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Abstract

The biophysical basis for electrocardiographic evaluation of myocardial ischemia stems from the 

notion that ischemic tissues develop, with relative uniformity, along the endocardial aspects of the 

heart. These injured regions of subendocardial tissue give rise to intramural currents that lead to 

ST segment deflections within electrocardiogram (ECG) recordings. The concept of 

subendocardial ischemic regions is often used in clinical practice, providing a simple and intuitive 

description of ischemic injury; however, such a model grossly oversimplifies the presentation of 

ischemic disease—inadvertently leading to errors in ECG-based diagnoses. Furthermore, recent 

experimental studies have brought into question the subendocardial ischemia paradigm suggesting 

instead a more distributed pattern of tissue injury. These findings come from experiments and so 

have both the impact and the limitations of measurements from living organisms. Computer 

models have often been employed to overcome the constraints of experimental approaches and 

have a robust history in cardiac simulation. To this end, we have developed a computational 

simulation framework aimed at elucidating the effects of ischemia on measurable cardiac 

potentials. To validate our framework, we simulated, visualized, and analyzed 226 experimentally 

derived acute myocardial ischemic events. Simulation outcomes agreed both qualitatively (feature 

comparison) and quantitatively (correlation, average error, and significance) with experimentally 

obtained epicardial measurements, particularly under conditions of elevated ischemic stress. Our 

simulation framework introduces a novel approach to incorporating subject-specific, geometric 

models and experimental results that are highly resolved in space and time into computational 

models. We propose this framework as a means to advance the understanding of the underlying 

mechanisms of ischemic disease while simultaneously putting in place the computational 

infrastructure necessary to study and improve ischemia models aimed at reducing diagnostic errors 

in the clinic.
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INTRODUCTION

The electrical and electrocardiographic consequences of myocardial ischemia have been a 

topic of clinical study for more than a century,8,18 yet both mechanistic understanding and 

clinical management remain unsatisfying. Myocardial ischemia results from insufficient 

blood flow to regions of cardiac tissue. Insufficient blood flow, in turn, leads to inadequate 

oxygen supply and reduced removal of metabolic byproducts from affected regions of the 

heart, giving rise to shifts in ionic concentrations and corresponding alterations in 

electrophysiology.11 Ischemia-induced changes to the electrical activity of the heart lead to 

changes in the electrocardiogram (ECG), where key ECG markers, such as ST segment shift, 

are used clinically to monitor ischemic stress.7 ST-segment shifts, however, have been 

criticized as an inadequate measure of ischemia in patients,9,14 with average accuracy rates 

ranging from 68–75% and associated sensitivity and specificity ranges of 50–72% and 69–

90%, respectively.1

The inaccuracies associated with electrocardiographic ischemia detection are due, in part, to 

an incomplete understanding of the electrical response of the heart to the ischemic condition. 

Current clinical understanding assumes that regions of the heart that are most vulnerable to 

ischemia lie adjacent to the endocardium and are, therefore, the most likely sites of injury.
7,13,23 This concept supports the widely accepted view that ischemia can be bioelectrically 

approximated with geometrically simple source models, located near the endocardium.
12,13,20 These source models arise due to differences in transmembrane potential that 

originate between ischemic regions and surrounding healthy tissues giving rise to what are 

known as “injury potentials” that drive shifts in the ST segments of individual ECG leads. 

Recent experimental studies, however, have brought the subendocardial ischemia paradigm 

into question.2,3 In these studies, intramural extracellular (EC) potentials were measured as 

an electrical proxy for the metabolic and electrophysiological changes associated with acute 

ischemia. Spatial distributions of these EC potentials contradicted the accepted dogma of 

geometrically well-defined, subendocardial ischemic zones. EC potentials, generated by a 

variety of different ischemic conditions, were, in general, geometrically complex and 

intramurally distributed, rather than simple zones located only near the endocardium.2,3 This 

discovery of distributed ischemic potentials is a relatively new finding, and has, therefore, 

seen little application in the computational modeling community.26 Computational models 

have historically adopted the schematic ischemic zone paradigm wherein singular, 

subendocardial ischemic zones, defined by simple geometric primitives, are embedded 

within a cardiac volume conductor and used as sources from which resulting extracellular 

potentials throughout the heart can be determined.12, 13, 20 While schematic computational 

approaches have been useful in highlighting the electrical effects of ischemia within the 

heart,20 they do not fully represent the complexity of ischemic injury as illustrated by the 

distributed potential patterns reported during experiments.2,3 This novel discovery 
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necessitates an equally novel simulation approach to elucidate the effects of these sources on 

computational cardiac models.

