
Brain structural alterations are distributed
following functional, anatomic and genetic
connectivity
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The pathological brain is characterized by distributed morphological or structural alterations in the grey matter, which tend to

follow identifiable network-like patterns. We analysed the patterns formed by these alterations (increased and decreased grey

matter values detected with the voxel-based morphometry technique) conducting an extensive transdiagnostic search of voxel-

based morphometry studies in a large variety of brain disorders. We devised an innovative method to construct the networks

formed by the structurally co-altered brain areas, which can be considered as pathological structural co-alteration patterns, and to

compare these patterns with three associated types of connectivity profiles (functional, anatomical, and genetic). Our study pro-

vides transdiagnostical evidence that structural co-alterations are influenced by connectivity constraints rather than being randomly

distributed. Analyses show that although all the three types of connectivity taken together can account for and predict with good

statistical accuracy, the shape and temporal development of the co-alteration patterns, functional connectivity offers the better

account of the structural co-alteration, followed by anatomic and genetic connectivity. These results shed new light on the possible

mechanisms at the root of neuropathological processes and open exciting prospects in the quest for a better understanding of brain

disorders.
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Introduction
Brain disorders are characterized by diffuse alterations of

grey matter. Especially in neurodegenerative diseases,

neuroanatomical abnormalities have been found to spread

from one brain area to another according to distinctive

network-like patterns (Yates, 2012; Pandya et al., 2017).

These patterns of pathological structural co-alterations

seem to develop along pathways that are influenced by

the organization of brain connectivity (Raj et al., 2012;

Zhou et al., 2012; Iturria-Medina and Evans, 2015;

Oxtoby et al., 2017; Yuan et al., 2017; Cauda et al.,

2018; Manuello et al., 2018; Tatu et al., 2018). Indeed,

patterns of brain atrophy caused by neurodegenerative dis-

eases appear to somewhat resemble the patterns of neur-

onal connections (Warren et al., 2013). Furthermore, brain

disorders selectively target certain subpopulations of neu-

rons that often lie at the centre of important functional

networks (Saxena and Caroni, 2011). Arguably, their

high topological centrality makes those areas brain hubs

and, as a consequence, more likely to be affected by patho-

logical processes (Crossley et al., 2014; Cope et al., 2018).

Thus far, at least four important mechanisms (not neces-

sarily mutually exclusive) have been invoked to explain the

spread of brain alterations: transneuronal spread, nodal

stress, shared vulnerability, and trophic failure (Zhou et

al., 2012; Fornito et al., 2015). The first mechanism is

based on the involvement of certain toxic agents that

propagate along neuronal connections (Soto and Estrada,

2008; Goedert et al., 2010; Korth, 2012; Jucker and

Walker, 2013; Kraus et al., 2013; Walker et al., 2013;

Clavaguera et al., 2014). A growing body of evidence in-

dicates that misfolded proteins may spread in a prion-like

way along brain axonal fibres (Chevalier-Larsen and

Holzbaur, 2006) throughout a corruptive templating as a

cascade phenomenon of misfolded protein propagation

(Jucker and Walker, 2011; Hardy and Revesz, 2012;

Warren et al., 2013). Borrowed from prion diseases

(Aguzzi et al., 2007), this mechanism has been subsequently

explored in neurodegenerative diseases such as Alzheimer’s

disease, Parkinson’s disease, Huntington’s disease, amyo-

trophic lateral sclerosis and tauopathies (Clavaguera

et al., 2013; Bourdenx et al., 2017), and more recently

has been tentatively generalized to other brain disorders

(Guest et al., 2011). However, the application of the

prion-like mechanism to neurodegenerative diseases is still

an open field of research.

The second mechanism (Zhou et al., 2012) is based on

the hypothesis that the most active brain regions (i.e. net-

work hubs) may also be the most functionally stressed

(Crossley et al., 2014) and, as a result, susceptible to be

structurally altered (Buckner et al., 2005; Saxena and

Caroni, 2011). This phenomenon has been confirmed in

humans by using in vivo neuroimaging techniques and

voxel-based meta-analyses (Crossley et al., 2014). The

third mechanism relies on the hypothesis that certain

areas with shared gene or protein expressions may exhibit

common vulnerability to neuropathology (Zhou et al.,

2012). This phenomenon could be partially mediated by

the relationship between expression of genes and patterns

of brain connectivity (French and Pavlidis, 2011; Cioli et

al., 2014). The fourth mechanism invokes a failure in the

process of trophic factors production, which can lead to the

pathological deterioration of neural wiring (Zhou et al.,

2012; Fornito et al., 2015).

Studies analysing the networks formed by cerebral re-

gions that appear to be co-altered in the pathological

brain are guiding research to a new perspective, which

claims a neurobiological and transdiagnostic approach for

a better understanding of how the brain responds in a var-

iety of both neurological and psychiatric conditions

(Buckholtz and Meyer-Lindenberg, 2012; Raj et al., 2012;

Zhou et al., 2012; Fornito et al., 2015; Goodkind et al.,

2015; Iturria-Medina and Evans, 2015; McTeague et al.,

2016; Sprooten et al., 2017; Cauda et al., 2018). This view

may be counter-intuitive, as we are inclined to think that

brain disorders have specific aetiological and pathogenetic

mechanisms, which, in turn, produce peculiar patterns of

neuronal alterations. However, a growing body of evidence

points out that, apart from some pathology-specific alter-

ations, a ‘core set’ of co-altered cerebral areas is frequently

involved in the majority of brain diseases (Etkin and

Wager, 2007; Ellison-Wright and Bullmore, 2010; Saxena

and Caroni, 2011; Hamilton et al., 2012; Jagust, 2013;

Menon, 2013; Baker et al., 2014; Douaud et al., 2014;

Goodkind et al., 2015; Cauda et al., 2018).

This ‘core set’ is generally composed of areas that are

related to important associative and cognitive functions,

among which the insular and anterior cingulate cortices

are the most prominent. These regions are essential parts

of the cognitive control system, which is supposed to moni-

tor a host of higher brain functions (Cauda et al., 2012b).

Thus, for both its topological and functional features, the

activity of the cognitive control system may be affected by

a wide variety of brain disorders (McTeague et al., 2016).

This would make it more difficult to differentiate neuro-

pathological conditions solely based on structural or func-

tional alterations exhibited by the areas constituting this

system (Sprooten et al., 2017).

The contamination between neurodegenerative and psy-

chiatric disorders may be highlighted by a number of stu-

dies. Genetic studies in neurodegenerative dementias show

how brain abnormalities antedate the onset of symptoms

by many years (Quiroz et al., 2015; Rohrer et al., 2015;

Chhatwal et al., 2018), suggesting a less defined border

between neurodegenerative and neurodevelopmental dis-

orders (Zawia and Basha, 2005; Lahiri and Maloney,

2010; Warren et al., 2013). Moreover, a growing body

of literature, demonstrating structural and functional

brain changes in psychiatric illnesses, is bringing psychiatry

and the study of neurological conditions together (Douaud

et al., 2014; Gupta et al., 2015; Du et al., 2017).
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The lack of direct correspondence between the develop-

ment of neuropathological processes and the manifestation

of brain alterations implies an overlap of symptoms that

strictly depends on the disruption of large-scale networks.

What is more, transdiagnostic symptoms are often pro-

duced by genetic and environmental risk factors that

affect system-level circuits for many dimensions of cognitive

functions. The impairment of these circuits brings about

vulnerability to vast domains of psychopathology rather

than distinct diseases (Buckholtz and Meyer-Lindenberg,

2012).

