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Abstract

Objective: We devise a data-driven framework to assess the level of consciousness in 

etiologically heterogeneous comatose patients using intrinsic dynamical changes of resting-state 

Electroencephalogram (EEG) signals.

Methods: EEG signals were collected from 54 comatose patients (GCS≤8) and 20 control 

patients (GCS>8). We analyzed the EEG signals using a new technique, termed Intrinsic Network 

Reactivity Index (INRI), that aims to assess the overall lability of brain dynamics without the use 

of extrinsic stimulation. The proposed technique uses three sigma EEG events as a trigger for 

ensuing changes to the directional derivative of signals across the EEG montage.

Results: The INRI had a positive relationship with GCS and was significantly different between 

various levels of consciousness. In comparison, classical band-limited power analysis did not show 

any specific patterns correlated to GCS.

Conclusions: These findings suggest that reaching low variance EEG activation patterns 

becomes progressively harder as the level of consciousness of patients deteriorate, and provide a 

quantitative index based on passive measurements that characterize this change.

Significance: Our results emphasize the role of intrinsic brain dynamics in assessing the level of 

consciousness in coma patients and the possibility of employing simple electrophysiological 

measures to recognize the severity of disorders of consciousness (DOC).
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1. Introduction

Coma and other disorders of consciousness (DOC) is associated with profound reductions in 

wakefulness and awareness (Bruno et al., 2011; Giacino et al., 2014; Laureys, 2005). 

Linking these behavioral markers with specific injury attributes remains a persistent clinical 

challenge (McGee et al., 2016). Electroencephalographic recordings offer the potential to 

help to disassociate underlying causes of DOC by revealing systematic electrophysiological 

correlates of injury and behavior (Sitt et al., 2014; Sebastiano et al., 2015). However, 

patients in coma exhibit substantial heterogeneity in etiology, including injury type and 

location. Moreover, these patients are often managed with pharmacological agonists that 

themselves produce electrophysiological effects (Blume, 2006). Thus, realizing the potential 

of EEG as a diagnostic tool has a number of practical challenges (Wijnen & van Boxtel, 

2010; Cruse & Young, 2016).

The most traditional approach to EEG biomarker development involves spectral analysis of 

band-limited power, i.e., the assessment of rhythmicity and neural oscillations (Buzsáki & 

Draguhn, 2004), sometimes referred to as Quantitative EEG (QEEG). Examples of this 

approach for diagnosing disorders of consciousness includes the absence of blink-related 

delta oscillations in DOC patients (Bonfiglio et al., 2013, 2014), a positive correlation 

between Coma Recovery Scale-Revised (CRS-R) and ratios between frequencies above 8 Hz 

and frequencies below 8 Hz (Lechinger et al., 2013), higher theta/alpha and lower delta 

power of minimally conscious state (MCS) patients compared to vegetative state/

unresponsive wakefulness syndrome (VS/UWS) patients (Piarulli et al., 2016), and lower 

alpha power in UWS and MCS patients (Naro et al., 2016).

However, such an approach could be prone to confound since sedative drugs, in particular, 

produce well-defined but wide-ranging changes in rhythmic activity (Carboncini et al., 

2014). Nevertheless, those studies relying on spectral analysis could be informative for well-

constrained patient populations. Alternatively, EEG analysis can be performed in an active, 

perturbational framework wherein stimuli are delivered to the patient, and 

electrophysiological responses are characterized (Guerit, 2010; Risetti et al., 2013; 

Kotchoubey, 2017). The premise of such an approach, which includes canonical examples 

such as EEG reactivity and event-related potentials (ERPs), is that it captures the 

responsiveness of the brain in a basal, primitive way. A less responsive/reactive brain is, 

ostensibly, less able to support normal cognitive function. Indeed, reactivity and related 

measures have been shown to be informative with respect to behavioral deficits associated 

with DOC (Cruse et al., 2016).