To this end, we developed a simulation framework to investigate the effects of 

experimentally derived, subject-specific, distributed sources on cardiac potentials. To 

validate our approach, we further constructed a series of subject-specific ischemia 

simulations that incorporated experimentally obtained electrical signals into image-based, 

subject-specific cardiac models.3 By applying image-based modeling approaches, we 

constructed realistic, three-dimensional cardiac meshes into which we imposed measured 

EC potentials acquired throughout both the ischemic and the nearby unaffected regions. 

These potentials acted as boundary conditions from which we computed potential values 

throughout the heart and over the epicardium. We subsequently validated these simulated 

solutions against recorded epicardial potentials obtained from the same experimental 

procedures and found that our modeling approach produced satisfactory agreement—

particularly under conditions of elevated ischemic stress.

MATERIALS AND METHODS

Our image-based modeling framework was built upon the basic principles of subject-specific 

model design that we proposed previously.15 Using imaging, segmentation, meshing, and 

simulation, we developed a basic infrastructure for modeling and quantitatively analyzing 

the ischemic condition in silico (Fig. 1). In brief, we extracted geometric and electrical 

potentials from experimental animal models in which episodes of controlled ischemia had 

been induced. Post-experiment magnetic resonance imaging (MRI) scans were used to 

construct subject-specific models of the heart, which included both geometry and anisotropic 

conductivity tensors. Known, intramural, extracellular (EC) potential data, extracted via 
experimental measurements were imposed within the mesh and used as boundary conditions 

to simulate extracellular potentials throughout the heart and over the epicardium. Simulated 

epicardial potentials were subsequently validated against recorded unipolar epicardial 

electrograms, using Wilson Central Terminal (WCT) as a common reference, which were 

measured simultaneously during each experiment.

Experimental Methods

We obtained experimental intramyocardial and epicardial electrograms from open-chest, 

anesthetized canine models in which we induced controlled, acute ischemia, as described 

previously by Aras et al.2,3 Briefly, we produced episodes of acute, transient ischemia by 

regulating coronary blood flow through the left anterior descending artery (LAD) with 

varying levels of either atrial pacing (demand ischemia) or reduced coronary blood flow 

(supply ischemia). Individual ischemia episodes lasted no longer than 10 minutes, thereby 

eliminating complications associated with chronic ischemic conditions. We used high-

resolution, customized sock4 and plunge needle21 electrodes to capture extracellular 

electrogram recordings along ventricular surfaces and within a localized portion of the 

myocardium, respectively. The resulting electrograms were calibrated, gain adjusted, and 

corrected against control recordings taken prior to each ischemia episode. From these 

signals, we identified shifts in the ST segment by measuring potential values at ST40%—a 
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time point that is 40% between the end of the QRS complex (QRSoff) and the peak of the T 

wave (Tpeak). In total, we extracted and analyzed 226 individual ischemic events, or unique 

time steps within an ischemic episode, from two canine models (Experiments 1 and 2 shown 

in Figs. 3 and 4), using ST40% potentials recorded from both epicardial and transmural 

electrodes. Intramural ST40% values were used as simulation sources within the modeling 

pipeline while epicardial ST40% potential values, recorded from sock electrodes, served as 

validation.

All experiments followed the approval of the Institutional Animal Care and Use Committee 

at University of Utah and conforming to the Guide for the Care and Use of Laboratory 

Animals (NIH Pub. No 85-23, Revised 1996).

Image Acquisition, Processing, and Segmentation

In preparation for the imaging process, plunge needles were replaced postexperiment with 

plastic spacers to make needle locations visible in MRI images. After experimentation, 

hearts were excised and scanned with a 7 Tesla MRI scanner (Bruker BIOSPEC 70/30, 

Billerica, MA) using FISP (Fast Imaging with Steady-state Precession) and FLASH (Fast 

Low Angle Shot) imaging sequences as well as Diffusion Weighted MRI (DW-MRI). 

Capitalizing on the combined advantages of both FISP (consistent volume boundaries) and 

FLASH sequences (high internal contrast), we produced realistic geometric segmentations 

of cardiac tissue, blood, and plunge electrode geometries, using the Seg3D open-source 

software package.6

Our segmentation process consisted of both manual and automated processes. First, median 

and gradient anisotropic diffusion filters were applied to the raw cardiac images to reduce 

noise. Next, thresholding was applied to acquire cardiac and blood pool volumes. Resulting 

cardiac volumes were manually clipped and capped along the base—eliminating most of the 

atrial region and enclosing the blood volumes. Manual inspection and correction consisted 

of a slice-by-slice analysis of the volume. Provided that both FISP and FLASH modalities 

were used, segmentations of each were joined via boolean operators to provide final heart 

and blood volumes (Fig. 2a). Segmentations were within 1 mm of visible FISP epicardial 

and LV surfaces (Fig. 2b). Due to heavy trabeculation in the RV, however as much as 3 mm 

of error was observed along RV surfaces. Needle geometries were identified as the negative 

spaces within the cardiac tissues that, unlike blood vessels, exhibited rigid structural 

characteristics. Manual segmentation was required to extract needle geometries.

