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1  | INTRODUC TION

Predictive modelling is increasingly common in ecology, and statis-
tical models created in one context are often used to predict the 
state of the system in other contexts, such as other geographical 
areas or climate regimes (Sequeira, Bouchet, Yates, Mengersen, & 
Caley, 2018; Thuiller et al., 2013). However, the fast development 
of predictive ecology calls for caution, as it is not always clear 

whether the current understanding of ecological processes is com-
prehensive enough to warrant predictions (Mouquet et al., 2015). 
In particular, biotic interactions are important determinants of bio-
diversity distribution (Elith & Leathwick, 2009; Wisz et al., 2013) 
and their strength is related to the functioning and stability of eco-
systems (Bartomeus et al., 2016; Gellner & McCann, 2016). Spatial 
and temporal variability in biotic interactions is an integral part of 
food web functioning (Gripenberg & Roslin, 2007; Hunter & Price, 
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Abstract
Variability in biotic interaction strength is an integral part of food web functioning. 
However, the consequences of the spatial and temporal variability of biotic interac-
tions are poorly known, in particular for predicting species abundance and distribu-
tion. The amplitude of rodent population cycles (i.e., peak-phase abundances) has 
been hypothesized to be determined by vegetation properties in tundra ecosystems. 
We assessed the spatial and temporal predictability of food and shelter plants effects 
on peak-phase small rodent abundance during two consecutive rodent population 
peaks. Rodent abundance was related to both food and shelter biomass during the 
first peak, and spatial transferability was mostly good. Yet, the temporal transferabil-
ity of our models to the next population peak was poorer. Plant–rodent interactions 
are thus temporally variable and likely more complex than simple one-directional 
(bottom-up) relationships or variably overruled by other biotic interactions and abi-
otic factors. We propose that parametrizing a more complete set of functional links 
within food webs across abiotic and biotic contexts would improve transferability of 
biotic interaction models. Such attempts are currently constrained by the lack of data 
with replicated estimates of key players in food webs. Enhanced collaboration be-
tween researchers whose main research interests lay in different parts of the food 
web could ameliorate this.
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1992; Maron, Baer, & Angert, 2014). Yet, predictive biodiversity 
models rarely account for spatiotemporal variation in biotic interac-
tion strength, as both the knowledge of the relevant variability and 
the data necessary to quantify it are usually lacking (Thuiller et al., 
2013; Wisz et al., 2013).

A key concept of statistical approach to prediction is transfer-
ability, defined by Sequeira et al. (2018) as: “The ability of a model 
developed for a specific site and/or time and/or taxon to predict bio-
diversity in a different time or place or for a different taxon defines 
its transferability.” While several aspects of transferability have 
been studied (see e.g., Huang & Frimpong, 2016; Randin et al., 2006; 
Wogan, 2016), biotic interactions have rarely been addressed in this 
context. Increasing our understanding of variability in biotic interac-
tions would therefore improve our ability to forecast the future state 
of ecological systems.

Herbivore population cycles have been subjected to a large 
number of studies—because they may elucidate both how biotic in-
teractions can give rise to complex population dynamics and how 
populations cycles influence ecosystem functioning (Barraquand 
et al., 2017; Ims & Fuglei, 2005; Krebs, 2011; Myers, 2018). Cycle 
amplitude is a very important functional property of herbivore pop-
ulation cycles, as it has strong impacts on trophic levels above and 
below the herbivore (Yang et al., 2010). Cycle amplitude in some 
herbivores (i.e., boreal and arctic rodents) can for practical purposes 
be defined as the abundance at the peak phase of the cycle as the 
abundance of the low phase normally approaches zero at the spatial 
scale of conventional sampling plots (Steen & Haydon, 2000). In her 
most recent review on population cycles, Myers (2018) concluded 
that cycle amplitude shows considerable variation in time and space 
in all herbivore taxa that exhibit such cycles and that this is “a re-
maining mystery” despite near a century of research.