This perturbational approach has been previously used in characterizing the EEG response to 

an oddball paradigm (Kotchoubey et al., 2005), where the authors show that severely brain-

damaged but conscious patients demonstrate much more electrophysiological signs of intact 
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cortical processing than the persistent vegetative state (PVS) and minimally conscious state 

(MCS) patients. Along the same lines, Cavinato and his co-authors used an oddball 

paradigm with different levels of stimulus complexity and compared the latencies and 

amplitudes of N1 and P3 waves between six VS, eleven MCS, and ten control subjects 

(Cavinato et al., 2011). According to their results, healthy controls and MCS patients 

showed a progressive increase of P3 latency in relation to the level of stimulus complexity, 

whereas no modulation of P3 latency was observed in the vegetative patients. Using 

nonlinear features of EEG signals such as cross-approximate entropy (C-ApEn), Wu and his 

co-authors investigate the cortical response to painful and auditory stimuli (Wu et al., 

2011b,a), and showed that the interconnection of local and distant cortical networks in MCS 

is superior to PVS group. In a more recent effort, Binder has studied the relationship of the 

phase-locking index (PLI) of 40 Hz auditory steady-state response (ASSR) with Coma 

Recovery Scale-Revised (CRS-R) and found that there is a correlation between these two 

measures (Binder et al., 2017).

However, such perturbational methods bring about their own set of challenges in the context 

of DOC patients. The inter-pretability of ERP studies involving a single sensory modality 

may be compromised due to etiological heterogeneity (Kotchoubey, 2017), and their 

robustness in differentiating various degrees of consciousness is subject to debate 

(Kotchoubey et al., 2005; Höller et al., 2011; Real et al., 2016). Alternatively, approaches 

involving direct (e.g., electromagnetic) stimulation of the cortex (Bagnato et al., 2012; 

Rosanova et al., 2012; Casali et al., 2013; Zhang et al., 2017), while conceptually more 

favorable, raise the instrumentation burden substantially and are thus not ideal for routine 

clinical assessment. More comprehensive reviews of the previous findings in detecting signs 

of consciousness using electrophysiological methods can be found in (Sitt et al., 2014; Rapp 

et al., 2015; Sebastiano et al., 2015; Cruse et al., 2016; Estraneo et al., 2016; Ragazzoni et 

al., 2017).

In this work, we seek to develop an objective EEG-based assay that can reliably differentiate 

injury severity and behavioral deficits in the face of etiological and pharmacological 

heterogeneity. Doing so would have at least two impacts. Foremost, such an assay would 

reveal fundamental electrophysiological features associated with DOC, ones that specifically 

are robust to the confounding effects of neurally active drugs. Further, such an assay would 

provide means to more objectively assess patients for whom traditional bedside behavioral 

exams are ineffective (Andrews et al., 1996; Schnakers et al., 2009; Sanders et al., 2012). 

Our goal is to devise a strategy that can offer an EEG-based assessment of brain 

responsiveness in resting state, without the need for extrinsic stimulation. Although there 

have been previous attempts to reach this goal (Bai et al., 2017), these attempts have been 

mostly based on information-theoretic (Pollonini et al., 2010; Sarà & Pistoia, 2010; 

Gosseries et al., 2011; King et al., 2013; Marinazzo et al., 2014; Thul et al., 2016) or graph-

theoretic (Lehembre et al., 2012; Leon-Carrion et al., 2012; Chennu et al., 2014; Höller et 

al., 2014; Varotto et al., 2014; Chennu et al., 2017; Numan et al., 2017) metrics, which do 

not provide direct information about the underlying neuronal dynamics. Furthermore, the 

majority of these studies focus on distinguishing minimally conscious patients from patients 

in vegetative state. However, consciousness is a state on a continuous spectrum (Laureys, 

Khanmohammadi et al. Page 3

Clin Neurophysiol. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2004), and detecting subtle changes of consciousness using neuroimaging and 

electrophysiological techniques remains an open question.