Given that the spread of brain alterations is likely to be

non-random in both neurological and psychiatric diseases

(Cauda et al., 2018; Tatu et al., 2018), an important and as

yet unresolved issue is the prevalence of one or more mech-

anisms at the root of the propagation in different brain

disorders. To our knowledge, thus far only one study

(Cope et al., 2018) has tried to estimate, with the help of

in vivo techniques, which mechanism is mostly associated

with the distribution patterns of two neurodegenerative dis-

eases (i.e. Alzheimer’s disease and progressive supranuclear

palsy). Indeed, if neuronal alterations follow the patterns of

brain connectivity, it should be possible to predict their

spread based on brain connectivity profiles (Raj et al.,

2012; Robinson, 2012; Zhou et al., 2012; Iturria-Medina

et al., 2014). It should also be possible to simulate the

temporal evolution of these alterations and to infer which

of the different connectivity profiles (i.e. functional, ana-

tomic, and genetic) can better explain the development of

a certain structural co-alteration pattern. In light of this, it

is reasonable to hypothesize that the different contributions

of the aforementioned propagation mechanisms might lead

to typical patterns of structural co-alterations (Cope et al.,

2018). For instance, the prevalence of a pattern composed

of anatomically connected areas may be better explained by

the mechanism of the transneuronal spread, which implies

a propagation across more contiguously and directly con-

nected areas. By contrast, the prevalence of a pattern com-

posed of functionally connected regions suggests that the

mechanism of the nodal stress may be more effective in

generating this network of co-alterations (Biswal, 2011,

2012; Buckner et al., 2013). In turn, the shared vulnerabil-

ity hypothesis implies that structurally co-altered areas may

be characterized by similar gene co-expression patterns

(Stuart et al., 2003).

To address these important questions, we recently de-

veloped a methodology to estimate how each type of

brain connectivity can predict the pattern formed by neuro-

pathological co-alterations (Cauda et al., 2018). Herein,

this methodology has been applied transdiagnostically so

as to have a great deal of meta-analytical data to work

on and, at the same time, to provide proof of concept.

We would like to show that this method is applicable to

every brain disorder and, in the future, we plan to use it for

the analysis of specific neurological or psychiatric

conditions.

To this aim, we began by examining the whole BrainMap

(Fox and Lancaster, 2002; Fox et al., 2005; Laird et al.,

2005b) voxel-based morphometry (VBM) database of brain

MRI studies to construct the most comprehensive trans-

diagnostic map of pathological structural co-alterations.

To do so we used the grey matter alterations detected by

VBM as a proxy for the morphological brain abnormal-

ities. Given a brain area (say, ‘A’) that is altered, our

method was able to detect if other areas appeared to be

altered together with ‘A’ (i.e. co-altered) (Cauda et al.,

2018; Manuello et al., 2018; Tatu et al., 2018).

The result of this analysis was the creation of undirected

co-alteration graphs showing the brain areas forming the

structural co-alteration patterns. Then, to assess which of

the three different connectivity profiles could account better

for the structural co-alteration patterns, we calculated the

anatomical, resting state functional, and genetic (i.e. the

correlated gene expression pattern) connectivity networks

using the brain most altered areas as starting points (i.e.

nodes). The comparison of the different network matrices

to the structural co-alteration patterns allowed us to find

out the contribution of each connectivity profile to the co-

alteration pattern and, consequently, to better understand

its development through the spread of alterations [for the

relationship between co-alteration patterns and the concept

of propagation or spread, see Cauda et al. (2018)]. On

these grounds, we also estimated—with simulation tech-

niques—both the spatial and temporal progression of the

distribution of alterations, so as to find out how the pat-

terns of structural co-alterations could be predictable in

terms of functional, anatomic, and genetic connectivity.

This method allowed us to address the following issues.

How are structural co-alteration patterns distributed across

the pathological brain? Since neuronal alterations seem to

spread from one cerebral region to another, do these

propagation patterns follow the routes of brain connectiv-

ity? Which type of connectivity (anatomic, functional, or

genetic) is most involved in the generation of structural co-

alterations? What is the temporal evolution of these co-al-

teration patterns?

Materials and methods

Selection of studies

We queried the VBM BrainMap database (Fox and Lancaster,
2002; Fox et al., 2005; Laird et al., 2005b; Vanasse et al.,
2018) (December 2017) using the following search criteria:
(i) decreases: Experiments Context is Disease AND
Experiment Contrast is Gray Matter AND Experiments
Observed Changes is Controls>Patients; and (ii) increases:
Experiments Context is Disease AND Experiment Contrast is
Gray Matter AND Experiments Observed Changes is
Patients>Controls.

We retrieved 912 experiments and 350 experiments for the
first and the second query, respectively. All the retrieved ex-
periments with a sample size smaller than eight subjects were
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excluded. The identification of this lower bound is in accord-
ance with the work of Scarpazza et al. (2015), which showed
that VBM experiments based on an equivalent sample should
not be biased by an increased false positive rate. We further
decided to exclude all the experiments not clearly comparing
pathological population with healthy controls, as well as con-
sidering subjects ‘at risk’. The remaining items were then
coded according to the ICD-10 system. As a further criterion,
all the experiments not coded with F (i.e. mental, behavioural
and neurodevelopmental disorders) or G (i.e. diseases of the
nervous system) labels were excluded. From the remaining re-
cords, we also expunged those related to codes that could not
be considered as primary brain disorders (i.e. F10: Alcohol
related disorders; F15: Other stimulant related disorders;
F28: Other psychotic disorder not due to a substance or
known physiological condition; F91: Conduct disorders;
G11: Hereditary ataxia; G43: Migraine; G44: Other headache
syndromes; G47: Sleep disorders; G50: Disorders of trigeminal
nerve; and G71: Primary disorders of muscles). At the end of
this procedure the 642 remaining experiments from the first
query (for 15 820 subjects, and 7704 foci) and the 204 re-
maining experiments from the second query (for 4966 subjects,
and 2244 foci) were used for the analyses.

For the first query, most studies explored F20: Schizophrenia
(17.9%); F32-F33: Major depressive disorder, single episode/
recurrent (9.8%); G40: Epilepsy and recurrent seizures (8.7%);
G30: Alzheimer’s disease (8.3%) and G31: Other degenerative
diseases of the nervous system (8.1%). For the second query,
most studies explored F20: Schizophrenia (16.2%); G40:
Epilepsy and recurrent seizures (12.7%); F84: Pervasive devel-
opmental disorders (11.3%); F31: Bipolar disorder (9.8%) and
F32-F33: Major depressive disorder, single episode/recurrent
(9.3%). The complete overview of the diagnostic spectra dis-
tribution is reported in Supplementary Table 1.

The overview of data search strategy and datasets is re-
ported in the Supplementary material. A flow chart of key
steps (used to generate the dataset of information, analyse
data and obtain several levels of results) is also reported in
Supplementary Fig. 1. The full list of the studies designated
as suitable for meta-analysis, are reported in Supplementary
Tables 2 and 3.

To calculate the pattern of structural co-alterations we used
the same methodology previously applied in Cauda et al.
(2018), Manuello et al. (2018) and Tatu et al. (2018).

Anatomical likelihood estimation and
modelled alteration creation

First, we performed an anatomical likelihood estimation (ALE)
(Eickhoff et al., 2009, 2012; Turkeltaub et al., 2012) to sum-
marize the results of the retrieved experiments statistically
using an in-house developed MATLABr script following both
the algorithms used in Gingerale 2.3.6 (Eickhoff et al., 2009,
2012; Turkeltaub et al., 2012) and the recommendation of
Eickhoff et al. (2017). Results are clustered at a level of P
5 0.05, family-wise error (FWE)-corrected for multiple com-
parisons, with a cluster-forming threshold of P 5 0.001
(Eickhoff et al., 2016).

The ALE is a quantitative voxel-based meta-analysis tech-
nique able to give information about the anatomical reliability
of results through a comparison by using a sample of reference

studies from the existing literature (Laird et al., 2005a). An
ALE meta-analysis considers each focus of every experiment as
a Gaussian probability distribution:

pðdÞ ¼
1

�3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 �Þ3

q e�
d2

2�2 ð1Þ

where d is the Euclidean distance between the voxels and the
focus taken into account and � is the spatial uncertainty.

A modelled alteration (MA) map was calculated for each
experiment as the union of the Gaussian probability distribu-
tion of each focus present in the experiment itself. Then the
ALE map was determined as the union of the MA maps.

The significance of alteration values within the ALE map
was calculated by a permutation test, in which we redistribu-
ted the same number of foci across the brain and recalculated
an ALE map as described before. The histogram of the ob-
tained score was used to assign a threshold P-value.