Geometric Processing and Data Mapping

Meshing—Segmented cardiac volumes served as inputs to the BioMesh3D software 

package,5 which we employed to generate realistic, unstructured, three-dimensional, 

tetrahedral meshes for use in subsequent finite element simulations (Figs. 2c and 2d). The 

BioMesh3D package incorporates a particle-based approach that optimizes surface node 

locations and then applies Delaunay tetrahedralization to optimize element quality. Resulting 

cardiac meshes maintained smooth conforming interfaces along material boundaries and 

were comprised of 3–4 million elements having edge lengths ranging from 0.029 to 2.31 mm 

(average edge length = 0.75 ± 0.43 mm).
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Fiber Mapping

Subject-specific image-based fiber orientation parameters were extracted from DW-MRI 

images and projected onto subject-specific cardiac meshes following techniques proposed by 

Vadakkumpadan et al.28 From DW-MRI images, which existed in the same coordinate space 

as previously segmented structural MRI images and corresponding cardiac meshes, principal 

eigenvector fields were generated to identify the primary, or longitudinal (l), fiber orientation 

within the heart. Eigenvector fields were mapped onto the centroid of each mesh element 

using weighted-average interpolation and subsequently normalized (Figs. 2e and 2f). 

Conductivity values were assigned to longitudinal vectors (σel) and to the complimentary 

orthonormal vector fields representing the transverse (t) and normal (n) components of the 

fiber coordinate space, and which were regarded as isotropic (σet = σen)—generating the 

conductivity tensor σe = [σele1σete2σete3]. Conductivity values reflected those proposed by 

Stinstra et al.24,25 which we normalized to the extracellular longitudinal conductivity such 

that σel = 1 and σet = 1/3. Blood was also represented within the mesh and was assigned an 

isotropic conductivity of σb = 3. Conductivity values were similar to the normalized 

extracellular conductivities proposed by Roth et al.22 Intracellular conductivity values were 

not considered, provided that both source and solution potentials existed entirely in the 

extracellular domain.

Geometric Registration and Mapping of Measured Potentials.

An essential component of our subject-specific simulation framework was the registeration 

of intramural plunge needle and epicardial sock electrode locations to each cardiac mesh,27 

which ensured that simulations properly reflected the spatial distribution of experimental 

studies. To this end, we implemented a multistep registration approach. First, needle 

electrodes were positioned within the cardiac mesh. Next, a rigid registration algorithm 

aligned a pre-constructed sock geometry template to the cardiac surface. Finally, a thin-

plate-spline morphing algorithm tightly positioned sock geometries onto epicardial surfaces.

We initiated the registration process by obtaining correspondence points immediately 

postexperiment to identify needle entry sites and a pre-determined subset of sock electrodes 

using an electromechanical digitizer (Microscribe). As part of the digitization process, 

needle orientation vectors were also determined using two digitized points along each needle 

shaft—one at the entry site and the other at a point along the shaft but distant from the heart. 

Further detail regarding needle position and orientation was obtained via MRI segmentation 

as described previously.

MRI-defined needle segmentations were regarded as the ground truth for needle registration; 

however, in the event that individual needles were not visible in MRI images, due to lost or 

overly narrow spacers, they were approximated by, first, identifying needle entry sites from 

photographic images and then defining orientation using previously determined, digitized, 

needle vectors. With needle geometries identified, we projected intramural nodes, 

representing needle electrodes, into the heart geometry. Unipolar electrograms, measured 

from actual needle electrodes, were mapped onto the closest corresponding elements within 

the mesh to define a source representative of the underlying ischemic activity (Fig. 3a).
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Registration of sock electrodes was performed in two phases. Phase I consisted of applying a 

procrustes registration algorithm to rotate, translate, and scale a template sock geometry into 

an optimized position, with regard to the surface of the cardiac mesh, without imposing 

shearing or other deformation processes that would skew the sock geometry (Fig. 3b).10 

Phase II consisted of morphing resulting Phase I geometries onto the epicardial surface of 

the cardiac mesh. To pursue each phase, correspondence points were generated using 

digitization (Phase I) or activation time correspondence (Phase II) approaches.

Phase I registration defined a correspondence between MRI-derived needle entry sites and 

associated, digitized, sock electrode locations. A rigid procrustes algorithm10 was applied to 

optimize the positioning of a pre-constructed 3D sock template to our cardiac mesh (Fig. 