Here, we treat the analysis of EEG using formalisms from dynamical systems theory and the 

notion of reachability (Jurdjevic, 1997). This notion of intrinsic brain network reactivity is 

intended to holistically characterize the lability of the brain by describing the ability of rare 

electrophysiological events to create low probability excursions in neural activity, or, how 

easily the EEG is able to ‘reach’ a diverse set of patterns. Thus, the technical innovation of 

this paper is a method to estimate EEG reactivity without explicit delivery of exogenous 

stimuli. We introduce the Intrinsic Network Reactivity Index (INRI) by using three sigma 

events as an internal reactivity trigger and quantify the reachability of response states to 

these events.

2. Materials and Method

2.1. Data Description

We collected retrospective data including EEG and complete medical records from 54 

comatose patients and 20 control subjects (GCS>8) over the course of three years 

(2013-2016). The patients underwent EEG recording for routine monitoring purposes in the 

Neurological and Neurosurgical Intensive Care Unit (NNICU) at Barnes-Jewish Hospital, 

which is affiliated with Washington University School of Medicine in St. Louis. Each patient 

underwent one recording session with exceptions of four patients for whom two recordings 

were performed. EEG data were acquired using 19 electrodes positioned according to the 

standard 10-20 system of electrode placement. The recording was performed for at least 

fifteen minutes for each patient. The original signals were recorded against a common 

reference electrode and re-referenced to 18 bipolar channels (FP1-F7, F7-T7, T7-P7, P7-O1, 

Fp1-F3, F3-C3, C3-P3, P3-O1, Fz-Cz, Cz-Pz, Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8, F8-

T8, T8-P8, and P8-O2) to reduce the sensitivity of EEG signals to external noise (Osselton, 

1965). The signals were recorded at either 250 or 500 Hz. Table 1 provides a summary of 

the study population including age, gender, injury type, injury location, and Glasgow coma 

scale (GCS), which was collected as part of the clinical routine. In case of the intubated 

patients, the verbal score was estimated from the motor score and eye score using the linear 

regression model VerbalScore = −0.3756 + MotorScore * (0.5713) + EyeScore * (0.4233) as 

described in (Meredith et al., 1998). The study was approved by the ethics committee of 

Washington University in St. Louis and conducted in accordance with the declaration of 

Helsinki.

2.2. Data Preprocessing

EEG preprocessing steps include removing large amplitude and eye blink artifacts by visual 

inspection (Stern, 2005; Britton et al., 2016), downsampling, bandpass filtering the data, and 

standardization, which were all implemented in MATLAB using in-house code. More 

specifically, sections of the data with artifacts were discarded (approximately 6.8%), and the 

data that was initially recorded at 500 Hz was downsampled to 250 Hz to make the sampling 

rate of all the recordings consistent. Next, a Hamming window-based finite impulse 

response (FIR) bandpass filter was used to filter the signals into the 1 – 45 Hz frequency 
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range. Finally, EEG signals from each cahnnel were standardized to zero mean and unit 

variance by taking out the mean and dividing by standard deviation (X = (X – μ)/(σ)) 

(Guyon & Elisseeff, 2006).

2.3. Quantifying Intrinsic Dynamics

Calculating the Intrinsic Network Reactivity Index (INRI) involves three main steps of 

identifying intrinsic events, obtaining brain state trajectories, and quantifying the brain state 

trajectories (Figure 1). Each of these steps is discussed in the following subsections.

2.3.1. Identifying Intrinsic Events—After the data has been preprocessed, we would 

like to capture the typical response to intrinsic (in this case three sigma) events. In order to 

do this, we select one channel at a time as a trigger channel (where the intrinsic events 

occur) and then calculate the response to these intrinsic events in rest of the channels (target 

channels). More specifically, after the data has been preprocessed, we start selecting one 

channel at a time from each patient’s recording to serve as the trigger channel, and all the 

points that are more than three standard deviations away from the signal mean in this 

selected trigger channel are identified. These points are marked as intrinsic events, and a 

window of length w = 1s following these intrinsic events is defined. Next, the corresponding 

windows in the other recorded channels (target channels) of the same recording are 

identified and averaged to obtain a response signal for each target channel with regards to a 

specific trigger channel. The procedure is iterated by defining each channel as a trigger, then 

aggregating the responses from different target channels into one 18-dimensional 

prototypical response trajectory. Finally, the obtained typical responses are averaged across 

different subject groups. Figure 2 shows one iteration of the intrinsic event identification, 

where channel nine is selected as the trigger channel, and the response in five target channels 

{7, 8, 10, 13, 14} to the three sigma events in channel nine are represented.

