

TF binding is known to affect gene expression and other molecular traits27, and regulatory 

relationships in blood are particularly well-characterized28. We therefore applied SLDP 
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regression to 12 molecular traits in blood with an average sample size of N = 149, to further 

validate the method.

We first analyzed cis-eQTL data based on RNA-seq experiments in three blood cell types 

from the BLUEPRINT consortium21 (Supplementary Table 4). We tested each of our 382 TF 

binding annotations for a directional effect on aggregate expression in each of the three 

blood cell types (Methods). We detected 409 significant associations at per-trait FDR<5%, 

representing 107 distinct TF-blood cell type expression associations (Figure 3a and 

Supplementary Table 5a). All of the detected associations were positive, implying that 

greater binding of these TFs leads to greater expression (in aggregate across genes); 78% of 

the associations involved TFs annotated as activating but not repressing in UnitProt29 

(Figure 3a and Methods). As expected, many of the detected associations recapitulate known 

aspects of transcriptional regulation, including the pro-transcriptional roles of RNA 

polymerase II and other members of the transcription pre-initiation complex (PIC) as well as 

roles of TFs unrelated to the PIC but known to have activating activity30–32. We obtained 

similar results in an independent set of whole-blood eQTL based on expression array 

experiments from the Netherlands Twin Registry33 (Figures 3b–c and Supplementary Table 

5b–c).

We next conducted a similar analysis using histone QTL (H3K27me1 and H3K27ac) and 

methylation QTL for the three cell types in the BLUEPRINT data set. We detected 645 

significant associations at per-trait FDR<5%, four of which were negative (Figure 3d,e and 

Supplementary Table 5d,e). Again, the majority of the positive associations (82%) involved 

unambiguously activating TFs29. The four negative associations involved MAFK and MAFF, 

both of which lack a transactivation domain34, and CTCF, which is known to act as an 

insulator35,36. Many of the detected associations recover known aspects of histone mark 

biology36–39,40,41,43,44 and match a prior analysis of allelic imbalance in ChIP-seq data45.

Analysis of gene expression across 48 GTEx tissues

We next applied SLDP regression to GTEx eQTL across 48 tissues22 (average N = 149). We 

first tested each of our 382 TF binding annotations for a directional effect on expression in 

each of the 48 tissues in turn, analogous to our previous analysis of molecular traits in blood 

(Supplementary Table 6). For each significant association, we then assessed for tissue 

specificity by checking whether the association remained at least as significant when 

conditioning on average eQTL effects across tissues (Methods).

Our analysis yielded 2,330 annotation-tissue expression associations at per-trait FDR<5%, 

representing 651 distinct TF-tissue expression associations of which 30 were robustly tissue-

specific in our conditional analysis (Figure 4 and Supplementary Table 7). We detected both 

known and novel associations. For example, our results recapitulate known activating roles 

for FOXA1 and FOXA2 in pancreas and other gastrointestinal tissues37–39, early B-cell 

factor 1 (EBF-1) in lymphocytes40,41, hepatocyte nuclear factors 4γ and 4α (HNF4G and 

HNF4A) in liver42,43, PU.1 in spleen44, and FOS in fibroblasts45 and nerve tissue46–48. We 

also detected ubiquitous activating signatures for the transcription pre-initiation complex 

members POL2, TAF1, and TBP (90% of the 28 tissues with a sample size above 150). Our 
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results were concordant with TF-tissue associations identified via a purely gene expression-

based analysis (Methods and Supplementary Figure 7).

Our analysis also uncovered many previously unknown associations. For example, our most 

significant association in aorta is a previously unreported activating role for GABPA, one of 

several TFs whose binding sites are enriched near aortic aneurysm-specific genes49. In 

addition, our top — and only — association in the brain tissue substantia nigra is TAF1. 

Neurodegeneration in the substantia nigra is a hallmark of Parkinson’s disease50 and TAF1 

was shown earlier this year to be the causal gene in a rare form of Parkinsonism51. Our 

analysis links these two facts, potentially shedding light on the mechanism of TAF1’s role in 

Parkinsonism.

Our tissue-specific analysis (Methods) also suggests new master-regulatory relationships for 

further exploration (Figure 4). For example, we detected a robust tissue-specific activating 

role for CEBPB in pancreas, where it was our top result. Though CEBPB is not a classic 

pancreatic TF52, it is expressed in pancreatic beta cells specifically under metabolic stress52. 

We also identified a robust tissue-specific activating role in skeletal muscle for MAFF, a TF 

whose expression is increased by an order of magnitude in muscle tissue after exercise53 

(Methods). MAFF is typically considered a repressor, and we identified it as such in our 

blood hQTL analysis; the positive association here suggests a tissue-specific function in 

muscle, perhaps via recruitment of an as-yet uncharacterized activator. Finally, we identified 

robust tissue-specific roles for CTCF as a repressor in tibial artery and an activator in the 

brain tissue putamen. While CTCF is known to be capable of both repression and 

activation35,36,54, these results suggest that its repressive/activating role varies meaningfully 

across tissues.

Our results also demonstrate how our method can offer insights into non-tissue-specific 

aspects of transcriptional regulation. For example, YY1, a pioneer TF that has recently 

attracted considerable interest55–58, has been theorized via detailed experimental work to 

mediate enhancer-promoter interaction59. However, YY1 knockdown experiments have 

shown a mix of up-regulation and down-regulation of many genes59, presumably due to 

downstream regulatory cascades. In contrast, our analysis, which due to its use of eQTLs is 

able to focus exclusively on cis-regulatory effects, shows a robust, predominantly activating 

role for YY1 across 25 tissues.

Analysis of 46 diseases and complex traits

We applied SLDP regression to 46 diseases and complex traits with an average sample size 

of 289,617 (URLs and Supplementary Table 8). We first tested each of our 382 TF binding 

annotations against each of the 46 traits in turn (Table 1 and Supplementary Table 9). For 

each significant association, we then characterized the implicated transcriptional programs 

by evaluating 10,325 gene sets from MSigDB23,24 (URLs) for enrichment among the 

genomic regions driving the association (controlling for LD and co-localizing genes; 

Methods) (Table 1 and Supplementary Table 10).