Creation of nodes

The creation of nodes was obtained from the ALE map using a
peak detection algorithm that returns the set of local maxima.
A local peak is a voxel whose ALE value is higher than the
values of its neighbouring voxels. We selected the voxels with
a peak value greater than a given threshold, which was set at
the 75th percentiles of the peak values distribution. Then we
created a distance matrix calculating the Euclidean distance
between peaks. To avoid overlaps between regions of interest,
we excluded all the peaks within a distance of 10 mm from the
other peaks. Around each of those peaks we designed a 10
mm2 region of interest, which was used for the subsequent
analysis (see Fig. 1 for a schema depicting the node detection
pipeline; see Supplementary Tables 6 and 7 for the coordinates
of nodes). For a detailed discussion of the rationales at the
basis of our methodological choices, see Cauda et al. (2018).

The structural co-alteration network

To trace the distribution of brain alterations we used a meth-
odology aimed to characterize the structural co-alterations in
the evolution of brain disorders (Cauda et al., 2015, 2018;
Manuello et al., 2018; Tatu et al., 2018). This method can
establish whether the alteration of a brain area statistically
co-occurs with the alteration of one or more other brain
areas. Specifically, we created a co-alteration matrix using
the previously defined set of nodes. In the matrix of N � M
dimension, the N rows represent experiments and the M col-
umns the network nodes. For each pair of nodes of the co-
alteration matrix, it is possible to obtain the strength of their
co-alteration using the Jaccard index, which is defined as the
number of experiments (rows) activating both the nodes
divided by the union of the experiments activating the two
nodes independently.

The obtained Jaccard matrix was thresholded at P 5 0.01
using the method proposed by Toro et al. (2008). Given two
nodes A and B, the null hypothesis states that the probability
of B being altered does not depend on the value observed for
A; by contrast, the alternative hypothesis states that a relation-
ship of dependence between A and B exists. This can be ex-
pressed formally as:
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p0 ¼ ProbðB ¼ 1jA ¼ 0Þ ð2Þ

p1 ¼ ProbðB ¼ 1jA ¼ 1Þ ð3Þ

H0 : p0 ¼ p1 ¼ p ð4Þ

H1 : p0 6¼ p1 ð5Þ

We can obtain from the data an estimate p̂ under the null
hypothesis as p̂ ¼ m=N, where m is the number of experiments
in which node B is altered and N the total number of experi-
ments. Similarly, we can obtain the estimated probabilities
under the alternative hypothesis as:

p̂0 ¼
ðm� kÞ

ðN � nÞ
ð6Þ

and

p̂1 ¼
k

n
ð7Þ

where n is the number of experiments in which the node A is
altered and k is the number of experiments in which both
nodes A and B are altered. The likelihood-ratio test is calcu-
lated with the following formula:

� ¼
LðH1Þ

LðH0Þ
ð8Þ

This formula is used to evaluate the alternative hypothesis H1

with respect to the null hypothesis H0.
The likelihood of the null hypothesis is defined as follows:

LðH0Þ ¼ Bðk; n;pÞBðm� k; N � n; pÞ ð9Þ

where B is the binomial distribution in which n is the number

of contrasts that alters the second node, m is the number of
contrasts that alters the first node, N is the total number of
contrasts, and p ¼ m=N and k are the numbers of contrasts
that alter both nodes.

The likelihood of the alternative hypothesis is defined as
follows:

LðH1Þ ¼ Bðk; n; p1ÞBðm� k; N � n;p0Þ ð10Þ

The � distribution is shaped by a �2 function with one
degree of freedom. Connection at P 5 0.01 corrected for
false discovery rate (FDR) was maintained, otherwise
discarded.

Functional connectivity matrix

For the same set of nodes considered in the previous analysis
we calculated the functional connectivity matrix using resting
state data (minimally preprocessed and ICA-FIX de-noised)
from 200 healthy adult subjects in the 22–35 age range, ob-
tained from the Human Connectome Project (2015 Q4, 900-
subject release). For further details on the preprocessing of
these data see Glasser et al. (2013) and Van Essen et al.
(2012).

The matrix was constructed in the following manner. The
previously determined nodes were used to create a spatial map
and to generate subject-specific associated time series of the
functional data, using the dual regression approach
(Beckmann et al., 2009; Filippini et al., 2009). For each sub-
ject, the spatial map is regressed (as spatial regressors in a
multiple regression) into the subject’s 4D space-time dataset.
This results in a set of subject-specific time series. The output
of the dual regression was a set of 200 matrices, one for each
subject, where each column represents the time series of the

Figure 1 Node detection pipeline. Left: The schema illustrates the pipeline utilized for the detection of the regions of interest (i.e. nodes).

Right: The obtained nodes for the decrease (top) and increase (bottom) conditions. See Supplementary Tables 6 and 7 for the node coordinates.
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corresponding node. Starting from these matrices we calculated
the partial correlation between the nodes for each subject and
then we mediated to obtain a final partial correlation matrix of
the subjects’ group. This group connectivity matrix was then
thresholded (� 5 0.05) with a one sample permutation test
(5000 permutation) using the FSL randomise program (Smith
and Nichols, 2009; Winkler et al., 2014).

Anatomical connectivity matrix

The anatomical connectivity matrix was constructed using diffu-
sion tensor imaging (DTI) data of 842 subjects in the 22–35 age
range. These data were retrieved from the Human Connectome
Project (2015 Q4, 900-subject release) (Van Essen et al., 2013).
The diffusion images were acquired using a multishell diffusion
scheme. The b-values were 1000, 2000 and 3000 s/mm2. The
numbers of the diffusion sampling directions were 90, 90 and 90.
The in-plane resolution was 1.25 mm. The slice thickness was
1.25 mm. The diffusion data were reconstructed in the MNI
space using the q-space diffeomorphic reconstruction (Yeh and
Tseng, 2011) to obtain the spin distribution function (Yeh et al.,
2010). A diffusion sampling length ratio of 1.25 was used, and
the output resolution was 1 mm. The atlas was constructed by
averaging the spike density functions of the 842 subjects.

A deterministic fibre tracking algorithm (Yeh et al., 2013)
was used to reveal the brain anatomical connections. The par-
ameters were the following: whole brain seeding region
method; angular threshold of 60�; step size of 0.5 mm; the
anisotropy threshold was determined automatically by DSI
Studio (Yeh et al., 2016). Tracks with length less than 30
mm were discarded. A total of 5000 seeds were placed in
the brain. The nodes, obtained from the meta-analysis, were
used to calculate the connectivity matrix by using the numbers
of tracts passing between two nodes normalized by the median
length of the connecting tracks.

Genetic co-expression matrix

Differently to the gene co-expression networks (Zhang and
Horvath, 2005) that can quantify gene-to-gene relationships
across different anatomical samples, the correlated ‘gene ex-
pression network’ proposed by Richiardi et al. (2015) is a
form of genetic connectivity that quantifies anatomical region
to anatomical region (i.e. region of interest to region of inter-
est) across genes. This network has been obtained by using the
complete microarray datasets of six brains, available for down-
load from the Human Brian Atlas Project (Hawrylycz et al.,
2012). The datasets contain values of gene expression that are
normalized across all brains with an improved normalization
process—for further information about the sample normaliza-
tion see ALLEN Human Brain Atlas (2013). The downloaded
files contain normalized microarray expression values as well
as probe and sample metadata necessary for analysis.

It should be noted that the Allen Brain Atlas has some idio-
syncrasies. For example, only two of the individuals whose
data are stored in the database have bi-hemispheric samples.
Moreover, the samples of brain areas were obtained with dif-
ferent stereotactic coordinates so that the variability among
them is high. To address these issues, we used a method
based on the Voronoi tessellation (Cauda et al., 2012a).
Voronoi tessellation (Voronoi, 1907) is a specific decompos-
ition of a metric space based on a finite set of points. In a 3D

space, a given set of points S is a partition that associates a
volume V(p) with every point p 2 S so that all the points of the
surface of V(p) are closer to p than to any other point in S.
With this method, for each subject, we were able to create a
parcellation of the brain based on the position of the samples,
which are considered as the barycentres of the Voronoi poly-
gons. We then assigned to all the voxels encompassed in a
specific polygon the gene expression pattern of the sample
located in the barycentre of that polygon.

Six parcellations were then constructed, one for each indi-
vidual of the Allen project. In every parcellation, each voxel
was characterized by a gene expression vector related to its
closer sample. With regard to the four individuals with sam-
ples coming from one hemisphere, only one half brain was
parcellated. Afterwards, we averaged the gene expressions of
the six subjects voxel-wise. Gene expressions that are reported
as non-statistically significant in the Allen database were
excluded from the averaging process. This method made it
possible to reduce the variance among the gene expression
patterns of the six individuals, thus minimizing the weaknesses
of the Allen database as much as possible.