2.3.2. Obtaining Brain State Trajectories—The 18-dimensional target response for 

each subject group is collapsed into three dimensions using principal component analysis 

(PCA). The principal component analysis is a statistical procedure that applies an orthogonal 

transformation to uncorrelate possibly correlated variables. PCA decomposes the original 

data X ∈ RN×M into uncorrelated components using a transformation matrix W and sorts 

them according to the variance explained by each component (Bishop, 2006). In this case, 

our X is the averaged responses in different target channels, N = 18 is the number of 

channels, and M = 250 is the length of averaged responses (w = 1s). Instead of applying the 

entire PCA transformation matrix, generally, the first k columns of the W matrix that explain 

a certain percentage of the variance in the signal is used. In this case, PCA acts as a 

dimensionality reduction method and reduces the dimension of the original data while 

retaining as much variance in the dataset as possible (Figure 3). Here we have used k = 3, 

which provides the first three principal components that explain 97.83% of the variance in 

our data.

2.3.3. Quantifying the Brain State Trajectories—The end result of the first two 

INRI steps is a threedimensional trajectory that captures the average evoked response 

(trigger channel to target channels) for each GCS value. As a final step, in order to quantify 
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the lability of the obtained three-dimensional state trajectories for different groups of 

subjects, a numerical method is used where first a polynomial surface with degree d = 3 

(Equation 1) is fitted to the absolute value of each point in the trajectories of each subject 

group (in this case x and y are the absolute values of the trajectory point coordinates in PC1 

and PC2, respectively).

z = f x, y = ∑
0 ≤ i, j, 0 ≤ i + j ≤ d

ai, jx
iy j (1)

Next, given that zt = f(xt, yt) is the projection of each trajectory point on the fitted surface f, 

the directional derivative D
u

f xt, yt  provides the rate of change of z in the direction of the 

unit vector u . In our case, the direction of the unit vector is towards the last point of the 

trajectories in the time domain as described in Equation 2.

u =
xT, yT − xt, yt

∣ ∣ xT, yT − xt, yt ∣ ∣ (2)

Hence, given the definition of directional derivatives for each point at time t, we have:

D
u

f xt, yt = lim
h 0

f xt + hu1, yt + hu2 − f xt, yt
h (3)

In practice, it is difficult to calculate the limit in Equation 3 and often the directional 

derivatives are calculated using the gradient as shown in Equation 4 (Simmons & Simmons, 

1996).

D
u

f xt, yt = ∇ f xt, yt . u (4)

The calculated D
u

f xt, yt  value gives the slope of our surface (z = f(x, y)) when standing at 

the point (xt, yt) and facing the direction of the final trajectory point in the time domain 

( u ). Hence, the positive value here means the value of z is increasing in the direction of u

when moving through (xt, yt), which implies an increase of PC3 component relative to PC1 

and PC2. In other words, if we are standing at point (xt, yt) and moving towards the final 

point in the trajectory (xT, yT), a positive directional derivative means the next step we take 

will be towards a larger z value within the landscape of our surface (moving uphill). Since z 
is the absolute value of the PC3 component, using directional derivatives we are capturing 

the extent to which a given trajectory moves towards PC3 (See Figure 4). Given that PC3 is 
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the low variance component (λ3 < λ2 < λ1), such movement towards larger z values in the 

positive PC3 domain implies moving to a lower variance region of the state space, which we 

posit to reflect greater lability in the underlying brain dynamics.