Our analysis yielded 77 significant annotation-trait associations at per-trait FDR<5%, 

spanning six diseases and complex traits (Figure 5 and Supplementary Table 9a) and 
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representing 12 independent TF-trait associations (after pruning correlated annotations; 

Table 1 and Supplementary Note). Our results were 4.3× enriched for auto-immune disease 

associations (Supplementary Note). We verified empirically that our results are not driven by 

directional effects of minor alleles (Supplementary Table 9b and Supplementary Note), and 

we computed a lower bound on the number of independent TF binding sites contributing to 

each association (74 on average; Table 1, Supplementary Figure 8, and Methods).

Of our 12 independent TF-trait associations, five refine emerging theories of disease while 

seven are previously unknown. Due to space restrictions, we highlight two relationships 

from each category (Figure 6 and Supplementary Table 11; Figure 7 and Supplementary 

Table 12), providing discussion of additional relationships in the Supplementary Note. We 

begin with the TF-trait associations that build on previous knowledge (Figure 6). First, we 

detected a positive association between genome-wide binding of BCL11A and years of 

education (Figure 6a) that aligns with existing evidence from educational attainment 

GWAS60, rare-variant studies of intellectual disability61–64, experimental knockout work in 

mice64, and fine-mapping of the BCL11A GWAS locus (Supplementary Table 13). Our 

result suggests that BCL11A causes intellectual disability not via regulation of a few key 

disease genes but rather via binding throughout the genome causing modulation (in cis) of 

genes comprising a broad transcriptional program relevant to brain function or development 

(Discussion). Furthermore, our MSigDB gene-set enrichment analysis allows us to 

characterize this putative transcriptional program as being significantly enriched for genes 

involved in mTOR signaling and in cholesterol metabolism (Figure 6a and Supplementary 

Table 10). MTOR is an intellectual disability gene65,66 with links to cholesterol67,68, defects 

in brain cholesterol metabolism have been linked to central nervous system disease69,70, and 

BCL11A has also been linked to lipid levels71–73. These observations raise the possibility 

that mTOR causes intellectual disability by interacting with BCL11A to regulate cholesterol 

metabolism in the developing brain (Supplementary Note).

Second, we detected a positive association between genome-wide binding of interferon 

regulatory factor 1 (IRF1) and Crohn’s disease (CD) (Figure 6b), a case in which existing 

GWAS evidence has been suggestive but not conclusive. Although IRF1 lies in a locus 

associated with CD in multiple GWAS74–76 (one of the earliest CD associations77), this 

locus remains mysterious. Strong LD makes it challenging to determine which variant(s) are 

causal, and high gene density (23 protein-coding genes within 500kb of IRF1) complicates 

the task of determining which gene is affected by any putative causal variant, resulting in 

several genes74,78,79 being previously nominated as potentially causal. For example, a recent 

large-scale fine-mapping study80 narrowed the causal signal to 8 SNPs including rs2188962, 

an eQTL for SLC22A5 in immune and gut epithelial cells22,80 but also for IRF1 in blood33. 

Transcriptome-wide association studies have also been inconclusive81–83. Our result 

provides genome-wide evidence for a causal link between IRF1 and CD that, unlike single-

locus approaches, is not fundamentally limited by LD and pleiotropy near the IRF1 gene 

(Discussion). The top results in our MSigDB gene-set enrichment analysis strengthen our 

finding: the regions driving this association are most significantly enriched for genes 

involved in production of type I interferon and regulation of nuclear division (Figure 6b and 

Supplementary Table 10), matching well-known roles of IRF184,85. We note that several 
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other TF-trait associations from our analysis implicate causal genes at established GWAS 

loci, including ELF1-CD and ETS1-CD, with gene-set enrichments suggesting connections 

to existing CD drugs and to the role of autophagy in CD pathogenesis, respectively (Table 1 

and Supplementary Note).

We next discuss two selected TF-trait associations that were previously unknown (Figure 7). 

First, we detected a positive association between genome-wide binding of CTCF and 

eczema (Figure 7a). We do not observe a GWAS signal for eczema at the CTCF locus. This 

could be because the CTCF gene is under strong selective constraint (probability of loss-of-

function intolerance86 = 1.00, greater than 99.9% of genes) and highlights the potential of 

our method to uncover causal roles for genes that harbor relatively little variation. The top 

two significant MSigDB gene-set enrichments for CTCF-Eczema are convergent: genes up-

regulated in Treg cells upon knockout of the inflammatory regulator BCL6; and genes up-

regulated in response to stimulation by the immune signaling molecule IL21, which is a 

known regulator of BCL6 activity87,88 (Figure 7a and Supplementary Table 10). These 

enrichments, because they pertain to genes putatively regulated in cis by CTCF to cause 

eczema, suggest a detailed cascade that we hypothesize to modulate eczema risk: IL21 

signaling regulates BCL6, which in turn regulates CTCF to activate a broad transcriptional 

program that increases eczema risk. This hypothesis makes three predictions: it predicts that 

BCL6 modulates CTCF activity, and it predicts that IL21 and BCL6 each affect eczema risk. 

Indeed, we determined that BCL6 has many binding sites near the CTCF promoter in 

publicly available ChIP-seq data69,89–91 (Supplementary Table 14), and the IL21 and 

BCL6 genes each fall in eczema GWAS loci92–94 (in each case along with 7 other protein-

coding genes within 500kb). Thus, the association between CTCF binding and eczema that 

we detected nominates causal genes at two different existing eczema GWAS loci and 

provides a parsimonious mechanism that explains their effect on eczema via a regulatory 

cascade that activates a CTCF-mediated transcriptional program.