The result was a tessellation of the brain in which every
Voronoi polygon contains the mean gene expression of the
six individuals (Cauda et al., 2012a). Subsequently, this infor-
mation has been used to create the genetic co-expression matrix
based on the set of nodes obtained from the meta-analysis. To
every node we assigned the gene expression related to the
Voronoi polygon associated with that node. We then con-
structed a matrix in which rows represent the gene expressions
and columns represent the nodes. From this matrix we calcu-
lated the full and partial correlation of the mean gene expres-
sion between the nodes, so as to obtain a partial correlation
matrix. This final matrix was probabilistically thresholded (�
5 0.05) with a permutation test (5000 permutations).

Reliability measures

To assess the consistency of our measures (reliability) we used
a Spearman-Brown split half methodology (or Spearman-
Brown prediction formula) (Stanley, 1971; Allen and Yen,
2001). We divided each dataset (meta-analytic, functional,
and genetic) into even and odd groups; for each group, we
calculated the corresponding connectivity matrices. We then
calculated the correlation between these connectivity matrices
applying the Spearman-Brown correction (Allen and Yen,
2001) to get a better estimate of the reliability, as follows:

� ¼ 2r=ð1þ rÞ ð11Þ

where r is the classical Spearman correlation.
Since DTI data were provided by the Human Connectome

Project as ‘mean connectivity matrices’, we used a different
approach to calculate the reliability of the anatomical connect-
ivity measures. We used another mean DTI connectivity matrix
obtained from a different dataset as a replication dataset. The
replication dataset consisted of a different structural connect-
ivity matrix that was constructed using a total of 842 subjects’
diffusion MRI data, in the 22–35 age range, obtained from the
Human Connectome Project (2015 Q4, 900-subject release)
(Van Essen et al., 2013). Finally, we calculated the correlation
between the anatomical connectivity matrix derived from the
primary dataset and the one derived from the replication
dataset.
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Comparison between connectivity
matrices

The comparison between the different matrices (co-alteration,
anatomical, functional, and genetic) was done using the Mantel
test (Mantel, 1967; Glerean et al., 2016). In the Mantel test the
correlation between two matrices was determined with a permu-
tation test (5000 permutations). We calculated the correlation
between the matrices by randomly permutating rows and col-
umns. We subsequently obtained the distribution of the different
correlations and calculated the P-value.

Diffusion connectivity matrix: spatial
and temporal evolution

To assess the temporal evolution of the different types of con-
nectivity, we developed a simple diffusion model. We con-
sidered the spread of neuronal alterations as a diffusion
process by using a brain network-based model G ¼ fN;Eg
where nodes ni 2 N, which represents the cortical and subcor-
tical structure as obtained from our meta-analysis, while edges
eij 2 E, which represents the connection strength linking node i
and node j. We used three types of connection strength for
each model obtained from the anatomical, functional and gen-
etic connectivity matrices.

Following Abdelnour et al. (2014) and Kondor and Lafferty
(2002), we modelled the diffusion process using the heat equa-
tion, defined as:

dxðtÞ

dt
¼ �bLxðtÞ ð12Þ

where the matrix L is the following Laplacian graph:

L ¼ I ���1=2E�1=2 ð13Þ

in which � is the diagonal matrix with �i =
P

j eij as the ith
diagonal element. The heat Equation 12 can be solved expli-
citly as follows:

xðtÞ ¼ expð�bLtÞx0 ð14Þ

This formula defines the evolution of the initial configuration
x0. We hypothesized an initial configuration in which the dis-
ease factor was uniform in all the nodes, thus obtaining the
following equation:

CovðtÞ ¼ expð�bLtÞ ð15Þ

which, having as free parameters the diffusion factor b and
time t, can express the covariance of the system at each time
of its evolution.

In our case we had the covariance matrix (the meta-analytic
data) and the Laplacian matrices obtained from the resting state
data, the anatomical data and genetic data, respectively. We
estimated therefore the diffusion factor b and obtained the evo-
lution of the diffusion for the functional, anatomical and genetic
data. The best estimate of the parameter b and the time evolu-
tion of the diffusion were determined using a grid search on the
parameter b, ranging between (0,1) with a step of 0.1. For each
b-value, the matrix obtained from this simulation was correlated
with the meta-analytic covariance matrix. With a Mantel test we
assessed the significance of this correlation. Finally, the b-value
that could maximize the correlation was chosen.

Contribution of the different kind of
connectivity profiles to the structural
co-alteration patterns

To find out the contribution of the different types of connect-
ivity to the structural co-alteration patterns, we developed the
following model:

D ¼ �MF�Conn þ bMA�Conn þ 	MG�Conn ð16Þ

where D is the structural co-alteration matrix and MF�Conn is
the functional connectivity matrix, MA�Conn is the anatomical
connectivity matrix, and MG�Conn is the genetic connectivity
matrix, respectively.

Using an unconstrained non-linear optimization, we found
the minimum of a scalar function of several variables. The
algorithm was the simplex search method of Lagarias et al.
(1998):

min�;b;	 jjðD� �MF�Conn � bMA�Conn � 	MG�ConnÞ
2
jj ð17Þ

The final results are the coefficients that minimize the square
difference norm between the structural co-alteration matrix
and the other matrices. The algorithm was executed 1000
times with different initial conditions, each time to check the
stability of the obtained minimum (Fig. 2, bottom).

Network analysis techniques

We analysed the co-alteration patterns further using a net-
work-based analysis technique.

The node degree is the number of connections that the node
has with the other nodes. We used the degree distribution to
compare the node degree of the nodes of different networks. It
was therefore possible to compare the structural co-alteration
network with random networks. The degree distribution is the
fraction of nodes with degree k, defined as follows:

PðkÞ ¼
nk

n
ð18Þ

The average shortest path length is defined as the average
number of steps along the shortest paths for all pairs of nodes
of the network under consideration. For an unweighted graph
G with n vertices, the average path length is defined as follows:

lG ¼
1

nðn� 1Þ

X
i 6¼j

dðvi; vjÞ ð19Þ

where d is the shortest distance between node vi and node vj,
with d = 0 if vj cannot be reached from vi.

This is one of the most robust measures in network topology
and is inversely related to efficiency, which is a measure of
how efficiently the network exchanges information. In particu-
lar, the local efficiency quantifies the network resistance when
a failure occurs within it.

Data availability

The datasets we used in this study are from publicly available
sources:

BrainMap (meta-analytic datasets) http://brainmap.org/.
Allen Brain Atlas (gene expression datasets) http://human.

brain-map.org/static/download.
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Human Connectome Project (resting state connectivity and
DTI anatomical connectivity datasets) http://www.humancon-
nectomeproject.org/data/.

Above, we describe in detail which parts of these datasets
were used or how we queried the BrainMap database.

A complete list of the literature involved in the meta-analytic
analyses is provided in the Supplementary material.

Results

The ‘core set’ of altered brain areas

Figure 2 (top) shows the brain areas that appear to be

altered in the VBM studies retrieved from our search.

These areas form the ‘core set’ that is likely to be frequently

affected by brain diseases. Areas showing significant

statistical decreases are the insulae, anterior cingulate cor-

tices, superior and middle temporal gyri, superior, middle

and inferior frontal, pre- and postcentral gyri. Areas show-

ing significant statistical increases are the right anterior and

posterior insula, left middle insula, right pre- and postcen-

tral gyri, right superior frontal gyrus, right superior tem-

poral gyrus, left inferior temporal and inferior frontal gyri

(see also Supplementary Tables 4 and 5).

Node creation and structural
co-alteration network

Our automatic node creation procedure derived 277 nodes

from the core set of decreased areas and 271 nodes from

the core set of increased areas. These nodes are illustrated

Figure 2 ALE results and cost functions. Top: ALE results for decreased (left) and increased foci (right). ALE results are clustered at the level

of P 5 0.05 and family-wise error-corrected for multiple comparisons, with a cluster-forming threshold of P 5 0.001. Bottom: The schema

illustrates the evolution of the cost function of the minimization algorithm for predicting the distribution of the structural co-alteration patterns.
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in the right panel of Fig. 1 (see also Supplementary Tables

6 and 7).