3. Results

3.1. Intrinsic Network Reactivity Disambiguates Levels of Consciousness

Figure 5 shows the obtained state space trajectories and the fitted surface plots for each 

subject group. It is clear that the state space trajectories differ between subject groups. In 

order to quantify these differences, the intrinsic network reactivity index was calculated for 

each subject group. As shown in Figure 6, the INRI values between each consequent patient 

groups (such as GCS = 5, 6) was significantly different (multiple comparison test (Tukey-

Kramer) of Kruskal-Wallis ranks), except for patient groups GCS = 6, 7. Of note, the sign of 

the INRI value was negative except for the control subjects, consistent with a severity-

dependent contraction in the space of electrical activity that can be supported in these 

(injured) brains. To check the robustness of these results, we also conducted a sensitivity 

analysis in terms of different window sizes as shown in Figure 7. The overall trend of 

increasing directional derivative values with respect to GCS scores is persistent for different 

window sizes, but there are also slight divergences due to the noisy nature of EEG signals.

3.2. INRI is Robust to Etiological and Pharmacological Heterogeneity

A key premise of the proposed measure is that it captures a fundamental aspect of neural 

circuit dynamics: their responsiveness to perturbation. This contrasts conventional studies of 

macro-scale brain signals that focus on characterization of the rhythmic electrophysiological 

activity. As a consequence, we hypothesized that our method would be robust to the 

heterogeneous effects of coma etiology and concurrent pharmacology that might confound 

oscillatory EEG assays. To emphasize this point, we derived several traditional quantitative 

EEG parameters based on spectral analysis on our dataset. More specifically, we estimated 

the multi-taper time-frequency spectrum (Babadi & Brown, 2014) using a 20 second moving 

window with 50% overlap and took the average of the power spectrum within each 

predefined frequency band (δ[0.5 – 4Hz], θ[4 – 8Hz], α[8 – 12Hz], and β[16 – 32Hz]) for 

all the channels. The selected frequency bands are based on the common frequency ranges 

used in quantitative EEG analysis (Lehembre et al., 2012). The EEG data was locally 

detrended prior to the power spectrum estimations, and the secondary measures such as α/δ 
ratio (Husain & Sinha, 2017; LaRoche & Hiba Arif Haider, 2018) were calculated based on 

the estimated band-limited power of the signals. The mean and standard error of the band-

limited signal power and secondary measures for each patient group is provided in Figure 8. 

As shown, the average band-limited power of the signals in the canonical EEG bands does 

not reveal any systematic relationship with the level of consciousness in our patient cohort. 

Secondary indices based on spectral analysis, such as the alpha/delta ratio, similarly exhibit 

no relationship with GCS.

It should be noted that analyzing EEG signals at different frequency bands is one of the most 

conventional ways of examining rhythmicity of the EEG signals. However, here we are 

proposing a different perspective of analyzing the EEG signals based on the notion of 
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reachability in dynamical systems. While one could, in principle, apply our proposed 

analysis to filtered (band-limited) versions of the EEG, the outcome of such a step would be 

difficult to interpret. This is because many effects on the trajectory of a dynamical system 

may not be restricted to a narrow frequency band (hence, the very motivation for exploring 

trajectory-based analysis).

3.3. The INRI is Scalable to Large Datasets

In this section, we test the scalability of the proposed method in terms of different aspects of 

data size. Instead of providing the theoretical upper bound for the complexity of the INRI 

calculation, we provide the actual runtime because the actual runtime depends on many 

factors such as the processor type, memory speed, and the computer architecture that are not 

captured in the algorithm complexity analysis. Figure 9 provides the actual runtime increase 

as a function of the number of channels, number of samples, number of patients, and 

window size. Based on the results, the length of the moving window has the largest impact 

on the increase of computational time, which is mainly because of the time needed to fit the 

surface and calculate the directional derivatives for a larger number of trajectory points.