Second, we detected a negative association between genome-wide binding of SP1 and 

anorexia (Figure 7b), a heritable trait for which no loci reach genome-wide significance in 

our GWAS data95. SP1 levels observationally correlate negatively with psychiatric 

conditions such as schizophrenia96,97 (which is positively genetically correlated with 

anorexia98), but this association has not been shown to be causal and has not previously been 

observed in GWAS of psychiatric traits. Our MSigDB gene-set enrichment results for this 

association yielded significant enrichments for an androgen response gene set and an mTOR 

signaling gene set (Figure 7b and Supplementary Table 10). (Years of education, for which 

an mTOR signaling gene-set was also among the top two MSigDB enrichments, is also 

significantly positively genetically correlated with anorexia98; the median rank of the top-

scoring mTOR gene set across the 10 other independent TF-complex trait associations was 

1,123, of 10,325.) The androgen response result is intriguing given the sex-imbalanced 

nature of this phenotype99. The mTOR signaling result is noteworthy given the well-

established connections between mTOR, caloric restriction, and growth100; it also suggests 

that a link between SP1 and mTOR could explain prior observations tying SP1 to 

insulin101,102, appetite103,104, and energy metabolism105. mTOR has also been shown to 
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play an important role in androgen signaling106, suggesting a potential unification of these 

two signals.

We provide additional discussion of other TF-trait associations in the Supplementary Note 

(Supplementary Figure 9 and Supplementary Tables 15 and 16).

Discussion

We have introduced a method, signed LD profile regression, for identifying genome-wide 

directional effects of signed functional annotations on diseases and complex traits. Our 

approach allows us to draw fine-grained biological conclusions that are not confounded by 

simple genomic co-localization of functional elements. The directional relationships we 

identify concretely implicate broad disease-relevant transcriptional programs. Our 

characterization of these programs via gene-set enrichment analyses yields detailed 

hypotheses about disease mechanisms that in several cases mechanistically link existing 

GWAS loci and disparate molecular evidence into a parsimonious mechanism mediated by 

the associated TF.

Our method differs from unsigned GWAS enrichment methods1–7 by assessing whether a 

systematic genome-wide correlation exists between a signed functional annotation and the 

(signed) true causal effects of SNPs on disease, rather than assessing whether a set of SNPs 

have large effects on a disease without regard to the directions of those effects. Our method 

also differs from single-locus GWAS methods11,12,81 in that a consistent genome-wide 

directional effect across a large set of TF binding sites (Table 1) is less susceptible to 

pleiotropy, LD, and allelic heterogeneity81,82. Finally, our method differs from genetic 

correlation and Mendelian randomization98 analyses, which can be confounded by reverse 

causality and pleiotropic effects107–109; in contrast, the sequence-based nature of our 

annotations makes them ideal instrumental variables for the effect of TF binding on the trait 

of interest. (Supplementary Note.)

The genome-wide nature of our method means that our results constitute instances in which 

TFs affect traits via coordinated regulation of gene expression throughout the genome110 (a 

“genome-wide” model) rather than via regulation of one or a small number of key disease 

genes111 (a “local” model). This distinction has potential implications for drug development 

as well as attempts to elucidate disease mechanisms (Supplementary Note). For example, as 

we have shown, the genome-wide nature of the putative transcriptional programs identified 

by our method allows us to characterize and interpret these programs by aligning them with 

existing gene sets, leading in some cases to detailed mechanistic hypotheses.

There exist many potentially effective methods for constructing signed TF binding 

annotations1,13–16,18,112,113 and many potential data sets on which to train them114–116. We 

present an initial exploration of alternative annotations generated using some of these, along 

with a discussion of potential signed annotations besides TF binding annotations, in the 

Supplementary Note (Supplementary Figures 10–14 and Supplementary Tables 17–20).

We note several limitations of signed LD profile regression. First, though our results are less 

susceptible to confounding due to their signed nature, they are not immune to it: in 
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particular, our method cannot distinguish between two TFs that are close binding partners 

and thus share sequence motifs, and it likewise cannot distinguish between binding of the 

same TF in different cell types, as the resulting annotations could be highly correlated. 

Second, we used annotations constructed using data from cell lines, which is non-ideal 

because chromatin dynamics in cell lines do not necessarily match those in real tissue; we 

note, however, that though this reduces our power and the effect sizes we see, it does not 

introduce false positives into our results. Third, the interpretability of our MSigDB gene-set 

enrichment analysis is limited by the potential for distinct gene sets to have overlapping 

membership and for co-expressed genes to be included in the same gene sets; however, we 

believe this is somewhat ameliorated by the fact that we treat blocks of genes together in our 

empirical null (Methods). Due to space restrictions, additional limitations are discussed in 

the Supplementary Note.

Despite these limitations, signed LD profile regression is a powerful new way to leverage 

functional genomics data to draw mechanistic conclusions from GWAS about both diseases 

and underlying cellular processes.

Online Methods

Signed LD profile regression

Intuition—Our method for quantifying directional effects of signed functional annotations 

on disease risk, signed LD profile regression, relies on the following intuition. Suppose there 

are M SNPs and we are given a signed functional annotation, specified by a length-M vector 

v, with a directional linear effect on disease risk. For example, v might be a vector whose m-

th entry is the effect of SNP m on binding of some TF. If we knew the length-M vector β of 

the true causal effects of the same SNPs on a trait, we could simply regress β on v to 

evaluate whether there is a non-trivial signed association across SNPs m between vm and βm. 

In reality, we cannot do this because we do not observe β; instead we observe a vector, 

denoted α, of GWAS summary statistics describing the marginal correlation of every SNP to 

our trait of interest. This vector differs from β because it includes both causal and tagging 

effects, plus statistical noise. Specifically, it can be shown mathematically that, in 

expectation, α will equal the matrix-vector product Rβ where R is the M × M LD matrix. 

Therefore, just as β would be proportional to v in the presence of a signed effect, α ≈ Rβ
would likewise be proportional to Rv, which is a vector capturing each SNP’s aggregate 

tagging of the signed annotation. This means that instead of regressing β on v (which is 

impossible since we do not observe β), we can regress α on Rv. We call the vector Rv the 

signed LD profile of v, and thus our method is called signed LD profile regression. The 

remainder of our technical material is oriented toward i) weighting this regression to achieve 

optimal power, ii) being able to efficiently perform the required computations, iii) 

determining the proper way to test the null hypothesis of no signed effect, and iv) controlling 

for potential confounding due to directional effects of minor alleles.