3b). This approach eliminated the risk of shearing, or other deformations, and provided the 

relatively 2D set of correspondence points a basis with which to be applied to our 3D sock 

template. Expectedly, registered Phase I geometries were not tightly aligned to subject-

specific epicardial surfaces—generating an average distance between corresponding sock 

and needle locations of 10.60 ± 2.85 mm and prompting additional registration steps to 

improve accuracy.

A second registration phase (Phase II) was implemented to morph Phase I sock electrode 

locations onto the cardiac mesh via a thin-plate-spline morphing algorithm (Fig. 3c). This 

required a second set of correspondence points that included posterior and lateral locations 

not available during Phase I registration. These points were determined by comparing 

activation times associated with sock electrodes with those of nearby needle entry sites. 

Sock and epicardial needle electrodes were considered corresponding if they (1) existed 

within the same local neighborhood and (2) activated no more than 3 ms apart—falling 

within 10% of total epicardial activation. Additional correspondence points were selected 

along lateral and posterior regions in order to ensure a reasonable 3D fit. Phase II 

registration approaches generated an average distance of 0.5 ± 0.06 mm between activation-

based correspondence point sets, which is to be expected considering the nature of the thin-

plate-spline algorithm. To ensure unbiased error comparisons, we also assessed the distances 

between Phase II sock geometries and digitized, needle entry site locations, which still 

outperformed Phase I methods with an average error of 6.30 ± 5.59 mm. With sock 

electrodes tightly registered to the cardiac volume, we mapped the sparsely measured sock 

potentials onto the much higher density mesh surface using surface Laplacian interpolation.
17

Mathematical Modeling

Using a monodomain approach, we generated electric fields within passive, anisotropic, 

cardiac volume conductors at a single time point (ST40%). This formulation allowed us to 

compute the effects of the ischemic condition in terms of Laplace’s equation,

∇ ⋅ (σ‒e∇ϕe) = 0, (1)
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where σ‒e represents the anisotropic extracellular conductivity and φe are the extracellular 

potentials. A subset of measured φe values were known, having been obtained from needle 

electrodes, which we applied as boundary conditions—reflecting the underlying sources 

generated by the ischemic condition. We also imposed a no current flow boundary condition 

along the epicardium (∂ΩH,epi) while allowing current to flow normal to the endocardium 

into the blood pool (∂ΩH,endo) where we also maintained continuity of potential, as follows:

n epi ⋅ σ‒e ∇ϕe = 0 x ∈ ∂ΩH, epi

n endo ⋅ σ‒e∇ϕe = − n b ⋅ σ‒b∇ϕb x ∈ ∂ΩH, endo
ϕe = ϕb x ∈ ∂ΩH, endo

(2)

The SCIRun problem-solving environment19 was used to assign boundary conditions and to 

solve Eq. (1) for the unknown extracellular potentials using an iterative conjugate gradient 

solver with a Jacobi preconditioner.

Validation

Simulation results were validated against measured epicardial potentials by both qualitative 

and quantitative means. Pearson’s correlation coefficient (PCC), root-mean-square error 

(RMSE), and maximum absolute error values (AEmax) provided metrics for quantitative 

comparison. PCC varies from + 1 to – 1 and reflects similarity of surface potential patterns 

independent of amplitude. RMSE and AEmax capture, respectively, amplitude differences as 

root-mean-squared and maximum error values, as follows:

PCC =
𝔼[(ϕs − μϕs

)(ϕm − μϕm
)]

SDϕs
SDϕm

RMSE = 𝔼((ϕs − ϕm)2)
AEmax = ϕs − ϕm ∞,

(3)

where φs and φm represent simulated and measured potential values and SDφs and SDφm are 

their respective standard deviations. The covariance between φs and φm is represented in 

terms of expected value, 𝔼, and their respective means, μφs and μφm.

We evaluated simulation accuracy over the entire epicardial surface and the area directly 

overlying the needle region. We also categorized ischemic runs as having either elevated or 

weak ischemic stress based on the level of epicardial ST shifts. Using heuristic methods, we 

determined that by applying a potential threshold of 3.5 mV to epicardial ST40% potentials 

we could consistently isolate instances of ischemia that were generally reproducible and that 

showed a high correlation between simulated and recorded potentials.
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RESULTS

Analysis of 226 individual ischemic events, acquired from 2 canine experiments, showed 

strong agreement between simulated and measured epicardial potentials, particularly during 

periods of elevated ischemic stress. We present the spread of epicardial potentials in two 

ischemic events, one from each experimental model, to demonstrate the visual accuracy of 

our simulation approach and provide the quantitative statistics from all ischemic episodes.