Given the nodes previously designed, we constructed the

structural co-alteration networks for both the VBM data-

sets (decreases and increases). These networks are visua-

lized in Fig. 3.

Interestingly, the two structural co-alteration networks

are topologically different (Fig. 3, middle and bottom).

The one formed by decreased areas is more restricted and

principally involves the insulae and the anterior cingulate

cortices. These regions exhibit the nodes with the highest

values of degree. In turn, the other network formed by

increased areas is more widespread and less anatomically

defined, albeit it includes parts of the insulae and is slightly

prevalent in subcortical regions.

Anatomical, functional and genetic
connectivity

For the same sets of nodes, we calculated the resting state

functional, anatomical and genetic networks. These net-

works are visualized in Figs 4 and 5. In line with the previ-

ous literature (Gong et al., 2014; Huang and Ding, 2016),

functional and anatomical connectivity appear to be corre-

lated (decreased nodes r = 0.14, P 5 2.383 � 10–5;

increased nodes r = 0.12, P 5 2.421 � 10–5). Notably,

the genetic connectivity also appears to correlate with both

anatomical (decreased nodes r = 0.21, P 5 2.195 � 10–5;

increased nodes r = 0.18, P 5 3.028 � 10–5) and functional

connectivity (decreased nodes r = 0.18, P 5 3.021 � 10–5;

increased nodes r = 0.14, P 5 2.359 � 10–5).

Reliability

Our connectivity matrices present a good reliability

(Spearman-Brown split half test). Indeed, we have obtained

mean values of 0.80, 0.72, 0.80, and 0.75 for the structural

co-alteration, the functional, the gene co-expression and the

anatomical connectivity matrices, respectively. These values

indicate a good internal consistency of measures. In par-

ticular, the Spearman-Brown formula is related to the

Cronbach’s alpha (Nunnally and Bernstein, 1994; Carlson

et al., 2009); both formulas measure the ratio of the true-

score and total-score variances. As suggested by Nunnally

and Bernstein (1994), the rule of thumb for that measure

usually considers a good internal consistency of data with

values of 40.7.

Correlational analyses

As our experimental question is to investigate whether and

how neuropathological co-alterations (independently

related to both grey matter decreases and grey matter in-

creases) are influenced by different types of normal brain

connectivity (i.e. functional, anatomical, and genetic con-

nectivity), we compared neuropathological co-alteration

patterns with normal patterns of brain connectivity as

they are measured in healthy individuals.

The statistical comparison between the structural co-

alteration matrix and the other matrices (functional,

anatomical, and genetic) shows that each of the three con-

nectivity profiles is statistically correlated with the structural

co-alteration patterns associated with grey matter decreases

and grey matter increases, that is, each type of connectivity

explains a statistically significant portion of those patterns.

Figure 6 (top left) illustrates the correlation between the

structural co-alteration matrix and the other three connect-

ivity matrices. While the decrease-related structural co-

alteration is better explained by functional connectivity

(r = 0.28), followed by anatomical and genetic connectivity

(r = 0.19 and r = 0.18, respectively), the increase-related

structural co-alteration is better explained by functional

connectivity (r = 0.26), followed by genetic and anatomical

connectivity (r = 0.23 and r = 0.22, respectively).

However, as these three types of connectivity are known

to be correlated with each other and exhibit a shared vari-

ance, as we previously mentioned, we decided to calculate

the partial correlation between the three connectivity matri-

ces and the structural co-alteration matrix with the aim to

report how each type of connectivity correlates with the

structural co-alteration pattern with the exclusion of their

common shared variance. This analysis is described in

Fig. 6 (top right), and provides further evidence that the

decrease-related structural co-alteration correlates more

with functional connectivity (r = 0.24), followed by anatom-

ical (r = 0.14) and genetic (r = 0.11) connectivity. In turn,

the increase-related structural co-alteration appears to correl-

ate in a similar way with the three types of connectivity; it is

slightly better explained by functional connectivity (r =

0.22), followed by genetic and anatomical connectivity (r =

0.17 and r = 0.16, respectively). Of note, all the partial and

full correlation results are statistically significant: P-values 5
2 � 10–7 for the partial correlation results, and P-values 5
3 � 10–4 for the full correlation results. Overall, this indi-

cates that structural co-alterations are in part explained by

all these three types of connectivity.

Spatial and temporal progressions

Our model is able to predict the propagation patterns of

neuronal alterations with good statistical confidence (all

predictions survive the conservative statistic threshold of

P 5 10–5).

Figure 7 illustrates the temporal evolution of the struc-

tural co-alteration patterns (expressed in arbitrary units) as

it is predicted by every b-value, used in the grid search, of

the model. For each b-value we calculated the temporal

evolution of the diffusion process and for each time we

correlated the diffusion matrix derived from the distribu-

tion model of co-alterations and the co-alteration matrix

obtained from the meta-analysis. What is clear is that

around 30 temporal steps, all the connectivity models pre-

dict the complete diffusion of brain alterations. However,
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Figure 3 Co-alteration networks. Top: The decrease-related (left) and increase-related (right) structural co-alterations. Only for visualization

purposes, the matrices were thresholded at the 95th percentile. Colours ranging from magenta to green represent lower to higher correlation

values. Middle: Topological analysis of the structural co-alteration network, using a force directed spring embedded layout. Smaller nodes show

lower average shortest path length. Colour tones from magenta to green indicate lower to greater degree values. Bottom: A geotagged layout of

the networks. Node dimension and colour tones from green to red indicate lower to greater degree values.
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Figure 4 Connectivity networks. The functional connectivity (F-Conn) network (top), the anatomical connectivity (A-Conn) network

(middle), and the genetic connectivity (G-Conn) network or genetic co-expression network (bottom). Only for visualization purposes the matrices

were thresholded at the 95th percentile. Colours ranging from blue to red represent lower to higher correlation values. For anatomical

connectivity, colour ranging from blue to red represent lower to higher fibre density values.
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Figure 5 Distance matrices regarding the structural co-alteration, functional, anatomical and genetic connectivity. Colours

ranging from blue to red represent lower to higher correlation values.

3222 | BRAIN 2018: 141; 3211–3232 F. Cauda et al.



within the initial steps, only the genetic model can substan-

tially show a prediction of how structural co-alterations are

expected to develop. This result provides evidence that with

the help of genetic connectivity, it is possible to predict a

substantial portion of the pattern formed by neuropatho-

logical alterations in a variety of brain disorders just based

on its initial manifestation. The chart in Fig. 7 illustrates

how the average temporal evolution of structural co-alter-

ations, calculated by the model based on grey matter in-

creases, is characterized by a faster development compared

with that calculated by the model based on grey matter

decreases.

The model of the distribution of the structural co-alter-

ation patterns (D = �MF–Conn + 
MA–Conn + 	MG–Conn)

shows that it is possible to describe the meta-analytic struc-

tural co-alteration matrix as a weighted sum of the func-

tional, anatomical and genetic connectivity matrices. After

the optimization procedure for the three parameters, we

correlated the D matrix of the model with the co-alteration

matrix obtained from the meta-analytical data and found a

variance explained for the grey matter decreases of

R2 = 0.77 (P 5 0.0012) and for the grey matter increases

of R2 = 0.72 (P 5 0.0025). Furthermore, all the three matri-

ces appear to contribute significantly to the description of

the meta-analytic structural co-alteration matrix (Table 1

and Fig. 6, bottom). It is worth noting that, in our model,

with regard to both grey matter decreases and increases the

major contribution is made by the functional connectivity

matrix, followed by anatomic and genetic connectivity.

Discussion
The analyses carried out in this study provide support for

the following points: (i) brain areas affected by neuropatho-

logical processes form typical patterns of structural co-

alterations; (ii) the development of these transdiagnostic

structural co-alterations is not random but preferentially

follows the routes of brain connectivity; (iii) anatomical,

functional and genetic connectivity are differently involved

in shaping structural co-alterations; and (iv) starting from

the brain connectivity matrices, it is possible to create a

Figure 6 Results of the correlational and predictive tests. The top panel shows the correlational results (the left panel illustrates the full

correlation, while the right panel illustrates the partial correlation). The bottom panel shows the predictive results.
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Figure 7 Model’s temporal evolution. Top: This series of maps shows the correlations of the functional, anatomical and genetic matrices

with the structural co-alteration matrix for different beta values as a function of time (arbitrary units), as described in Equation 12. Colours

ranging from blue to red represent lower to higher correlation values. Bottom: The chart summarizes the time in which the diffusion of brain

alterations reaches the steady state as a function of the beta rate for the decrease and increase conditions. Note that the average temporal

evolution of structural co-alterations calculated by the model based on grey matter increases is characterized by a faster development compared

with that calculated by the model based on grey matter decreases.
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model that allows us to predict with relatively high accur-

acy the development of the structural co-alteration patterns

and, based on this model, to estimate the evolution of how

structural co-alterations are distributed across the brain in

terms of the involvement of the type of brain connectivity.