Model and estimands—Let M be the number of SNPs in the genome. We assume a 

linear model:
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y β, x 𝒩 xTβ, σe
2 (2)

where x ∈ ℝM and y ∈ ℝ are the standardized genotype vector and phenotype, respectively, 

of a randomly chosen individual from some population, β ∈ ℝM is a vector of true causal 

effects of each SNP on phenotype, and σe
2 represents environmental noise. Given a signed 

functional annotation v ∈ ℝM, we then model

β v μv, σ2I (3)

where the scalar μ represents the genome-wide directional effect of v on β, σ2 represents 

other sources of heritability unrelated to v, and the notation [⋅,⋅] is used to specify the mean 

and covariance of the distribution without specifying any higher moments.

Though we can estimate μ, its value depends on the units of the annotation and the 

heritability of the trait. Because of this, we focus instead on the functional correlation rf, 

which re-scales μ to be dimensionless and is defined as

r f ∶ = corr xTβ, xTv = μ vTRv
hg

2 (4)

where hg
2 = var xTβ  is the SNP-heritability of the phenotype and R = E xxT ∈ ℝM × M is the 

(signed) population LD matrix of the genotypes. The quantity rf can be interpreted as a form 

of genetic correlation; the value of r f
2 cannot exceed the proportion of SNP-heritability 

explained by SNPs with non-zero values of v. (Note that rf can also be defined as a 

correlation between β and v; this definition is approximately equivalent in expectation under 

our random effects model, provided vT Rv ≈ |v|2.) We additionally estimate hv
2 = r f

2hg
2, the 

total phenotypic variance explained by the signed contribution of v to β, as well as 

hv
2/hg

2 = r f
2. For annotations with small support, these quantities are expected to be small in 

magnitude. To see this, notice that hv
2 cannot exceed the total (unsigned) phenotypic variance 

explained by SNPs with non-zero values of v. It follows that r f
2 cannot exceed the proportion 

of (unsigned) SNP-heritability explained by SNPs with non-zero values of v. For more detail 

on the model and estimands, see the Supplementary Note.

Main derivation—Let X ∈ ℝN × M be the genotype matrix in a GWAS of N individuals, 

with standardized columns, and let Y ∈ ℝN be the phenotype vector. In the Supplementary 

Note, we show that under the above model the following identity approximately holds:
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α v     μRv, σ2R2 + R
N (5)

where α: = XTY /N is a vector whose m-th entry contains the marginal correlation of SNP m 

to the phenotype and R ∈ ℝM × M is the population LD matrix. Equation (1) from the main 

text can be derived from Equation (5) by re-scaling v so that vT Rv = 1, then substituting for 

μ.

We call Rv the signed LD profile of v. Equation (5) means that we can estimate μ by 

regressing α on the signed LD profile using generalized least-squares with Ω: = σ2R2 + R/N 
as the inverse weight matrix. (We assign a regression weight of zero to SNPs in the major 

histocompatibility complex region.) It can be shown that if a) all causal SNPs are typed, b) 

sample size is infinite, and c) R is invertible, this method is equivalent to estimating β via 

R−1α and then regressing this estimate on v to obtain μ, which is the optimal regression-

based approach in that setting. Note that because we generate P-values for hypothesis testing 

empirically (see below), we are guaranteed that our generalized least-squares scheme will 

remain well-calibrated even if our estimate of the matrix Ω is inaccurate due to, e.g., mis-

match between the reference panel and the study population. Once we have estimated μ, we 

re-scale this estimate to yield an estimate of rf and other estimands of interest. For more 

detail on derivations and computational considerations, see the Supplementary Note.

Null hypothesis testing—To test the null hypothesis H0:μ = 0 (or, equivalently, H0:rf = 

0), we split the genome into approximately 300 blocks of approximately the same size with 

the block boundaries constrained to fall on estimated recombination hotspots117. We then 

define the null distribution of our statistic as the distribution arising from independently 

multiplying v by one independent random sign per block. We perform this empirical sign-

flipping many times to obtain an approximation of the null distribution and corresponding P-

values. Our use of sign-flipping ensures that any true positives found by our method are the 

result of genuine first-moment effects; if in contrast we estimated standard errors using least-

squares theory or a re-sampling method such as the jackknife or bootstrap, our method might 

inappropriately reject the null hypothesis only because the variance of β is higher in parts of 

the genome where Rv is large in magnitude. This would make our method susceptible to 

confounding due to unsigned enrichments, as might arise from the co-localization of TF 

binding sites with enriched regulatory elements such as enhancer regions. Additionally, the 

fact that we flip the signs of SNPs in each block together ensures that our null distribution 

preserves any potential association of our annotation to the LD structure of the genome. See 

the Supplementary Note for more details.

Controlling for covariates and the signed background model—Given a signed 

covariate u ∈ ℝM, we can perform inference on the signed effect of v conditional on u by 

first regressing Ru out of α and out of Ru using the generalized least-squares method 

outlined above, and then proceeding as usual with the residuals of α and Ru.
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Unless stated otherwise, all analyses in this paper control in this fashion for a “signed 

background model” consisting of 5 annotations u1, …,u5, defined by

um
i = 1 MAFm is in i‐th quintile 2MAFm(1 − MAFm)

1 + αs (6)

where MAFm is the minor allele frequency of SNP m and αs is a parameter describing the 

MAF-dependence of the signed effect of minor alleles on phenotype. Based on the literature 

on MAF-dependence of the unsigned effects var(βm), we set αs = −0.3118.

382 TF annotations

Briefly, we constructed the annotations by training a sequence-based neural network 

predictor of ChIP-seq peak calls, using the Basset software19, to predict the results of 382 

TF binding ChIP-seq experiments from ENCODE119 and comparing the neural network’s 

predictions for the major and minor allele of each SNP in the ChIP-seq peaks.