From a theoretical point of view, variation in cycle amplitude can 
have different causes. For example, it can be caused by the same 
factors that drive the cycles; that is, complex biotic feedback mech-
anisms that act with time lags—such as predation or plant-induced 
defence (Krebs et al., 2014). Alternatively, variable cycle amplitude 
could result more simply from the direct influence of environmen-
tal variation. As a likely case of the latter possibility, Krebs (2013) 
proposed that temporally or spatially variable productivity of food 
plants—determining the carrying capacity of the habitat (K)—could 
underlie the large variation in cycle amplitude observed in small ro-
dents. Indeed, the Ecosystem Exploitation Hypothesis, which con-
siders tritrophic systems across a gradient of productivity, predicts 
that below a certain threshold of productivity food biomass is a 
powerful predictor of rodent abundance. Above such productivity 
threshold, rodent abundance should become decoupled from food 
plant biomass as predators generally suppress rodent peak abun-
dance below a K (Aunapuu et al., 2008; Oksanen, Fretwell, Arruda, 
& Niemelä, 1981). Yet, K is a parameter most often set as constant 
in models constructed to investigate conditions for rodent cycles to 
result from predator–prey or plant–herbivore interactions (Hanski, 
Henttonen, Korpimäki, Oksanen, & Turchin, 2001; Henttonen 
et al., 2017; Turchin & Batzli, 2001). It should also be noted that K 

is defined differently among different models and empirical studies 
(Chapman & Byron, 2018).

The above theoretical frameworks focus on vegetation as food 
for rodents, while the role of nontrophic pathways in the regula-
tion of food web structure is increasingly recognized (Gravem & 
Morgan, 2016; Kéfi et al., 2012; Kimbro, Byers, Grabowski, Hughes, 
& Piehler, 2014). Small rodents inhabit a “landscape of fear,” where 
predators are related to several mechanisms modifying rodent 
abundance, for example, mortality, apparent competition, reduced 
reproduction, selection for sheltered habitats (Abrams & Cortez, 
2015; Dehn, Ydenberg, & Dill, 2017; Dupuch, Morris, & Halliday, 
2014). Hence, rodent population densities are often higher in hab-
itats with abundant shelter (Laundre et al., 2014; but see Dupuch, 
Morris, Ale, Wilson, & Moore, 2014; Dupuch et al., 2014). Shelter 
plants may therefore, via their indirect effect of modifying preda-
tion risk, set the K for rodents as suggested by Birney, Grant, and 
Baird (1976). The importance of shelter in determining K can be 
expected to be pronounced if rodent abundance is regulated by 
predation. Although previous studies have addressed how varia-
tion in food and cover availability relates to the abundance of small 
rodents (Batzli & Lesieutre, 1995; Dupuch et al., 2014; Hambäck, 
Schneider, & Oksanen, 1998), they rarely assess spatial and tem-
poral transferability of their statistical models (but see Morris & 
Dupuch, 2012).

In principle, transferability of predictive models of biotic in-
teractions should increase if several relationships are considered 
together. Yet, including a range of interactions and contexts can 
quickly lead to overly complex models, problems in distinguishing 
the effects of different variables due to multicollinearities, and/
or attempts to “model everything” (Mouquet et al., 2015; Wisz 
et al., 2013). Thus, it appears especially important to focus on the 
main a priori well-established functional links (Kissling et al., 2012; 
Mouquet et al., 2015; Wenger & Olden, 2012). Nevertheless, even 
if small rodent population cycles have been subjected to many the-
oretical and empirical analyses, we doubt that the current knowl-
edge of these links is sufficient for developing complex hypotheses 
on drivers of peak-phase abundance. We therefore here focus on 
the simple hypotheses presented by Krebs (2013) and Birney et al. 
(1976), assessing the spatial and temporal consistency of the pro-
posed relationships between rodent peak density and biomass of 
food and shelter plants.

We used long-term monitoring data from an arctic food web 
where rodents, food plants, and shelter plants have pronounced 
spatial and temporal variations. We asked (a) whether biomass of 
food and shelter plants was consistently related to rodent peak 
abundances within a given population cycle and (b) to what extent 
the models from the first peak was transferable in time; that is, were 
we able to predict rodent peak abundance during a population peak 
based on model created during a previous peak. We thus apply the 
framework of near-term forecasting which states that checks of 
model transferability should be incorporated as a systematic part of 
long-term monitoring programmes to make ecology a more predic-
tive science (Dietze, 2017; Dietze et al., 2018).
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2  | METHODS