Epicardial Potential Distrubutions

Figures 4 and 5 show simulated and measured epicardial potentials from two animal models 

in which induced ischemic stress surpassed a 3.5 mV threshold. Experiment 1 utilized 

limited coronary blood supply and increased heart rate to reflect demand ischemia while 

Experiment 2 mimicked supply ischemia by maintaining a slightly elevated heart rate under 

conditions of reduced coronary blood flow. Simulated and measured extracellular potentials 

from each experiment are displayed side-by-side over both the entire epicardial surface 

(‘Complete Epicardium’) and the localized region overlying the plunge needles (‘Clipped 

Needle Hull’).

Experiment 1 (Fig. 4) exhibited signs of elevated ischemic stress as shown by large 

elevations near the anteroapical region of the left ventricle (LV). Elevated regions were 

flanked by depressions on the lateral and inferoapical boundaries. Simulated results also 

produced elevated potentials along the anteroapical region with ST depression along the 

lateral boundary. However, the inferoapical ST depressions, seen in the measured maps, 

were not present in either simulated epicardial maps or intramural analyses (not show).

Experiment 2 (Fig. 5) produced more distributed, albeit muted, epicardial potential patterns 

to those observed in Experiment 1. Measured ST40% elevations were present in the LV 

anteroapical region, but instead of two flanking regions of depression across the epicardium, 

three were observed along the inferoapical, lateral, and right ventricular (RV) septal 

boundaries. Simulated potentials produced similarly oriented but more blurred LV 

anteroapical elevations accompanied by lateral and RV septal depressions, though 

simulations, again, failed to reproduce the inferoapical ST depressions.

General agreement between simulated and measured potentials improved as epicardial 

potentials approached the 3.5 mV threshold—corresponding to an ischemic response of a 

more severe nature. Ischemic episodes that did not reach threshold produced responses that 

were not stable, having amplitudes that only slightly exceeded background noise. Not 

surprisingly, these simulations failed to capture the resulting subtle fluctuations observed in 

epicardial potentials that stemmed from ischemia. During episodes of elevated ischemic 

stress, however, simulated potentials exhibited amplitudes and distribution patterns that were 

very similar to measured potentials—albeit somewhat blurred or smoothed.

Quantitive Analysis

Quantitative metrics also demonstrated agreement between simulated solutions and 

experimental measurements, particularly under conditions of elevated ischemic stress. Three 

metrics provided support for this claim by showing that simulations of elevated ischemic 
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stress generated a moderate to strong Pearson’s correlation (PCC), low root-mean-square 

errors (RMSE), and reasonable maximum absolute error (AEmax).

Figure 6 shows the relationship between PCC and the maximum potential values observed 

on the epicardial surface, considering both the ‘Complete Epicardium’ (left) and the 

‘Clipped Needle Hull’ (right). In general, as epicardial potentials increased, so too did PCC 

values. Ischemic events that produced epicardial potentials that exceeded 3.5 mV generated 

a pattern of moderate to strong correlation with PCC values ranging from 0.5 to 0.75. Cases 

of elevated ischemic stress attained moderate to strong correlation in 75% of simulated 

events across the Complete Epicardium and 93% of events overlying the Clipped Needle 

Hull. Weaker agreement was observed in cases in which maximum epicardial potentials 

were below 3.5 mV, with only 19% of the Complete Epicardium and 30% of the Clipped 

Needle Hull PCC values reaching a moderate level of correlation. However, one ischemic 

episode (Fig. 6 orange) did not produce events that conformed to this pattern. In this 

episode, the correlation between needle based sources and epicardial measurements 

decreased under conditions of elevated ischemic stress. After careful examination, we found 

that needle electrograms during these particular ischemic events exhibited potential patterns 

similar to those observed during other episodes of elevated ischemic stress (i.e., large, 

distributed ST elevations). However, electrograms measured from sock electrodes produced 

apparently healthy signals—having little or no ST deviation. This phenomenon demonstrates 

the variable nature of the ischemic response and the challenges associated with this 

mechanistic situation. Removing this anomalous subset from our analysis improved the 

correlation percentages to 83 and 94% for complete and needle regions, respectively.

Figure 7 further illustrates the degree to which PCC relies on ischemic stress. In both 

Complete Epicardium and Clipped Needle Hull regions, higher PCC medians and lower 

PCC variances were observed when comparing simulations of elevated ischemic stress to 

those of weak ischemic stress. In both high stress cases, median values indicated a strong 

correlation. Upper quartile bounds were narrow, reflecting the asymptotic threshold 

observed in Fig. 6. In cases of weak ischemic stress, PCC values ranged from strongly 

positive to moderately negative, indicating the uncertainty in simulation outcomes. The 

separation between the results of elevated and weak stress datasets showed both statistical 

significance (p = 0.001) and practical significance16 (Hedge’s g = 1.02) based on effect size 

calculations.