Specifically, we downloaded every ChIP-seq and DNase I hypersensitivity experiment in 

ENCODE and trained the Basset model to jointly predict each downloaded track on a set of 

held-out genomic segments. (We included tracks other than TF binding tracks because 

training predictions using all tracks slightly improved prediction accuracy for the TF binding 

tracks.) After training the joint predictor, we retained the predictions for every TF binding 

track for which a) the number of SNPs in the set of ChIP-seq peaks with non-zero difference 

in Basset predictions between the major and minor allele was at least 5,000 in our 1000G 

reference panel, and b) Basset’s estimated area under the precision-recall curve (AUPRC) 

was at least 0.3. This yielded a set of 382 TF ChIP-seq experiments that spanned 75 distinct 

TFs and 84 distinct cell lines. For each experiment, we constructed an annotation via

vm = 1 m ∈ C Pm
a − Pm

A (7)

where C is the set of SNPs in the ChIP-seq peaks arising from the experiment, Pm
a  is the 

Basset prediction for the 1,000 base-pair sequence around SNP m when the minor allele is 

placed at SNP m, and Pm
A is the Basset prediction for the 1,000 base-pair sequence around 

SNP m when the major allele is placed at SNP m. (We always used the minor allele as the 

reference allele in both our TF binding annotations and our GWAS summary statistics.)

Simulations

All simulations were carried out using real genotypes of individuals with European ancestry 

from the GERA cohort120 (N = 47,360). The set of M = 2.7 million causal SNPs was defined 

as the set of genome-wide very well imputed SNPs (INFO ≥ 0.97) that had very low 

missingness (< 0.5%) and non-negligible MAF (MAF ≥ 0.1%) in the GERA data set, and 

were represented in our 1000G Phase 3 European reference panel107,121. We simulated traits 
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using normally distributed causal effect sizes (with annotation-dependent mean and variance 

in some cases), with hg
2 = 0.5.

Null simulations—For the simulations in Figure 1a, we simulated 1,000 independent null 

phenotypes with the architecture βm
iid𝒩 0, σ2  with σ2 = hg

2/M and hg
2 = 0.5. For each 

phenotype, we computed GWAS summary statistics using plink2122 (URLs), adjusting for 3 

principal components as well as GERA chip type as covariates. For each of our 382 TF 

annotations, we then ran SLDP regression on each of these 1,000 phenotypes, yielding a set 

of 382,000 P-values. (Supplementary Figure 1a shows an analysis of the P-value distribution 

for each annotation individually, confirming correct calibration for these annotations.)

For the simulations in Figure 1b, we simulated 1,000 independent traits in which each trait 

had an unsigned enrichment for a randomly chosen annotation: after choosing an annotation 

v, we set βm
iid𝒩 0, σ2 + τ21 vm ≠ 0  where σ2 and τ2 were set to achieve hg

2 = 0.5 and a 20× 

unsigned enrichment for the SNPs with non-zero values of v. We then computed summary 

statistics as above and ran SLDP regression to assess v for a genome-wide directional effect. 

This procedure yielded 1,000 P-values.

For the simulations in Figure 1c, we simulated 1,000 independent phenotypes with a 

directional effect of minor alleles: we set βm
iid𝒩 μum

1 , σ2  where um
1  is non-zero if SNP m is 

in the bottom quintile of the MAF spectrum of the GERA sample and 0 otherwise, as in the 

signed background model. We set μ such that 10% of heritability would be explained by this 

directional effect, and then set σ2 to achieve hg
2 = 0.5. We then computed summary statistics 

as above and ran SLDP regression to assess for a directional effect of each of our 382 

annotations on each of the 1,000 phenotypes, yielding a set of 382,000 P-values. (We note 

that this represents a best-case scenario in which the background model exactly matches the 

confounding being simulated, up to differences in MAF between the reference panel and the 

GWAS sample, and we caution that our method may not be appropriate for annotations with 

much stronger correlations to minor alleles than the annotations that we analyze here; 

Supplementary Figure 1b.) Finally, we repeated the same computation but running SLDP 

regression without the 5-MAF-bin signed background model to obtain an additional set of 

382,000 P-values.

Causal simulations—For the simulations in Figure 2, we fixed a representative 

annotation v (binding of IRF4 in GM12878), and simulated traits using βm
iid𝒩 μvm, σ2 , with 

μ set to achieve rf = {0,0.005,0.01, …,0.05} and σ2 set to achieve hg
2 = 0.5 in each case. For 

each value of rf, we simulated 100 independent traits, computed summary statistics using 

plink2, and then ran each of the methods under consideration using the annotation v. In 

addition to the findings stated in the main text, our simulations also show that the power of 

our method increases with sample size and SNP-heritability (Supplementary Figure 4), and 

is only minimally affected by within-Europe reference panel mismatch (Supplementary 

Figure 5).
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Analysis of molecular traits in blood

We downloaded BLUEPRINT consortium QTL data for gene expression, H3K4me1, 

H3K27ac, and methylation in three different blood cell types with sample sizes of N = 158, 

165, and 125 for monocytes, neutrophils, and T cells, respectively21 (Supplementary Table 4 

and URLs). For each of the 3 gene expression traits, we constructed one summary statistics 

vector α by meta-analyzing, for each SNP, the marginal effect sizes of that SNP for the 

expression of all nearby genes. Specifically, we set

αm = 1
Gm

∑
k ∈ Gm

αm
k (8)

where Gm is the set of all genes within 500kb of SNP m, and αm
k  is the marginal correlation 

of SNP m to the expression of gene k. Assuming independence of expression across genes 

this is analogous to a fixed-effects meta-analysis across genes at every SNP to determine that 

SNP’s effect on aggregate expression, though our results do not rely on this theoretical 

characterization because of the empirical, signed nature of our null hypothesis testing 

procedure. Since in practice gene expression is not independent across genes, the scale of the 

resulting vector α is arbitrary. Therefore, we placed all such vectors on the same scale by 

scaling them so that they have an estimated SNP-heritability of 0.5. (This only affects the 

regression weights used by SLDP regression.) Applying the same procedure to the two 

histone marks and to methylation in addition to gene expression yielded 12 sets of summary 

statistics (Supplementary Table 4).

We ran SLDP regression using each of our 382 TF annotations for each of these 12 traits. 

We obtained results at FDR< 5% using the Benjamini-Hochberg procedure123 within each of 

the 12 traits and reported the union of significant results across cell types for each trait. We 

determined the top 100 associations to display in Figure 3a by choosing the significant 

associations with the highest estimated values of rf.