This study was conducted in the shrub tundra vegetation zone 
of northern Norway (70-71°N to 27-31°E, Figure 1). The most 
prominent habitat type of the study area is dwarf-shrub heath, 
which is the primary habitat of grey-sided voles (Myodes rufo-
canus). In addition, the Norwegian lemming (Lemmus lemmus) 
is abundant in the heath habitat during their peak years (Ims, 
Henden, Thingnes, & Killengreen, 2013). In riparian plains, veg-
etation is substantially lusher and consists of a mosaic of mead-
ows and willow thickets. These are primary habitats of the tundra 
vole (Microtus oeconomus) (Henden, Ims, Yoccoz, Sørensen, & 
Killengreen, 2011). Vegetation composition within both habitats 
exhibits profound spatial variation in the study area and ranges 
from dominance of palatable plants to dominance of nonpalat-
able plants (Ravolainen, Bråthen, Ims, Yoccoz, & Soininen, 2013; 
Soininen, Ravolainen, et al., 2013). Rodent populations in the re-
gion normally exhibit a synchronous 4- to 5-year cycle (Figure 2., 
Terraube et al., 2015). The tritrophic food web of the region is 
described in detail in Ims, Jepsen, Stien, and Yoccoz (2013), and 
summary statistics describing various abiotic (e.g., temperature 
and precipitation) and biotic (e.g., main predators and other her-
bivores) factors are given in Supporting Information Appendix 
S1; Table S1.

2.1 | Study design

We used long-term monitoring data from the Climate-Ecological 
Observatory for Arctic Tundra (COAT) (Ims, Jepsen, et al., 2013). 
Integrated ecosystem monitoring related to COAT has been con-
ducted since 2005, in three watershed areas (Figure 1). Two of these, 
Komagdalen (KO) and Vestre Jakobselva (VJ), are at the Varanger 
peninsula at an approximate distance of 40 km from each other, 
while the third one, Ifjordfjellet (IF), is ca. 100 km further west. 
Within each of the three watershed areas, data on small rodent abun-
dance and plant biomass is collected in 15 × 15 m sampling quadrats 
(n = 18 to 26 per watershed area; Supporting Information Appendix 
S1 Table S2). The quadrats are small enough to have relatively ho-
mogenous vegetation, but large enough to encompass parts of sev-
eral rodent home ranges (Andreassen, Hertzberg, & Ims, 1998; Ims, 
1987) and be representative of demographic processes (Andreassen 
& Ims, 2001). They are distributed in equal numbers in both heath 
and meadow habitats with at least 160 m between neighbouring 
quadrats (Figure 1), in order to the quadrats to be independent, that 
is, the sampled rodents interact only with the local plants and not 
those of the of the neighbouring quadrat. Thus, we sampled local 
rodent abundance across the existing variability of plant biomass in 
tundra landscapes. In this study, we used data spanning from 2005 
to 2013. During this period, small rodent populations peaked twice: 
2006–2007 (hereafter first peak) and 2010–2011 (hereafter second 
peak) (Figure 2). During the first peak, data on rodent abundance was 
collected in all watershed areas, while data on plant biomass was 
collected in KO and VJ only. Effort was reallocated between the two 

peaks (in 2009) to include plant biomass measurements also at IF 
and by removing some quadrats from the study design. The number 
of quadrats included in analyses of plant–rodent interactions was 50 
for the first peak and 56 for the second peak (details in Supporting 
Information Appendix S1; Table S2).

2.2 | Small rodent abundance

Small rodent populations were sampled twice a year over two trap-
nights (July and September), using the sampling quadrats as small 
quadrats following the snap-trapping procedure described by 
Myllymäki, Paasikalio, Pankakoski, and Kanevo (1971) (Supporting 
Information Appendix S4, Text S6). We used the number of rodents 
per species per quadrat as an index for local population abundance, 
using for each species’ data from the habitat where they were most 
abundant (Figure 2, Supporting Information Appendix S1; Figure 
S1). Analyses for grey-sided voles and lemmings are thus based on 
data from heath habitat and analyses for tundra voles use data from 
meadow habitat. We expect that the peak abundance of rodents 
in the secondary habitats is more related to overspill from primary 
habitats (Soininen et al., 2014) than to a local interaction with veg-
etation. Furthermore, our dataset for secondary habitats contains a 
large number of zeros. Thus, we chose to focus our analyses on the 
primary habitats.