4. Discussion

This study complements current efforts to identify fundamental neural circuit mechanisms 

underpinning different levels of consciousness in brain-injured patients. To this end, we 

investigated the plausibility of using a new notion of intrinsic brain dynamics to distinguish 

different levels of consciousness in severe coma cases, with an eye toward robustness in the 

face of etiological and pharmacological confounds. To the authors’ best knowledge, this is 

the first demonstration of the discriminative power of intrinsic brain dynamics extracted 

from resting state EEG recordings in distinguishing different levels of consciousness in 

severe cases of coma. We specifically developed a new EEG measure (intrinsic network 

reactivity index) that captures the lability of brain dynamics, conceptually similar to EEG 

reactivity but acting only on passively recorded data. Through this index, we showed that the 

lability of brain dynamics decreases with the level of consciousness.

4.1. Generalization of Intrinsic Event Detection and Clinical Applications

In the current paper, we have shown that the INRI is able to confer information about the 

severity of brain injury. It is important to note, though, that the best use-cases for this 

method are likely not in the realm of severity assessment since for many of these patients 

administering bedside behavioral assays is routine. Rather, the purpose of our results is to 

highlight that it is possible to extract fundamental information about brain dynamics, 

analogous to reactivity, using a strictly passive (resting state) paradigm. Most critically, the 

INRI framework is highly generalizable.

For instance, the INRI can be generalized to other formulations of trigger detection. That is, 

in our work we consider a simple three sigma criteria to identify moments in time from 

which evoked trajectories are calculated. However, more elaborate criteria could also be 

considered, e.g., defining trigger events as those moments when a particular waveform 

complex is observed. Similarly, the notion of the evoked trajectory could be abstracted. One 
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can envision these generalizations being useful for applications such as injury localization, 

or estimation of focal sources of aberrant electrophysiological dynamics such as during 

states of seizure. For the specific purposes herein we found that the most basic formulation 

of detector criterion and evoked trajectory were sufficient to yield confirmation of our 

hypothesis.

4.1. Interpreting the INRI in Terms of Dynamical Systems and Reachability

The formulation of the proposed INRI measure is straight-forward: as opposed to the 

conventional reactivity design, involving delivery of exogenous sensory (or, more recently, 

electrical/magnetic) stimuli, we consider the extent to which particular channels ‘evoke’ rare 

responses through the measured montage. This framework has a particular interpretation if 

we consider the EEG as observations of an underlying dynamical system. In this scenario, 

any given time point t generates a (noisy) measurement of the state of the system. An 

assessment of reachability ascertains those states that can be realized or induced within some 

standardized time frame. For example, if the reachable set of states is small, then the system 

can do very little in response to an internally or externally generated stimulus. Thus, 

reachability is the formal mathematical analog to EEG reactivity.

Unfortunately, for all but the most idealized systems (specifically, those systems whose 

dynamics are linear), reachability calculations are notoriously difficult. Further, these 

calculations rely on the availability of a mathematical model for the system at hand. While 

such models can and have been postulated for EEG, they are certainly not linear (Fell et al., 

1996; Stam et al., 1999; Stam, 2005). Thus, we desire a data-driven approach that can 

estimate a surrogate for the set of reachable states based on EEG recordings. This is 

precisely what the proposed INRI measure does. Specifically, we project each intrinsically 

evoked EEG response trajectory on a three-dimensional basis obtained by PCA. The basis 

vectors (i.e., the PCs) are ranked according to the amount of variance they capture about the 

full collection of trajectories across patients. Our INRI measure, by means of the directional 

derivative, attempts to capture the extent to which a given trajectory moves towards PC3, a 

low variance component. If it does, then the trajectory in question tends toward a rarer 

morphology, which we interpret as embodying circuit lability. As such, the INRI quantifies 

the ‘maneuverability’ of underlying neural circuits to make difficult (low variance) state 

transitions. In this setting, our findings suggest that the maneuverability of the brain 

decreases as the level of consciousness of patients deteriorates (lower GCS value), which 

could indicate a form of neuroprotection against the brain injury.