For our replication analysis, we used expression array-based whole blood eQTL data from 

the NTR33, which we obtained by downloading the set of TWAS weights81 computed for 

that data set (Supplementary Table 4 and URLs). We then proceeded as above. 196 of the 

409 BLUEPRINT gene expression associations replicated (same direction of effect with 

nominal P< 0.05). We note, however, that because TWAS weights were only available for 

genes with a significantly heritable cis-expression in NTR, we only had data for 2,454 genes 

compared with 15,023 – 17,081 genes for the BLUEPRINT traits, thereby lowering our 

power in this analysis.

Comparison to UniProt annotations—For each TF represented in our annotations, we 

queried the UniProt database29 to establish whether the TF was: (unambiguously) 

“activating”, defined as all TFs annotated as having activating activity but not repressing 

activity in UniProt; (unambiguously) repressing, defined as all TFs with repressing activity 

but not activating activity; or “ambiguous”, defined as all TFs with both or neither activities. 

78% and 82% of our positive associations in the BLUEPRINT eQTL and chromatin QTL, 
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respectively, were unambiguous activators. The set of significant positive SLDP associations 

for eQTL/chromatin QTL were enriched for (unambiguously) “activating” TFs compared to 

the set of annotations as a whole (P = 7.9 × 10−43 for eQTL results and P = 1.9 × 10−9 for 

chromatin QTL results). See Supplementary Note.

Analysis of gene expression across 48 GTEx tissues

We downloaded GTEx v7 eQTLs for all 48 tissues for which data were available and 

processed them using the same procedure described for the blood molecular traits, resulting 

in one vector of summary statistics per GTEx tissue (Supplementary Table 6 and URLs). We 

ran SLDP regression using each of our 382 TF annotations for each of these tissues. We 

obtained results at FDR<5% using the Benjamini-Hochberg procedure123 within each of the 

48 tissues.

Conditional analysis for tissue-specific effects—We obtained a set of eQTL 

summary statistics for a fixed-effect meta-analysis across the GTEx tissues from ref.124 and 

processed these via the procedure described above into a single vector α T . For each tissue t, 

we then residualized α T  out of the vector α t  of eQTL data for tissue t to obtain a 

residualized vector α t′ . This amounts to subtracting a scalar multiple of α T  from α t , with 

the scalar determined to remove as much signal as possible from α t . For each significant 

association between an annotation v and a vector α t  from our main GTEx analysis, we then 

compared the p-value of that association to the p-value obtained for the association between 

v and the residualized vector α t′ , declaring as tissue-specific any association for which the 

latter was at least as significant as the former. See Supplementary Note.

This criterion for tissue-specificity is conservative and stands in contrast to, e.g., reporting 

associations that remain significant at a specified threshold after conditioning. The latter 

approach is susceptible to the fact that conditioning on a noisily measured confounder can 

produce false positives125; associations meeting the former criterion are likely to be robustly 

tissue-specific.

Assessment for concordance with absolute expression levels in GTEx tissues
—Briefly, we assessed whether the proportion of significant TF associations in which the TF 

was expressed above a minimum threshold in the associated GTEx tissue was greater than 

the corresponding proportion for non-significant TFs. This held in 32 out of the 34 tissues 

for which we could perform the comparison (p = 2.1 × 10−15 for trend across tissues; see 

Supplementary Figure 7 for breakdown by tissue.) See Supplementary Note.

Analysis of 46 diseases and complex traits

We applied SLDP regression to 46 diseases and complex traits with an average sample size 

of 289,617, including 16 traits with publicly available summary statistics and 30 UK 

Biobank traits for which we have publicly released summary statistics computed using 

BOLT-LMM v2.392 (Supplementary Table 8 and URLs). We ran SLDP regression using 

each of our 382 TF annotations for each of these traits. We obtained results at per-trait 

FDR<5% using the Benjamini-Hochberg procedure123. We report as significant results at a 
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per-trait FDR<5%, following standard practice. However, when many traits are analyzed, 

per-trait FDR control does not imply global FDR control, and we estimate the global FDR of 

our results to be 9.4% (Supplementary Note).

MSigDB gene-set enrichment analysis of results on diseases and complex traits

We downloaded all 10,235 MSigDB gene sets, which are organized into eight distinct 

tranches based on their origin, from the MSigDB online portal (URLs). We also downloaded 

a set of LD blocks in Europeans derived from estimated recombination hotspots117 and 

converted each gene set into a length-1693 vector s with one entry per LD block whose i-th 

entry equaled the number of genes from the set that are present in the i-th LD block. We then 

converted each significant SLDP regression association between an annotation v and a trait 

summary statistics vector α into a length-1693 vector q whose i-th entry equaled the 

covariance between α and the SLDP Rv within the i-th LD block. To assess the SLDP result 

for enrichment of a gene-set vector s, we computed a weighted mean of the qi whose 

weights were given by s. That is, we computed a v, α, s =
∑i siqi
∑i si

. The idea is that if the LD 

blocks in which s is large correspond to the LD blocks in which the SLDP regression signal 

is the strongest, the weighted mean a should be large in magnitude and have the same sign as 

the overall SLDP regression association. We assess this via an empirical null distribution 

constructed by permuting the LD blocks to obtain “shuffled” versions of s and q. This 

enrichment method is more conservative than ordinary gene-set enrichment methods for two 

reasons. First, by permuting only LD blocks and not genes, it accounts for correlations 

induced by LD as well as co-regulation of nearby genes and gene overlap in the genome. 

Second, because a significant SLDP regression association cannot arise as a result of a 

strong signal in only one genomic location, this method is more robust to outliers and 

cannot, e.g., produce a rejection simply because of a very strong signal at just one gene. In 

comparison to gene-set enrichment methods for GWAS data, this method also has the 

advantage that it will not cause gene sets containing large genes to produce signals of 

enrichment. Separately from null hypothesis testing, we computed heuristic standard errors 

for use in Figures 6 and 7 by computing the closed-form standard deviation of a v, α, s
assuming that the si are fixed and the qi are i.i.d.

To quantify effect size, we computed a fold-enrichment by dividing a v, α, s  by the average 

value of q at LD blocks containing no genes. That is the enrichment is defined as 

e v, α, s = a v, α, s
mean qi:si = 0

. This quantity e is the number reported in Figures 6 and 7.