As plant biomass data was collected after the rodent sampling in 
July, we only included rodent abundance data from the September 
trapping in the analyses of plant–rodent interaction. The September 
sampling also normally represents the annual rodent peak abundance 
in the shrub tundra zone of Fennoscandia (Ekerholm, Oksanen, & 
Oksanen, 2001; Ims et al., 2011).

The small rodent population peak in the region lasted for 2 years 
(Figure 2). Therefore, we used for each quadrat and rodent species 
data from the year when the quadrat-specific number of individuals 
peaked. When the quadrat-specific rodent abundance was equally 
high during two subsequent years, we used data from the year when 
the rodent populations peaked on average in a given watershed area 
(i.e., during first peak 2007 for KO and 2006 for VJ; during second 
peak 2011 for all watershed areas).

2.3 | Plant functional group biomass

Data on plant biomass was sampled annually using the point inter-
cept method according to Bråthen and Hagberg (2004). During the 
first peak, we recorded biomass during the last week of July and the 
first week of August, that is, at maximum plant biomass. In each 
quadrat, 13 plots (50 cm × 50 cm) were sampled using 20 points 
(Figure 1; see Ravolainen et al., 2013). During the second peak, we 
recorded biomass in early September, that is, before substantial 
withering of plants and concurrently with vole trapping. In each sam-
pling quadrat, 24 plots (50 cm × 50 cm) were sampled using three 
points. These changes in resolution and timing of the measurements 
had little effect on the measured biomass (Supporting Information 
Appendix S2, Text S1, Figure S4). We transformed counts of hits to 
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a quadrat-specific estimate of biomass g/m2 using growth form spe-
cific conversion factors described by Ravolainen et al. (2010).

We defined plant functional groups for each rodent species sep-
arately (Table 1, Supporting Information Appendix S3). In palatable 

plant groups, we included plant species that are important food items 
for the focal rodent species in the study area (Soininen, Ravolainen, 
et al., 2013; Soininen, Zinger, et al., 2013). In shelter plant groups, 
we included plant species that have a growth form that has the 

F IGURE  1 Sampling design for monitoring small rodent and vegetation in three watershed areas (IF = Ifjordfjellet, VJ = Vestre Jakobselv, 
KO = Komagdalen) in low-arctic tundra of northeastern Norway. In each watershed area, replicate 15 × 15 m sampling quadrats (white 
squares; middle inset) are located in heath and meadow habitat. In each sampling quadrat, we annually estimated plant biomass (small 
squares within large square; right inset) according to Bråthen and Hagberg (2004) and recorded small rodent abundance with traps in the 
corners according to Myllymäki et al. (1971)

F IGURE  2 Rodent abundance (no. 
individuals/sampling quadrat) from 2005 
to 2013. Data from primary habitats; 
meadow for tundra voles, heath for 
grey-sided voles and lemmings. Vertical 
panels show the three different species 
of the study area, while horizontal panels 
show three watershed areas. Points 
are jittered along x-axis to visualize 
data where several quadrats had same 
value. Lines go through season-specific 
mean abundances. Black circles show 
data included in the analyses with plant 
biomass data, while grey circles show 
data excluded from these analyses 
(representing data collected during spring, 
nonpeak years, less-preferred habitat of 
the focal species or times when no plant 
biomass data was available)
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potential to provide shelter from predators. Plant groups with a simi-
lar name have partly different taxonomic composition depending on 
the rodent species in question (see Table 1). We therefore denote 
the groups with rodent species-specific subscripts (e.g., forbsTV, 
forbsGV, and forbsL for tundra voles, grey-sided voles, and lemmings, 
respectively).

2.4 | Statistical analyses

2.4.1 | Temporal consistency of spatial variation 
within trophic levels

We plotted the quadrat-specific data from the first peak versus 
the second peak for both plant biomass and rodent abundance 
separately. We then tested to what extent the spatial variability 
observed during the two peaks was temporally consistent using 
Spearman’s rank correlation tests. Furthermore, to assess whether 
the rodent species exhibited similar dynamics over the two peak 
summers we calculated (a) Spearman’s correlation between the July 
and September censuses within peaks, (b) the quadrat-specific sum-
mer growth rates (R=log(NSept+1)-log(NJuly+1)), and (c) the density 
dependence of the growth rates for each of the two cyclic peaks. 
Density dependence was estimated based on a state-space model 
where measurement error was explicitly incorporated by using the 
two trapping days for each sampling quadrat as temporal removal 
occasions (Kéry & Royle, 2016) (Supporting Information Appendix 
S4, Text S7).