To the best of our knowledge, this is the first time that

these issues have been addressed in humans using in vivo

approaches.

Our results provide evidence that brain morphological

alterations are distributed according to a statistically signifi-

cant pattern: alterations are distributed across brain areas

so as to form a network of pathological nodes. This pattern

of structural co-alteration exhibits a topological definite

structure and includes some regions (the insular and anter-

ior cingulate cortices) that are thought to be important

functional hubs of the brain.

We performed a predictive analysis of the structural co-

alteration patterns by creating a model that, based on brain

connectivity matrices, attempts to estimate the development

of the co-alteration patterns; this model was able to explain

the 77% and the 72% of the variance in the decrease and

increase structural co-alteration patterns, respectively. This

finding supports the idea that the two structural co-alter-

ation patterns, as well as their temporal development

(Cauda et al., 2018), are strictly associated with the brain

connectivity patterns. Specifically, our model shows that,

based on functional and anatomical connectivity, more

consecutive steps are needed to completely predict the

propagation of structural co-alterations. On the other

hand, this is not the case for a model based on genetic

connectivity, which is able to predict the propagation of

structural co-alterations just at its early stages.

Our analysis proposes to take into consideration the con-

tribution of three (i.e. transneuronal spread, nodal stress,

and shared vulnerability) of the four possible mechanisms

so far hypothesized for the spread of brain alterations

(Saxena and Caroni, 2011; Zhou et al., 2012; Fornito et

al., 2015), each of which with its typical temporal evolu-

tion. Future studies will be able to apply our model in

order to better understand which mechanisms are more

specifically involved in particular brain disorders.

With regard to both grey matter decreases and increases,

the functional connectivity appears to be the best predictor

of the pattern of structural co-alterations. Although a cer-

tain type of connectivity seems to play a prevalent role in

both grey matter decreases and increases, it is worth noting

that the other types of connectivity are also important fac-

tors in the generation of structural co-alterations; their con-

tribution, however, is characterized by different timings.

This result is consistent with the fact that we worked on

a cross-diagnostic dataset (Goodkind et al., 2015), which

includes a wide range of brain disorders. As recently

demonstrated by Cope et al. (2018), certain brain disorders

can be characterized by the prevalence of specific

mechanisms.

The distribution of brain alterations

Our analysis of the VBM studies about a great variety of

brain disorders, especially regarding grey matter decreases,

shows that a core set of cerebral areas appears to be fre-

quently altered in a large number of neuropathological con-

ditions (for a review of this transdiagnostic approach see

Buckholtz and Meyer-Lindenberg, 2012; McTeague et al.,

2016). This finding confirms a similar result obtained by

other meta-analyses, which, however, were only restricted

to three (Cauda et al., 2017) or six psychiatric diseases

(Goodkind et al., 2015).

The recurrence of this common alteration pattern is well

illustrated by the ALE analysis (Fig. 2). Interestingly, this

peculiar pattern overlaps to a great extent with those areas

that have been proposed to be part of the cognitive control

network (Cauda et al., 2012b, 2017; McTeague et al.,

2016). It must be highlighted that the finding of a

common alteration pattern in a vast number of brain dis-

eases does not rule out the possibility that each disorder

may be characterized by its own typical alterations

(Crossley et al., 2015). However, here our aim was to in-

vestigate how alterations are generally spread across the

pathological brain so as to achieve an overarching analysis

supported by the most numerous sample of studies we

could retrieve. Future studies will be needed to understand

how the structural co-alteration patterns found in this

meta-analysis differ with regard to each brain disorder in-

dependently considered.

A number of studies (Pearson et al., 1985; Saper et al.,

1987; Braak and Braak, 1991; Brooks, 1991; Weintraub

and Mesulam, 1996; Braak et al., 2011; Raj et al., 2012;

Cauda et al., 2014; Iturria-Medina et al., 2014; Ravits,

2014; Fornito et al., 2015; Iturria-Medina and Evans,

2015) have proposed that the spread of neuronal alter-

ations caused by neuropathological processes is not

random but, rather, associated with typical network-like

patterns. These data were already supported (Seeley et al.,

2006, 2009; Zhou et al., 2012) and now receive further

support from our study: brain alterations are distributed

according to a statistically significant ‘neurodegenerative

networking’ (Yates, 2012) or, as we have called it,

Table 1 Parametric values of correlation between the

three connectivity matrices and the meta-analytic

structural co-alteration matrix constructed with either

grey matter increase or decrease data

F-Conn R2 A-Conn R2 G-Conn R2 Total R2

Decrease 0.41 0.34 0.25 0.77

Increase 0.38 0.33 0.29 0.72

The total R2 value is the result of the correlation between the diffusion matrix obtained

from the model and the co-alteration matrix obtained from the meta-analytic data. In

this way we calculated the contribution of each connectivity profile to the variance

explained, determining the R2 of each network profile with the diffusion matrix ob-

tained from the model.

A-Conn = anatomical connectivity matrix; F-Conn = functional connectivity matrix;

G-Conn = genetic connectivity matrix.
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‘morphometric co-alteration network’ (Cauda et al., 2018);

this broader term has the advantage to refer to all types of

disorders capable of producing neuronal alterations, with-

out committing to just the neurodegenerative factors, which

consists of cerebral regions with pathologically grey matter

increases or decreases.

Grey matter decreased areas are largely parts of the cog-

nitive control network (Goodkind et al., 2015; McTeague

et al., 2016) and include the insulae, anterior cingulate

cortices, superior and middle temporal gyri, superior,

middle and inferior frontal, pre- and postcentral gyri. In

turn, grey matter increased areas include the right anterior

and posterior insula, left middle insula, right pre- and post-

central gyri, right superior frontal gyrus, right superior tem-

poral gyrus, left inferior temporal and inferior frontal gyri.

The minor involvement of the precuneus in the co-

alterations patterns may be viewed as counter-intuitive,

given that this area is highly connected and is a central

hub of the default mode network. Probably, because of

the transdiagnostic approach of this study, similarities be-

tween brain disorders are likely to be highlighted and,

though in some diseases the precuneus appears to be

altered, the frequency of this alteration is not sufficient

for being statistically relevant. Moreover, it must be con-

sidered that a high number of alterations in a certain brain

area does not necessarily imply for this area to be co-

altered with other ones. With regard to this point, a

recent study by our group (Manuello et al., 2018) has

investigated the co-alterations of Alzheimer’s disease and

found out only a significant node of strong co-alterations

within the precuneus. Even in the case of Alzheimer’s dis-

ease, therefore, the precuneus level of co-alteration ap-

peared to be less significant than theoretically thought.

The structural co-alteration pattern differs significantly

for decreased and increased VBM values. With regard to

grey matter decreases, it appears to be more concentrated

in insular, cingulate and prefrontal cortices (areas of the

cognitive control/salience network) (Seeley et al., 2007;

Cauda et al., 2011, 2012a, 2013), whereas with regard

to grey matter increases it appears to be slightly more uni-

formly distributed, albeit with a little prevalence in subcor-

tical regions (Fig. 3). This differentiation is likely to be

because of the different factors at the root of the develop-

ment of grey matter increases and decreases in brain dens-

ity. In fact, grey matter decreased areas are generally

associated with neurodegenerative processes, while grey

matter increased areas are generally associated with com-

pensatory mechanisms (Lin et al., 2013; Premi et al., 2014,

2016), which are supposed to occur at the initial phases of

brain deterioration. This interpretation is consistent with

the temporal evolution shown by our predictive model, ac-

cording to which patterns of grey matter increased values

present a faster temporal development than patterns of grey

matter decreased values (Fig. 7, bottom).