In addition to increased PCC, elevated ischemic stress led to modest boosts in RMSE and 

AEmax. Unlike PCC, however, which approached a seemingly asymptotic maximum 

threshold, RMSE and AEmax values increased monotonically and did not show any specific 

stress threshold (Fig. 8). RMSE peaked (RMSEmax) at a value of 1.74 mV across the 

Complete Epicardium and at 2.97 mV across the Clipped Needle Hull region. Notably, Fig. 

8 (left) shows that RMSE across the Complete Epicardium increased more slowly than 

errors recorded across the Clipped Needle Hull. This result is not surprising as regions of the 

heart that were outside of the area affected by ischemia (e.g., posterior and basal regions) 

predictably registered healthy ST40% potentials in both simulated and measured cases. 

These areas were expansive and yielded low error effectively diluting the overall RMSE 

calculation in comparison to those performed over the Clipped Needle Hull. In contrast, 
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AEmax showed strong agreement between complete and clipped regions as ischemic stress 

increased (Fig. 8 (right)) suggesting that the largest source of error was found within, or very 

near to, the Clipped Needle Hull. AEmax peaked for both epicardial and needle hull regions 

at 7.91 mV and occurred within the basal-most elevation seen in the ‘Anterior View’ of the 

‘Measured’ potentials of Fig. 4. Again, this finding is not alarming considering that the 

epicardial region overlying the Clipped Needle Hull experiences the largest potential 

changes over the course of an ischemic episode.

DISCUSSION

The main goal of this study was to establish and validate a computational modeling 

framework capable of being employed to investigate the effects of myocardial ischemia on 

measurable cardiac potentials. To offer initial validation of our framework, we chose a 

subject-specific simulation strategy aimed at predicting epicardial potentials associated with 

acute myocardial ischemia based on known intramyocardial sources taken from high 

resolution measurements under induced ischemic conditions. To this end, we built upon our 

existing simulation pipeline15 to analyze 226 individual events of acute ischemia—each 

induced using a unique combination of elevated heart rate and reduced coronary blood flow 

within two canine experiments.3 Using intramurally recorded extracellular potential sources, 

we generated simulations that qualitatively and quantitatively agreed with measured 

potentials—exhibiting relatively high correlation values and low error as measured by both 

RMSE and maximum absolute error. Highly correlated simulations were consistently 

associated with episodes of ischemic stress that reached, or exceeded, epicardial potential 

values of 3.5 mV.

The construction of our simulation framework was highly motivated by a combination of 

observed errors in ECG-based diagnosis of myocardial ischemia,1 and our own experimental 

observations of ischemic disease, which support the notion of highly distributed, intramural 

source representations.3 Current clinical protocol dictates that ischemia develops as a single, 

geometrically well-defined, subendocardial region of injured tissue.7 Our recent 

experimental findings contradict this paradigm, indicating that intramural potentials, and 

associated injury currents, are complex and distributed throughout the ventricular wall.3 

Experimental findings offer an explanation, at least in part, of the persistently wide 

deviations associated with ECG-based diagnosis—assuming that such deviations stem from 

a general lack of understanding regarding the underlying mechanisms of ischemia. To better 

explore these mechanisms, we have developed a computation infrastructure with which to 

study ischemic disease. While our approach is not intended to provide a direct improvement 

to clinical operations, it is important for improving our overall understanding of ischemic 

sources while simultaneously providing a computational framework for exploring clinical 

outcomes. Using our own experimental findings, we demonstrate the utility of our 

computational framework while incorporating the most advanced and realistic set of 

assumptions about the ischemic heart to date, which include conductive characteristics and 

accurate, spatially distributed ischemic sources.

Our computational models produced epicardial potentials that matched measured data, both 

visually and quantitatively, under conditions of elevated ischemic stress. Figures 4 and 5 
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show two of the multiple cases in which elevated ischemic stress was reached and where 

agreement between simulated and measured data was achieved. In both of these examples, 

measured elevated potentials arose in anteroapical regions which were flanked by 

depressions appearing on the lateral and inferoapical boundaries. In the case of Fig. 5, a 

third depression appeared along the LV basal region as well. Simulated potentials 

reproduced most of these features, leading to high correlation values and low RMSE. 

However, correlation appeared to plateau at a value of approximately 0.75, likely due to the 

absence of prominent depressions along the inferoapical boundary in simulated cases.