2.4.2 | Interaction between trophic levels

The effect of plant biomass on rodent abundance is likely to be a 
saturating function both on biological grounds (e.g., spacing behav-
iour and herbivore functional response) and because of the limits of 
the sampling process (the number of trap-nights [24] per trapping 
session sets a maximum). Exploratory plotting supported this ex-
pected nonlinearity between rodent abundance and plant biomass. 
We therefore analysed the abundance of each rodent species as a 
response variable with generalized linear models (GLM with Poisson 
distribution; log-link function) with log-transformed plant biomass 
variables as predictors.

Using data from the first peak, we started from models con-
taining the additive effects of all food and shelter variables 
(Table 1). From the full model, we formed four to five a priori 
candidate models (Burnham & Anderson, 2002) for each species 
(Supporting Information Appendix S4; Table S9), and included the 
null model (i.e., model with only intercept) among the set of mod-
els. However, when biomass of two plant groups was correlated 
(Spearman’s rank correlation, ρ > 0.6), they were not included in 
the same model to prevent potential problems related to collin-
earity. We used AICc (tundra vole and lemming) and QAICc (grey-
sided vole, due to overdispersion, ĉ ~1.6) (Burnham & Anderson, 
2002) to compare candidate models and subsequently identify 
the “best” models, that is, models with the lowest value of AICc/

QAICc (Supporting Information Appendix S4; Table S9). We also 
estimated model parameters based on model averaging (Burnham 
& Anderson, 2002), with similar results to the “best” model ap-
proach (Supporting Information Appendix S2; Text S2 and Table 
S3).

2.4.3 | Spatial and temporal transferability of 
trophic relationships

We used the “best” model for each rodent species from the first 
peak to predict quadrat-specific vole abundance both spatially and 
temporally; that is, assessing the spatial and temporal transferabil-
ity of the models. We assessed spatial transferability using data 
from the first peak. We sampled randomly, without replacement, 
half of the sampling quadrats and estimated the model parameters 
based on the plant biomass data of these quadrats. We then used 
this model to predict rodent abundance in the remaining quadrats 
based on plant biomass data. This procedure was repeated 1,000 
times for each model. We assessed temporal transferability by test-
ing how well the “best” model for the first peak predicted rodent 
abundance during the second peak. We used the first peaks’ mod-
els parametrized with data from all quadrats and predicted the ro-
dent abundance based on plant biomass data sampled during the 
second peak.

We used the mean absolute error (MAE) (Fielding & Bell, 1997) 
between predicted and observed values as a simple measure of 
model transferability. It is interpreted at the scale of observations, 
that is, in our case rodent abundance measured as number of individ-
uals. We first calculated prediction error based on raw abundances 
(X) (hereafter MAERAW): 

where Q is the total number of quadrats, Xi,pred is the predicted 
abundance of rodents in the sampling quadrat I, Xi,obs is the observed 
abundance of rodents in the sampling quadrat I.

In order to assess our ability to predict the relative differences 
in rodent densities between sampling quadrats irrespective of 
potential differences in the average yearly density (i.e., focusing 
on spatial variability within a year), we also calculated predic-
tion error based on abundances centred on their mean (hereafter 
MAERELATIVE): 

where Xpred and Xobs are the average predicted and observed den-
sities observed in the predicted year. The difference between 
MAERAW and MAERELATIVE is thus caused by over- or underpredicting 
the average abundance.

To evaluate the measures of predictive ability obtained for our 
models, we calculated the above-described measures of prediction 
error also for (a) null models and (b) models with minimum obtain-
able prediction error. Because of the Poisson distributed response 

MAEraw =

∑Q

i=1
�Xi,pred−Xi,obs�

Q
,

MAErelative =

∑Q

i=1
�(Xi,pred−Xpred)− (Xi,obs−Xobs)�

Q
,
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variable, the difference between observed and predicted values 
even for 100% predictive power would never reach zero (Cox & 
Wermuth, 1992). Therefore, we used simulations to determine the 
minimum obtainable error, given the range of abundance and sam-
ple sizes in the current study (Supporting Information Appendix 
S4; Text S8).