From the viewpoint of the topological analysis, when

altered, the brain areas showing a higher node degree

and/or less average shortest path length are likely to play

a central role in the spread of neuronal alterations. Their

greater number of connections as well as their more intense

activity may enhance the mechanisms hypothesized to be

the causes of alterations, especially the nodal stress and the

transneuronal spread mechanisms. As suggested by our pre-

dictive model, these two mechanisms are supposed to be

more involved in the formation of the structural co-

alterations (both increase-related and decrease-related),

which seems to be more influenced by both functional

and anatomical connectivity. However, as the hypothesized

causal mechanisms are not mutually exclusive, they are all

likely involved in the formation of structural co-alterations,

each with distinctive temporal patterns.

The relationship between the spread
of neuronal alterations and brain
connectivity

All three types of connectivity taken into consideration in

this meta-analysis (functional, anatomical, and genetic)

account well for a substantial part of the variance of the

development of structural co-alterations (see Supplementary

Fig. 2 for an infographic).

In particular, functional connectivity is able to explain a

greater part of the structural co-alteration patterns than the

other matrices, followed by anatomic and genetic connect-

ivity. This result has also been achieved by determining the

partial correlation between the structural co-alteration

matrix and each connectivity matrix excluding the contri-

bution of the other connectivity matrices. This procedure

was required because both functional and anatomical con-

nectivity profiles are known to be partially correlated

(Skudlarski et al., 2008; Honey et al., 2009; van den

Heuvel et al., 2009; Misic et al., 2016) and because both

these connectivity profiles have also been found to be asso-

ciated with patterns of genetic co-expressions (Lichtman

and Sanes, 2008; French and Pavlidis, 2011; French et

al., 2011; Wolf et al., 2011; Cioli et al., 2014; Goel et

al., 2014; Richiardi et al., 2015).

It is worth noting that the temporal evolution of the al-

terations’ spread predicted by our model, based on the

functional and anatomical connectivity profiles, needs nu-

merous steps (between 30 and 40, arbitrary units) before

reaching completion. On the contrary, the prediction based

on the genetic connectivity profile requires a shorter time:

between 10 and 20 units. This interesting finding is con-

sistent with the shared vulnerability hypothesis, according

to which the spread of alterations caused by dysfunction in

the co-expression of certain genes is supposed to need a

shorter accretion time than when the other mechanisms

are involved. Already at the early phases of neuropatho-

logical processes, many brain areas with similar genetic

patterns can be altered. What is more, the genetic risk for

brain disorders is pleiotropic and, thereby, can affect broad

and transdiagnostic dimensions (Buckholtz and Meyer-

Lindenberg, 2012) of symptomatically-related diseases
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(Gejman et al., 2011), thus disrupting brain connectivity

patterns of core networks associated with fundamental cog-

nitive functions (Cauda et al., 2012b). Our predictive

model could therefore suggest that a chain of pathological

factors is likely involved in a variety of neuropathological

processes represented or better explained by different kinds

of brain connectivity profiles (Supplementary Fig. 2). In

other words, pathological patterns of gene co-expressions

may lead to a neuronal shared vulnerability, which, in turn,

may engender the alteration of important brain networks,

with the subsequent involvement of abnormal functional

and anatomical connectivity patterns. As highlighted by

Buckholtz and Meyer-Lindenberg (2012), ‘genetic factors

shape connectivity in networks linked to symptom do-

mains, and imply that connectivity changes observed in

mental disorders reflect a cause, rather than a consequence,

of being ill’. The same authors remark that ‘the latent struc-

ture of psychopathology may reflect, in part, a genetically

determined latent structure of brain connectivity’.

The result achieved by our predictive model—i.e. that

functional and anatomical connectivity seem to better ac-

count for the development of structural co-alterations in a

longer run than the genetic one—is consistent with the fact

that the nodal stress and the transneuronal spread mechan-

isms need time to make their effects. The nodal stress

implies a progressive intensification of excitotoxicity fac-

tors, whereas the transneuronal spread implies the trans-

port of pathological substances through axons or the

extracellular liquid. All these processes need time to exert

disruption and this point is well illustrated by the temporal

evolution of the structural co-alteration patterns (Fig. 7).

It is worth suggesting that the three mechanisms taken

into consideration in the present work (transneuronal

spread, nodal stress and shared vulnerability) may play a

synergistic role not only in the pathogenesis of neurodegen-

erative diseases but also, to some extent, in psychiatric as

well as in neurodevelopmental disorders. Although these

conditions are not directly related to the presence of a

defined brain proteinopathy, structural and functional al-

terations are not randomly distributed across the brain,

following specific connectivity constraints that produce

identifiable morphometric co-atrophy patterns, as already

shown by our group in neurodevelopmental (autistic spec-

trum disorder) and psychiatric (schizophrenia spectrum dis-

order and obsessive-compulsive spectrum disorder)

conditions (Cauda et al., 2018). Furthermore, from a

speculative perspective, it has been proposed that it

would be more appropriate to view schizophrenia as a fail-

ure of communication between critical nodes of large neur-

onal networks rather than a dysfunction of separate areas,

thus suggesting the expression of ‘spatiotemporal psycho-

pathology’ to describe this condition (Kasparek et al.,
2010; Northoff and Duncan, 2016). In this sense, different

pathogenic mechanisms (i.e. pathogenic proteins propagat-

ing preferentially based on intrinsic network vulnerabil-

ities—molecular nexopathies—for neurodegenerative

diseases, and genetic/environmental interactions for both

psychiatric and autistic spectrum disorders) may be at

play. Overall, these pathological mechanisms can ‘stress’

the brain networks and ‘shape’ the grey matter alterations

in a network-based fashion, as described by the present

work and others already cited. As defined for neurodegen-

erative proteinopathies (Warren et al., 2013), in other dis-

orders (like psychiatric and autistic) the pathological and

complex interaction between neurodevelopmental alter-

ations and environmental/genetic modulators might trigger

brain dysfunction (both functional and structural), even

without a detectable proteinopathy (as in neurodegenera-

tive diseases) but with a similar impact on brain connect-

ivity and functioning, thus accounting for the good degree

of concordance of the present findings.

Thus, given that the transneuronal spread mechanisms

(Zhou et al., 2012; Fornito et al., 2015) implies a form

of propagation along structural (axonal) pathways, that

the nodal stress mechanism implies a form of common ac-

tivity between altered brain areas, and that the shared vul-

nerability mechanism implies common gene expressions

between cerebral regions, it is possible to advance the hy-

pothesis that, based on our analysis, the decrease-related

and increase-related structural co-alterations might be

more shaped, in order, by nodal stress, transneuronal

spread, and shared vulnerability mechanisms. Especially

taking into consideration the transdiagnostic nature of

our data, this finding suggests that the prevalence of a par-

ticular type of connectivity in the production and develop-

ment of structural co-alterations leaves open the possibility

that the other two types of connectivity could play a sig-

nificant role as well. Indeed, this phenomenon may also be

due to the fact that the data retrieved from BrainMap are

about a great variety of brain disorders, which are likely to

be originated by different combinations of the hypothesized

factors underlying the formation of structural co-

alterations.

Brain connectivity can predict the
distribution of alterations

Taken together in a conjoint model, the three connectivity

matrices are able to account for the development of struc-

tural co-alterations with good accuracy. This is a remark-

able finding for the comprehension of how the pathological

brain responds to diseases, as it allows one to predict the

evolution of grey matter alterations from changes of the

neurobiological substrate. Our result provides further sup-

port for the important role played by brain connectivity in

the neuropathological processes and sheds new light on its

involvement in their development and progression (Iturria-

Medina and Evans, 2015). With the help of analyses based

on brain connectivity profiles, we could achieve an in-depth

understanding of the mechanisms at the root of brain dis-

orders. Some suggestions along this line of research have

already been proposed. For instance, in patients with

Alzheimer’s disease, functional alterations and grey matter
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decreases within different brain areas reflect covariance pat-

terns of part of the default mode network, thus indicating

that these atrophic regions are not independently affected;

rather, the primary deterioration in one of these areas

might lead to a secondary deterioration in other connected

areas (Wang et al., 2013, 2015). The cognitive decline

would progress via sequential increases in connectivity,

bringing about a functional overload. For example, in the

case of Alzheimer’s disease increased connectivity in frontal

areas (especially those associated with the salience network)

seems to have a compensatory role, representing the other

side of the coin. Interestingly, this pattern of complex func-

tional alterations appears to largely mirror the one that can

be highlighted in frontotemporal dementia, which involves

primarily frontal regions and the salience network (Zhou et

al., 2010).