We conducted our hypothesis test for gene-set enrichment for each of our 77 significant TF-

complex trait associations against each of the 10,325 MSigDB gene sets. For every TF-

complex trait association and every tranche of gene-sets from MSigDB, we assessed 

significance at FDR< 5% using the Benjamini-Hochberg procedure123. This detected 6,379 

significant enrichments in total (0.8% of all 795,025 tests conducted). We ranked these 

enrichments by q-value, except for the 15 enrichments whose p-values were less than the 

resolution of our empirical null hypothesis testing procedure, which we ranked by fold-

enrichment.
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Auto-immune enrichment among complex trait associations—Of the 12 

independent TF-complex trait associations, 9 involve an auto-immune disease, representing 

a 4.3× enrichment (P = 1.9 × 10−5 using one-sided binomial test) and providing additional 

evidence for the relevance of TF binding to these phenotypes in particular126.

Estimation of lower bound on number of independent TF binding sites 
contributing to each association—For intuition, we first examined, for each 

annotation, the estimated covariance between the GWAS summary statistics and the signed 

LD profile in each of 300 independent genomic blocks, finding agreement with the genome-

wide direction of association in 59% of the blocks on average across our 12 independent 

associations, and in 85% of the blocks with estimated covariances of large magnitude 

(Supplementary Figure 8).

For further quantification, we then converted each of the 12 independent TF-trait 

associations reported in Table 1 into a vector q of length ~300 whose i-th entry equaled the 

covariance between the GWAS in question and the signed LD profile in question within the 

i-th of the ~300 independent genomic blocks used for our null hypothesis testing. For every 

threshold t ∈ 0, 1
5max qi ,  …, 4

5max qi , we then computed the number Kt of the entries of q 

with magnitude at least t, as well as the number St of those entries whose sign agreed with 

that of the genome-wide trend. Our estimated lower bound on the number of independent TF 

binding sites contributing to the association was then given by

maxt 2St − Kt (9)

The intuition is that the distribution of the signs of the entries of q can be modeled as a 

mixture of a uniform distribution (for genomic chunks with no signal) and a distribution 

with all of its mass on the sign of the genome-wide trend (for genomic chunks with signal). 

The number of entries drawn from the latter distribution gives the number of independent 

genomic blocks contributing to the association, which is a lower bound on the number of 

independent TF binding sites contributing to the association. Estimating this number naively 

without thresholding yields the expression 2S0 – K0. However, this is an under-estimate in 

the presence of noise in q. We therefore repeat this argument considering only the subset of 

entries of q with magnitude at least t for a small number of thresholds t and retain the largest 

estimate.

Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Data availability

We have released all genome annotations we analyzed, as well as regression weight matrices 

for our 1000 genomes reference panel, at http://data.broadinstitute.org/alkesgroup/SLDP/.
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Code availability

Open-source software implementing our approach is available at http://www.github.com/

yakirr/sldp.

Code used to make all figures is available at http://www.github.com/yakirr/sldp-display.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Signed LD profile regression: open-source software is available at http://www.github.com/

yakirr/sldp

Plink2: https://www.cog-genomics.org/plink2/

BLUEPRINT consortium data: ftp://ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/

qtl_as/QTL_RESULTS/

TWAS weights for NTR data: https://data.broadinstitute.org/alkesgroup/FUSION/WGT/

NTR.BLOOD.RNAARR.tar.bz2

GTEx eQTL data: https://www.gtexportal.org/home/datasets

MSigDB data: http://software.broadinstitute.org/gsea/msigdb

GTRD data: http://gtrd.biouml.org/

HOCOMOCO motif data: http://hocomoco11.autosome.ru/
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Figure 1: Simulations assessing null calibration.
We report null calibration (q-q plots of two-sided SLDP regression −log10(p) values) in 

simulations of (a) no enrichment, (b) unsigned enrichment, and (c) directional effects of 

minor alleles. The q-q plots are based on (a) 382 annotations × 1,000 simulations = 382,000, 

(b) 1,000, and (c) two sets of 382 × 1,000 = 382,000 P-values. A 5-MAF-bin signed 

background model is included in all cases except for the red points in part (c), which are 

computed with no covariates. We also report the average χ2-statistic corresponding to each 

set of P-values. Numerical results are reported in Supplementary Table 2.
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Figure 2: Simulations assessing power, bias, and variance.
(a) Power curves comparing SLDP regression using generalized least-squares (i.e., 

weighting) to an ordinary (i.e., unweighted) regression of the summary statistics on the 

signed LD profile. Error bars indicate standard errors of power estimates. (b) Assessment of 

bias and variance of the SLDP regression estimate of rf, across a range of values of the true 

rf. Blue box and whisker plots depict the sampling distribution of the statistic, while the red 

dots indicate the estimated sample mean and the red error bars indicate the standard error 
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around this estimate. Both (a) and (b) are conducted at realistic sample size (47,360) and 

heritability (0.5). Numerical results are reported in Supplementary Table 3.
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Figure 3: Analysis of blood molecular traits using signed LD profile regression.
Each segmented bar in (a,b,d,e) represents the set of significant annotations (or top 100 

annotations) at a per-trait FDR<5% for the indicated traits, with each annotation 

corresponding to a particular TF profiled in a particular cell line. Results in (a,d,e) are 

aggregated across the 3 BLUEPRINT cell types. The stripe above each segmented bar is 

colored red for TFs with activating activity and no repressing activity in UniProt (see main 

text and Methods), blue for TFs with repressing activity and no activating activity, and gray 

for ambiguous TFs. (c) z-scores from the analyses of expression in the NTR data set and 

neutrophil expression in the BLUEPRINT data set, respectively, for each of the 382 

annotations tested; red, blue, and gray again indicate UniProt (unambiguously) activating 

TFs, (unambiguously) repressing TFs, and ambiguous TFs, respectively. Dashed lines 

represent significance thresholds for 5% FDR. GWAS data are described in Supplementary 

Table 4, and the statistical method and multiple comparisons adjustments are described in 

the “Overview of methods” section and the Methods. Numerical results are reported in 

Supplementary Table 5.
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Figure 4: Analysis of GTEx eQTLs using signed LD profile regression.
We plot polarized −log10(p) values for all significant associations as a heatmap. Columns 

denote the 36 GTEx tissues (of 48 GTEx tissues tested) with significant associations. Rows 

denote the 67 TFs (of 75 TFs tested) with significant associations, collapsing all annotations 

corresponding to a single TF into one row and displaying in each cell the most significant 

result. Cells with dots indicate associations that show robust evidence for tissue-specificity 

in our conditional analysis (see main text and Methods). Cells indicated in outline 

correspond to associations described in the main text, with dashed outline indicating known 
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associations and solid outline indicating previously unknown associations or associations 

supporting emerging theories. GWAS data are described in Supplementary Table 6, and the 

statistical method and multiple comparisons adjustments are described in the “Overview of 

methods” section and the Methods. Numerical results are reported in Supplementary Table 

7.