It is worth noting that there is significant prior work on the development of time-series 

analysis techniques for the characterization of EEG signals, including in the context of 

DOC. In particular, effort has been directed toward the assessment of signal ‘complexity’ 

(Gonzalez Andino et al., 2000; Gao et al., 2011; Tang et al., 2015) under the premise that 

such complexity decreases with the level of consciousness (Schartner et al., 2015). Many of 

these techniques, such as the perturbational complexity index (Bodart et al., 2017), 

approximate entropy (Gosseries et al., 2011) and weighted symbolic mutual information 

(King et al., 2013), enact a probabilistic quantification of the observed time series (the PCI 

also requires the application of external cortical stimulation). Other techniques, more 
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conceptually similar to ours, treat EEG signals as trajectories of a dynamical system (e.g., 

Lyapunov exponents (Gallez & Babloyantz, 1991) and other data-driven attractor 

quantification methods, reviewed in (Pradhan & Dutt, 1993; Stam, 2005; Peng et al., 2009; 

Khanmohammadi, 2017)). The analysis we have put forth in this paper is distinct from these 

other efforts insofar as it attempts to explicitly quantify the responsiveness of the underlying 

neural circuit, as opposed to the complexity of the ongoing activity per se (e.g., the ongoing 

activity may be simple, yet highly responsive). Nonetheless, the INRI measure can also be 

viewed as a type of complexity characterization, where higher levels of reachability to low 

variance states could be interpreted as more complex phenomena.

4.3. Limitations and Future Directions

Despite the encouraging results, several limitations should be considered when interpreting 

the results of this study. First and foremost, the Glasgow coma scale used here is far from 

perfect for assessing the conscious state of coma patients (Dong & Cremer, 2011). It has 

limited capability in capturing the clinically relevant features and suffers from inter-rater 

inconsistency. Several alternatives to GCS such as Full Outline of UnResponsiveness 

(FOUR) score (Wijdicks et al., 2005) have been proposed. Along the same lines, we have 

only used the total Glasgow coma scale in this study, whereas GCS is comprised of three 

different subscores that could provide additional information about the patient’s condition. 

For example, patients one and three in our study had the same total GCS value whereas their 

scores on verbal and motor responses were different. Such a heterogeneous patient 

population may necessitate more sophisticated methods to take into account the intersubject 

variations of neuronal dynamics in order to make the method suitable for subject level 

analysis. Finally, pharmacological heterogeneity was not formally assessed in this study, but 

analyzing such heterogeneity could provide new insights into specific modulations of neural 

dynamics in comatose patients.

In summary, we provided a simple measure that can distinguish different levels of 

consciousness in severe coma patients without requiring any cooperation from the patient (in 

this case response to external stimuli). Future studies will be aimed at extending the 

proposed method to subject level analysis, using intrinsic brain dynamics to localize the 

brain injury, and exploring the possible correlations of intrinsic brain dynamics with the 

recovery of consciousness in comatose patients (prognosis).
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Highlights

• Intrinsic brain dynamics distinguish different levels of consciousness in 

comatose patients.

• Reaching low variance EEG activation patterns becomes harder for lower 

levels of consciousness.

• The Intrinsic Network Reactivity Index is robust to etiological and 

pharmacological heterogeneity.

Khanmohammadi et al. Page 15

Clin Neurophysiol. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
The calculation of Intrinsic Network Reactivity Index (INRI) includes three main steps of (a) 

identifying intrinsic events, (b) obtaining brain state trajectories, and (c) quantifying the 

brain state trajectories. In (a), each channel is recursively selected as a trigger channel, and a 

typical response to three sigma events (+3σ) of this trigger channel in rest of the channels 