The dataset that we used for assessment of temporal trans-
ferability included all sampling quadrats for which data on plants 

and rodents were available during the second peak, and hence, 
also quadrats that were not part of the original dataset used 
to build the models. However, excluding these quadrats led to 
no consistent change in transferability (Supporting Information 
Appendix S2 Table S5) and we therefore chose to retain them in 
the analyses.

We used the software R (R Development Core Team 2014) for 
all analyses.

F IGURE  3 Temporal consistency of spatial variation within trophic levels. Quadrat-specific rodent abundance (a) and plant biomass (b) in 
the first rodent peak (x-axis) are plotted against the second peak (y-axis). Statistical assessments of the relative temporal consistency of the 
spatial variation among quadrats are provided by Spearman rank ρ and associated p-values. Dashed line shows 1 to 1 line; points above this 
indicate an increase of from first to second peak, while points below indicate a decrease. Symbols denote data from the different watershed 
areas, note that data from IF is not included in part B of the plot (as no plant data was collected from IF during the first peak). Box plot bars 
in the plant plots depict the distribution of the biomass estimates for the two rodent peaks, including also data from the quadrats which 
were sampled only during one peak. Only plant variables selected to enter the statistical prediction model for each rodent species are 
included in the plots; similar plots for remaining plant variables are given in Supporting Information Appendix S4
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3  | RESULTS

3.1 | Spatial and temporal variability within trophic 
levels

Plants: Biomass of the plant functional groups varied up to 100-fold 
among the quadrats during both rodent population peaks and in both 
habitats (Figure 2, Supporting Information Appendix S1; Figure S3). 
This spatial variation in plant biomass was temporally consistent for 
most plant groups; the quadrats with high biomass during the first peak 
also had high biomass during the second peak (see ρ in Figure 3 and 
Supporting Information Appendix S1; Figure S3). Yet, biomass of several 
plant groups increased between the peaks; this was the case for shelter 
shrubsGV, shelter grassesTV, and palatable grassesL (Figure 3). In contrast, 
biomass of forbsTV decreased from the first to the second peak (Figure 3).

Rodents: There were no clear differences between peaks in the 
mean, variation, or range of abundances of grey-sided voles and lem-
mings, whereas the mean abundance of tundra voles was higher during 
the second than the first peak (Table 2, Figure 3). Spatial variability in 
rodent abundances was high during both peaks and somewhat con-
sistent between peaks for grey-sided voles and lemmings, but not so 
for tundra voles (Figure 3). Thus, the identity of the quadrats where 
rodents were abundant differed partly between the peaks. Within the 
population peaks, the abundances of all species increased over the 
summer in a negatively density-dependent manner (Table 2, Supporting 
Information Appendix S1; Figure S2). However, peak summer popula-
tion dynamics (in terms of growth rate and its negative density depen-
dence) differed somewhat between the peaks. The tundra vole summer 
growth rate was substantially lower during the first than the second 
peak, the grey-sided vole population showed a clear negative density 
dependence only during the first peak, and the lemmings had weaker 
density dependence during the first than the second peak (Table 2).

3.2 | Relationships between trophic levels

The “best” model for peak abundance of tundra voles included a 
negative effect of the biomass of forbsTV and positive effects of 

the biomass of palatable grassesTV and shelter grassesTV (Table 3, 
Figure 4). For grey-sided voles, the “best” model only included a 
positive effect of the biomass of shelter shrubsGV (Table 4, Figure 4). 
For lemmings, the “best” model included a negative effect of the bio-
mass of palatable grassesL and a positive effect of the biomass of 
palatable shrubsL (Table 3, Figure 4).

3.3 | Spatial and temporal transferability of trophic 
relationships

The spatial predictions of our models differed from the observed 
numbers of individuals with 2.01 to 2.37, representing 18% to 22% 
prediction error compared to the observed range of the individu-
als (Table 4, MAERAW). Hence, the models’ prediction errors were 
reasonably close to the simulated minimum obtainable error, which 
ranged between 12% and 14% (Table 4).