Two important points need to be clarified. First, although

brain connectivity profiles seem to guide the development

of structural co-alterations, this does not imply that each

brain disorder is expected to produce similar structural co-

alterations, for as regards to each brain disorder, as well as

to the particular patients involved, different network nodes

can be altered. Moreover, given a final set of altered nodes,

the foci from which alterations began to spread might have

been different and, as a result, different temporal progres-

sions might have occurred.

The second point is a methodological caveat and con-

cerns the relationship between our co-alteration network

analysis and the anatomical covariance (Mechelli et al.,

2005). Anatomical covariations are defined as ‘the covari-

ance of morphological metrics derived from morphological

MRI’ (Evans, 2013). Apparently, then, the morphological

co-alterations studied here may be thought of as a type of

anatomical covariance. However, anatomical covariance is

always derived from single-subject data, whereas our meta-

analytic approach works on data originated from a statis-

tical comparison between pathological and healthy subjects.

Therefore, from the methodological point of view, the two

approaches, albeit similar, are different and should not be

confused (for a more detailed discussion about this similar-

ity see Cauda et al., 2018).

Limitations and future directions

The pathological structural co-alterations have been studied

with a method that uses meta-analytic data, which, com-

pared to their original quality, are known to be affected, to

some extent, by deterioration. This loss of quality increases

the degree of spatial uncertainty and, therefore, can influ-

ence the detection of alterations by reducing the likelihood

of statistical co-occurrences between the nodes. Therefore,

future investigations with native data, possibly obtained

from the same group of individuals, are needed.

VBM studies are at the basis of the methodology pro-

posed here. Although being a widely used and well-

validated technique, there are a number of procedural

aspects that could influence the results of every single

VBM experiment (e.g. field strength of the scanner, soft-

ware used for the analysis, smoothing amount). However,

since different combinations of these parameters had been

used in the experiments considered for our research, it is

unlikely that some of them can affect the results in a sys-

tematic way. Moreover, it has been recently suggested that

possible false positive findings in VBM tend to be distrib-

uted randomly across the brain rather than accumulate in

specific sites (Scarpazza et al., 2015); this aspect should

prevent the spurious inclusion of nodes of alteration in

the detected co-alteration networks. However, it is not pos-

sible to completely rule out this kind of inclusion.

To address the issue of heterogeneity due to studies with

low sample sizes we decided to establish a lower bound of

eight subjects for sample size and, consequently, all the

retrieved experiments with a sample size smaller than

eight subjects were excluded. As already mentioned, the

identification of this lower bound is in line with the work

of Scarpazza et al. (2015), which found that the use of

balanced small samples in the VBM studies does not influ-

ence the false positive rate, even when considering only

eight subjects. Thus, this suggests that our results should

not be biased by the presence in our database of heteroge-

neous sample sizes. Moreover, since our methodology re-

veals the co-occurrences between alterations across the

studies, experiments on small samples reporting different

results from the others tend to bring about a sort of

‘random noise’ that is likely to increase the false negatives

rather than the false positives (Acar et al., 2017). This con-

sideration should lead us to think that, even though we

cannot completely rule out the bias potentially caused by

the inclusion of studies with a limited sample size, it is

much more likely that we missed to detect real co-

alterations rather than we identified false ones. However,

to address this issue properly, future investigations on these

data are needed as soon as larger and more controlled

samples are available in the literature.

The ALE approach is one of the most used methods in

the field of coordinate-based meta-analysis. One of the

main concerns with this methodology is the possibility of

the results to be driven by one, or a few, experiments, thus

reflecting a specific case among the ones pooled for the

meta-analysis rather that an overall representative effect.

However, a minimum amount of 20 experiments is usually

thought to be sufficient to resolve this issue (Eickhoff et al.,

2016), so that analyses based on large databases, as the one

used here, should not be so much biased as to produce

invalid results.

The genetic matrix, too, is characterized by spatial uncer-

tainty and other idiosyncrasies. First, the sample used for

this analysis is made of six human brains only. So, the

results obtained with this analysis can hardly be generalized

to the whole population. Second, not all of the six brains

were sampled completely. Third, the samples are not evenly

spaced but have different stereotactic coordinates in each of

the six brains. Although our methodology has tried to ad-

dress these issues, especially the inhomogeneity of the
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samples, the results of the genetic analysis are to be inter-

preted cautiously and need to be supported by further evi-

dence. However, to date the complex procedure and costs

of the acquisition of gene expressions data do not allow

better precision.

Spatial and temporal errors, related to specific aspects of

the functional MRI and DTI procedures, may affect both

functional and anatomical connectivity patterns. Still, it is

worth noting that, with regard to correlation and predic-

tion results, such errors are supposed to increase more the

number of false negatives than the number of false posi-

tives, thus reducing the correlation values between matrices.

Therefore, given the good statistical significance achieved

by our model, we are inclined to think that the results

are not caused by spatial or temporal errors but describe

real phenomena. To support our findings further, the reli-

ability values of the connectivity matrices are very good;

this leads us to believe that the difficulties inherent in the

neuroimaging procedures are not likely to undermine the

conclusions reached in this study. However, we hope that

future studies will be carried out with different statistical

techniques and on wider and better samples so as to find

out whether or not our results can be further supported.

Finally, this study focused on mixed data, coming trans-

diagnostically from a variety of brain disorders as well as

from heterogeneous patients investigated in different time

courses of their symptomatology. The aim was (i) to pro-

vide a proof of concept of our method; and (ii) to get the

broadest retrievable sample to achieve a good statistical

significance for the detection of structural co-alterations.

We therefore obtained mean alteration patterns, which

are not specifically related to one or another brain disorder,

so as to study globally how neuronal alterations are dis-

tributed across the brain. Future investigations are needed

to look into more specific patterns of structural co-alter-

ations with regard to specific diseases. In particular, it

would be interesting to calculate the co-alteration patterns

starting from native single subject data stored in publicly

available MRI datasets (e.g. ADNI) and to compare the

results of this analysis with longitudinal data. It is also of

primary importance to understand how each connectivity

profile (functional, anatomical, and genetic) contributes in

shaping the structural co-alterations of different brain dis-

orders. An intriguing topic in this line of research could be

the study of how structural co-alterations differ in patients’

population with fast or slow cognitive deterioration.

Furthermore, it would be of great interest to understand

which gene co-expressions play a major role in the devel-

opments of structural co-alterations associated with differ-

ent brain disorders.

Conclusion
This study has investigated fundamental issues about how

the brain is affected by pathological processes that were

still unresolved in humans. Our research investigated

which one among three types of connectivity profiles (func-

tional, anatomical, and genetic) could shape and explain

better the distribution of structural co-alterations.

Intriguingly, our prediction model suggests that in our

transdiagnostic sample, all three types of connectivity are

involved and can statistically account for a very good por-

tion of the pattern variance of structural co-alterations for

both grey matter increases and grey matter decreases (72%

and 77%, respectively) (Table 1). In addition, it shows that

the three patterns of brain connectivity need different tim-

ings to play their role in the development of the co-alter-

ation networks.

These results shed new light on the possible mechanisms

at the root of neuropathological processes. Our analysis

points out that three (i.e. nodal stress, shared vulnerability,

and transneuronal spread) of the four mechanisms put for-

ward so far (Saxena and Caroni, 2011; Zhou et al., 2012;

Fornito et al., 2015) are likely to play a role with different

temporal progressions in the formation and development of

structural co-alterations. In particular, we found that func-

tional connectivity offers the better account of the struc-

tural co-alteration patterns, followed by anatomic and

genetic connectivity. Although one type of connectivity

can be prevalent in the co-alteration patterns, it must be

noted that all these three types are significantly involved in

the progression of brain alterations. This is consistent with

the cross-diagnostic nature of data used in this study

(Goodkind et al., 2015).

Overall, the three different types of brain connectivity

can account extremely well for the distribution and evolu-

tion of structural co-alterations across the human brain.

This finding presents an exciting prospect for future re-

search in the quest for a better understanding of brain

disorders.
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