The absence of inferoapical depressions in simulation was likely the result of insufficient 

needle coverage within the experimental preparation. Evidence of insufficient needle 

coverage can be seen in the Clipped Needle Hull regions of Figs. 4 and 5 where both 

simulated and measured cases give no indication of inferoapical depression. Such errors are 

anticipated, however, as they are a direct consequence of physical and practical constraints 

inherent within experimental preparations. In our experiments, for example, epicardial sock 

electrodes were physically constrained to the ventricular surface. Needle electrodes were 

limited to intramural tissues, and, due to the confined space within our open-chest 

experimental models, they were further restricted to the anterior, lateral, and anteroapical 

regions of the heart. In addition to physical constraints, practical considerations further 

limited the placement of plunge needles in order to: avoid puncturing major coronary blood 

vessels, ensure complete coverage of the affected perfusion area, mitigate injury within the 

cardiac tissues, and maximize the capabilities of recording hardware. To account for these 

anticipated shortcomings, we provided a comparison of both the Clipped Needle Hull and 

the Complete Epicardium. By analyzing the Clipped Needle Hull, we were able to verify 

that our simulation pipeline accurately reproduced epicardial potentials over local regions 

where both sock and needle potentials were known and where ischemia was assumed to 

produce the most injury. Analysis of the Complete Epicardium, in comparison, provided 

both a global sense of the overall accuracy while also exposing some of the intrinsic 

shortcomings present in modeling approaches.

One such shortcoming inherent in subject-specific modeling is registration error. 

Registration of experimental geometries onto computational models is a persistent source of 

both qualitative and quantitative error in the simulation process that can often be mitigated 

but not completely eliminated. Such registration errors are in all subject-specific modeling 

studies—particularly those involving the heart. For example, potential measurements in our 

study were recording while the heart was still beating; however, MRI scans used to produce 

cardiac geometries were taken post-mortem. The potential for error in geometric registration 

motivated the use of activation-based Phase II registration approaches in an attempt to 

reduce impact of improper geometric positioning on simulated outcomes. Figure 4 provides 

another example in which sock electrodes appear to be slightly misaligned due to 

registration error. Measured electrodes seem to be shifted toward the basal region when 

compared to simulated potentials. In contrast, Fig. 5 appears to have much better alignment 

between measured and simulated potentials. Further evidence of alignment error is present 

in absolute error measures where AEmax consistently arose over the needle hull (Fig. 8 right)

—implying that some shift in the location of the data had resulted in the misalignment of 

potential extrema along the surface. Our simulation framework allowed us to mitigate errors 
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associated with electrode misalignment by allowing the careful selection of correspondence 

points to use in our registration process—first with digitized sock and needle locations taken 

at the time of experimentation and later, with activation-based correspondence points 

extracted from electrogram recordings. By using these registration techniques, we closely 

approximated sock electrode positions, which resulted in moderate to strong correlation in 

75% of all supra-threshold ischemia simulations as shown in Figs. 6 and 7.

Also apparent in Figs. 6 and 7 is the requirement that an ischemic potential threshold of 3.5 

mV, corresponding to elevated ischemic stress, be reached along the epicardial surface in 

order to consistently maximize quantitative correlation between simulated and measured 

potentials. By this metric, elevated ischemic stress was measured in 82 of the 226 induced 

ischemic events used in this study. Based on our observations, demand ischemia produced 

higher levels of ischemic stress more rapidly and more readily than did supply ischemia 

protocols.3 In total, demand protocols accounted for only 43% of all analyzed runs, but they 

represented approximately 80% of ischemic events that reached threshold value.

A series of demand ischemia events, however, produced anomalous data and resulted in poor 

PCC under conditions of elevated ischemic stress (Fig. 6 orange). Needle electrograms 

recorded during these episodes produced predictable potential elevations and depressions 

under ischemic conditions while sock electrograms produced signals that were consistent 

with either healthy or only mildly ischemic tissues. Such incongruity between needle and 

sock measurements does not have an obvious mechanistic or physiological interpretation. A 

possible explanation, however, may be a lapse in cardiac moistening protocols during 

experimental procedures. Inconsistent cardiac moistening, coupled with prolonged exposure 

to the external environment, leads to partial dehydration of both the heart and the sock, 

which, in turn, increases the load on the recording circuit and dampens the overall amplitude 

of epicardial measurements. Indeed, QRS peak amplitudes (not shown) were reduced by as 

much as 1/3 during anomalous runs. Removing anomalous runs from consideration 

increased the percentage of highly correlated episodes to 83 and 94% for complete and 

clipped regions, respectively.

A natural continuation of this research includes improvements to both experimental methods 

and the simulation pipeline. Revisions to experimental protocols are currently being 

implemented to improve shortcomings that arise due to limited needle coverage, registration 

errors, and elevated ischemic stress realization. Such improvements include: (1) high 

resolution sock electrode labels for improved digitization, (2) epicardial pacing protocols 

that provide more precise activation times of both sock and needle electrodes, (3) real-time 

signal monitoring to ensure elevated ischemic stress is achieved, (4) chemical stress 

protocols to increase cardiac demand and more closely mimic current clinical stress testing, 

and (5) coronary flow monitoring to better characterize reduced coronary blood supply. 