Reshef et al. Page 31

Nat Genet. Author manuscript; available in PMC 2019 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: Analysis of diseases and complex traits using signed LD profile regression.
For each disease or complex trait with at least one significant result, we plot −log10(p) 

against estimated effect size for each of the 382 annotations analyzed. Points are colored by 

TF identity, with TFs with no significant associations for each trait colored in gray. Larger 

points denote significant results. The number of significant results for each trait is: Crohn’s, 

26; Lupus, 36; Years of education, 1; Eczema, 12; HDL, 1; Anorexia, 1. GWAS data are 

described in Supplementary Table 8, and the statistical method and multiple comparisons 

adjustments are described in the “Overview of methods” section and the Methods. 

Numerical results are reported in Supplementary Table 9a.
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Figure 6: Highlighted TF binding-complex trait associations that either provide biological insight 
into established genetic associations or refine emerging theories.
For each of (a) BCL11A-Years of education and (b) IRF1-Crohn’s disease, we display plots 

of the marginal correlation α of SNP to trait versus the signed LD profile Rv of the 

annotation in question, with SNPs averaged in bins of 4,000 SNPs of similar Rv values and a 

larger bin around Rv = 0; Manhattan plots of the trait GWAS signal near the associated TF; 

and the top two significant MSigDB gene-set enrichments among the loci driving the 

association, with error bars indicating standard errors. GWAS data are described in 

Supplementary Table 8, gene set data are described in the Methods, and the statistical 

method and multiple comparisons adjustments are described in the “Overview of methods” 

section and the Methods. Numerical results are reported in Supplementary Table 11.
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Figure 7: Highlighted previously unknown TF binding-complex trait associations.
For each of (a) CTCF-Eczema and (b) SP1-Anorexia, we display plots of the marginal 

correlation α of SNP to trait versus the signed LD profile Rv of the annotation in question, 

with SNPs averaged in bins of 4,000 SNPs of similar Rv values and a larger bin around Rv = 
0; Manhattan plots of the trait GWAS signal near the associated TF or, in the case of CTCF-

Eczema, the BCL6 gene (see main text; there is no GWAS peak at CTCF); and the top two 

significant MSigDB gene-set enrichments among the loci driving the association, with error 

bars indicating standard errors. GWAS data are described in Supplementary Table 8, gene 

set data are described in the Methods, and the statistical method and multiple comparisons 

adjustments are described in the “Overview of methods” section and the Methods. 

Numerical results are reported in Supplementary Table 12.
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Table 1.
Independent TF-trait associations from analysis of diseases and complex traits using 
signed LD profile regression.

For each of 12 independent associations at per-trait FDR<5% after pruning correlated annotations (R2 ≥ 0.25), 

we report the associated trait; the TF of the most significant annotation and the number of correlated 

annotations with significant associations; the estimated functional correlation rf, P-value, q-value, and 

minimum number of TF binding sites contributing to the association; and the top two significant MSigDB 

gene-set enrichments among loci driving the association.

Trait Top TF (#) rf p q Min. # sites Top 2 significant MSigDB enrichments

Years of ed. BCL11A (1) 2.4% 3.9×10−5 1.5×10−2 104 • Cholesterol homeostasis

• ↑ upon mTOR inhibition

Crohn’s POL2* (20) 5.3% 4.8×10−5 1.5×10−2 74 • ↓ upon immunosuppression

• regulation of reproductive process

Anorexia SP1 (1) −8.9% 1.1×10−4 4.0×10−2 30 • ↑ upon mTOR inhibition

• Androgen response

HDL FOS (1) 4.8% 1.2×10−4 4.6×10−2 19 • Regulated by NF-kB in response to TNF-

Eczema CTCF (12) 2.7% 1.4×10−4 3.4×10−2 106 • ↑ upon BCL6 knockout

• ↑ upon IL21 stimulation

Crohn’s ELF1 (1) 4.9% 1.6×10−4 1.5×10−2 58 • ↓ upon PPARγ activation

• Transcription co-repressor activity

Crohn’s POL2 (1) 4.4% 2.6×10−4 1.5×10−2 50 • ↓ in fibroblast early serum response

• ↓ upon ALK knockdown

Lupus CTCF** (36) −5.0% 3.6×10−4 4.4×10−2 100 • Targets of NF-κB

• ↓ in LMPP vs GMP cells upon IKZF1 knockout

Crohn’s TBP (1) 5.4% 4.9×10−4 1.5×10−2 54 • Late estrogen response-

Crohn’s E2F1 (1) 4.3% 6.4×10−4 2.7×10−2 90 • Cancer module 323 (immune)

• Targets of miR-17–3p

Crohn’s IRF1 (1) 4.7% 9.8×10−4 1.5×10−2 90 • Regulation of nuclear division

• Regulation of type I interferon production

Crohn’s ETS1 (1) 6.1% 1.4×10−3 1.5×10−2 114 • Neighborhood of autophagy-associated EI24

• Targets of MYC

Linked TFs producing significant associations:

(*)
TAF1, TBP;
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(**)
RAD21. See Supplementary Table 10 for full gene set names and enrichment q-values (all <5×10−2). GWAS data are described in 

Supplementary Table 8, gene set data are described in the Methods, and the statistical method and multiple comparisons adjustments are described 
in the “Overview of methods” section and the Methods. LMPP: lymphoid-primed pluripotent progenitor; GMP: granulocyte-monocyte precursor.
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