(target channels) is calculated. Next, the resulting response signals are averaged for each 

subject group (in this case different GCS values and control subjects). In (b), the typical 

response signals from the previous step are collapsed into three dimensions using principal 

component analysis. Finally, in (c), the three-dimensional data of the previous step is 

quantified by fitting a surface to the absolute value of obtained trajectories and calculating 

the directional derivative of the projection of trajectory points on the fitted surface in the 

direction of the final point in the time domain.
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Figure 2: 
Identifying intrinsic events. To extract the intrinsic events, for each channel selected as a 

trigger channel (here channel nine), the data points that are more than three standard 

deviations away from the signal mean in the positive direction (+3σ) are identified (marked 

by red stars). Next, a window of length w (in this case one second) that follows the identified 

events is defined, and the corresponding windows in the remaining (target) channels are 

identified. For each target channel, all the marked windows are averaged to obtain a single 

response signal for that channel based on the selected trigger channel (shown by red curves 

here for channels {7, 8, 10, 13, 14}). This process is repeated until each channel is selected 

as a trigger channel once (represented by a dashed line here), and then the response signals 

to different trigger channels are averaged to get a typical response signal for each target 

channel. Finally, the resulting response signals are averaged for each subject group.
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Figure 3: 
Obtaining brain state trajectories. To obtain the brain state trajectories PCA is used to reduce 

the 18-dimensional average responses (here 3-dimensional for visualization purpose) 

extracted in Section 2.3.1. Each point in this plot shows the averaged responses in three 

target channels to three sigma events. The three arrows show the direction of eigenvectors 

with the highest eigenvalues (in this case λ3 < λ2 < λ1), which represent the variance of the 

data in the direction of the eigenvectors. The ellipsoid is a characterization of the covariance 

of the data where the angle of the ellipsoid is determined by the interdependency between 

data points from different channels, and the magnitudes of the ellipsoid axes depend on the 

variance of the data.
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Figure 4: 
Quantifying the brain state trajectories. To quantify the lability of the obtained three-

dimensional state trajectories, first a surface (z = f (x, y)) is fitted to the absolute value of 

points in the trajectory. Next, at each projected point on the surface, the directional 

derivative D
u

f xt, yt  in the direction of the final point in the trajectory (xT, yT) is calculated, 

which provides the rate of change of z in this direction.
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Figure 5: 
Intrinsic activity trajectories and their corresponding surface plots. Each color represents one 

subject group, and each point represents one time point of the averaged response from all 

target channels collapsed into three dimensions using PCA.
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Figure 6: 
Comparison of the calculated INRI values for various subject groups. Each bar plot is 

expressed as mean ± standard error, and the significance level of comparing each consequent 

pair using multiple comparison test (Tukey-Kramer) of Kruskal-Wallis ranks is shown at the 

top of each bar plot. The p-values from left to right are p = {4.00e−08, 1.09e−04, 5.50e−07, 

1.00e+00, 9.90e−03, 3.62e−03}
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Figure 7: 
The sensitivity of the INRI values to various window sizes. The overall increasing trend of 

the INRI values with respect to GCS scores is persistent, but there are also some divergences 

due to the noisy nature of EEG signals.
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Figure 8: 
Classical band-limited power analysis at different frequency bands fails to capture the subtle 

intrinsic brain dynamic changes that differentiate the levels of consciousness in comatose 

patients.

Khanmohammadi et al. Page 23

Clin Neurophysiol. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9: 
Scaling of the proposed method in terms of the number of channels, number of samples, 

number of subjects, and window size. For each factor, we either changed the original data 

size (18 Channels, 78 subjects, 390140 ± 192070 samples) or the default parameter setting 

(window size of one second). All the implementations were done in MATLAB R2016a using 

a Windows 10 PC with Intel Core i7-6700 CPU and 16 Gigabytes of DDR3 RAM.
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Table 1:

Summary of the study population.

Variable Distribution

Age 57 ±19

Gender Male (32) and Female (22)

Injury Type Focal (16), Diffuse (23), Mix (15)

Injury Location Left (11), Right (18), Bilateral (15), Unknown (10)

GCS at time of EEG Score Three (12), Score Four (8), Score Five (3), Score Six (10), Score Seven (20), Score Eight (5)
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