Concurrently, simulation approaches are also being developed that (1) simplify intramural 

ischemic source representations into 3-dimensional zone approximations, (2) consider 

bidomain modeling approaches, (3) analyze uncertainty associated with conductivity and 

fiber orientation parameters, and (4) consider other biophysical aspects of ischemia, such as 

alternative ischemia markers and dynamic electrical models. Through these additional 

improvements and explorations, we will continue to challenge the paradigm espoused by 
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current clinical practice while providing a computational framework within which future 

simulation approaches can operate to produce simulated results that are both mathematically 

tenable and physiologically accurate.
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ABBREVIATIONS

ECG Electrocardiogram

EC Extracellular

LAD Left anterior descending coronary artery

QRSoff Time point at QRS complex offset

Tpeak Time point at T-wave peak

ST40% Time point 40% between QRSoff and Tpeak

FISP Fast imaging with steady-state precession

FLASH Fast low angle shot

MRI Magnetic resonance imaging

DW-MRI Diffusion weighted magnetic resonance imaging

PCC Pearson’s correlation coefficient

RMSE Root-mean-square error

AEmax Maximum absolute error value

LV Left ventricle

RV Right ventricle
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FIGURE 1. 
Ischemia Simulation Pipeline. Imaging and time signal data were extracted from 

experimental protocols of acute, controlled ischemia in dogs. Imaging files were used to 

generate geometric models through segmentation and meshing. Cardiac fibers and 

intramural electrical signals were aligned and mapped within the geometric models and used 

to simulate epicardial potentials, which were subsequently validated against recorded, 

unipolar electrograms.
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FIGURE 2. 
Image and Geometric Processing. MRI images were segmented, (a), to created volumetric 

representations of the heart from which cardiac meshes were generated, (c). Principal 

eigenvector fields from DW-MRI were mapped onto the cardiac meshes using weighted 

average interpolation, (e), where vector glyph coloration is dictated by direction—as 

indicated by the axes in the upper right corner. (b, d) and (f) are enlarged views of smaller 

regions of the images above.
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FIGURE 3. 
Registration. Plunge needle geometries (left) were isolated through MRI segmentation to 

provide the basis for needle electrode locations within the cardiac mesh. Sock geometries 

were registered to the epicardial surface mesh in two phases. Phase I (middle) applied a 

rigid, procrustes algorithm to a pre-constructed cardiac sock template. Phase II (right), 

utilized a thin-plate-spline morphing algorithm to project Phase I node locations onto the 

epicardial mesh surface.
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FIGURE 4. 
Assessment of Simulations from Experiment 1. Simulated and measured ST40% potential 

amplitudes, considering two different degrees of coverage, are shown in two different 

orientations. The complete epicardium (leftmost quadrant) and a subset of the epicardial 

surface that corresponds to the region captured directly over the needle electrodes (rightmost 

quadrant) show views along both the anterior-to-posterior axis (upper) and inferior-to-

superior axis (lower).
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FIGURE 5. 
Assessment of Simulations from Experiment 2. Figure layout is identical to that of Fig. 4. 

The color map was adjusted to match the more muted ST40% potentials specific to this 

experiment. Also, due to physical constraints in this experiment, sock electrodes did not 

entirely cover the ventricles, leading to reduced epicardial coverage in the RV basal region.
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FIGURE 6. 
PCC vs. Ischemic Stress. Correlation between ischemic stress, measured as a function of 

maximum epicardial potential values, show improved PCC with increased ischemic stress. 

Blue markers make up the majority of individual ischemic events, which exhibited 

predictable outcomes. Orange markers represent a sequence of related measurements in 

which prolonged ischemic stress produced elevated but progressively uncorrelated ST40% 

potentials.
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FIGURE 7. 
PCC Reliance on Ischemic Stress. Box plots for both coverage regions, Complete 

Epicardium and Clipped Needle Hull, show that consistently high correlation between 

measured and simulated solutions is dependent on the level of ischemic stress experienced 

by the heart as defined by level of maximum epicardial ST40% value.
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FIGURE 8. 
Comparison of RMSE and AEmax Error Metrics. Both RMSE (left) and AEmax (right) 

exhibited monotonically increasing behavior with respect to ischemic stress. Circles, 

representing the ‘Complete Epicardium,’ vs. those that consider only the ‘Clipped Needle 

Hull’ (triangle). RMSE measures increased more slowly along the ‘Complete Epicardium’ 

than they did along the ‘Clipped Needle Hull.’ AE measures, in contrast, increased in 

unison.
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