The spatial transferability of the two vole species was better 
than the temporal transferability (Table 4). The difference between 
observed and predicted numbers of individuals was 5.26 and 3.13 for 
tundra voles and grey-sided voles, respectively (Table 4, MAERAW). 
This represents 31% and 26% error compared to the observed range 
of the individuals. However, spatial and temporal prediction errors 
were similar for the lemmings (Table 4). Yet, temporal predictions 
based on a null model were consistently better than predictions 
based on the modelled relationship with plant biomass (Table 4). 
Hence, even if the lemming model had better transferability than 
that of voles, it was not able to predict lemming abundance better 
than a null model that assumes the distribution of lemmings to be 
independent of the plant variables. Indeed, when model selection 
was repeated for the data of the second peak only, the plant bio-
mass was little related to rodent abundance, as the null model was 
ranked among the “best” models for all rodent species (Supporting 
Information Appendix S2; Text S3 and Table S4). Three lines of ev-
idence thus point towards low temporal predictability of plant–ro-
dent relationships: (a) large predictive errors of our plant-based 
models for the two vole species, (b) null models’ ability to predict 
better than the plant-based models’ ability, and (c) the fact that 

TABLE  2 Characteristics of two small rodent population peaks in northeastern Norway; first peak 2006–2007 and second peak 
2010–2011

Data Statistic Tundra vole Grey-sided vole Lemming

1st peak Mean (SD) abundance 4.4 (3.3) 3.8 (2.7) 3.5 (3.0)

Range 0–11 0–11 0–13

Growth rate (95% CI) 0.44 (0.32, 0.56) 0.91 (0.78, 1.04) 0.72 (0.62, 0.83)

Density dependence −0.86 (−0.95, −0.75) −0.85 (−1.06, −0.48) −0.59 (−0.88, −0.13)

2nd peak Mean (SD) abundance 9.6 (3.7) 4.3 (3.0) 2.8 (2.2)

Range 2–16 0–11 0–9

Growth rate (95% CI) 1.41 (1.26, 1.56) 1.04 (0.92, 1.16) 0.88 (0.71, 1.04)

Density dependence −0.97 (−1.00, −0.92) −0.53 (−0.94, 0.28) −1.08 (−1.36, −0.88)

Notes. All statistics are based on spatial variation in numbers of individuals trapped per quadrat. Growth rate refers to seasonal growth rate within each 
peak; that is, quadrat-specific growth from spring to autumn. Density dependence is calculated as the mean of the posterior of (βDD – 1) from the 
Bayesian state-space model (see Supporting Information Appendix S4). 95% credible interval is given in the parentheses.
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plant-based models were not selected over the null models during 
the second peak).

We found little differences in model transferability between raw 
and relative prediction errors (Table 4). Yet, the model for tundra 
voles appears to have underpredicted the average vole densities, 
whereas the model for grey-sided voles showed an opposite pattern 
(i.e., over prediction; Figure 5). Hence, the uncertainty of our predic-
tions for these models was partly related to our ability to predict the 
average abundance levels of voles in the landscape.

4  | DISCUSSION

We found that the spatial variation in small rodent population peak 
abundance was consistently related to the availability of food and 
shelter plants during the first population peak, suggesting that both 

types of plant functional groups can play a role in shaping rodent 
abundance. However, some of the relationships between rodent 
abundance and food plant biomass had a negative sign, that is, rodent 
abundance decreased as plant biomass increased. Such relationships 
are unlikely to result from simple one-directional bottom-up effects 
of plant biomass on herbivore peak abundance. Moreover, temporal 
transferability of the models to the second peak was poorer, sug-
gesting that plant biomass has a complex relationship with tundra 
rodent abundances. These results demonstrate that there can be 
considerable heterogeneity in the strength of food web relation-
ships even in relatively simple systems.

There may be various reasons for the lack of temporal transfer-
ability that we found. Importantly, the role of vegetation in the dy-
namics of tundra rodents is likely a more complex interaction than a 
one-directional effect of food or shelter. Indeed, strong negative im-
pact of rodents on plant biomass has been previously demonstrated 

Species Estimate 95% CI Residual

Tundra vole Intercept 1.21 −0.30, 2.69 21, 25.51

Forbs −0.52 −0.95, −0.10

Palatable grasses 0.46 0.16, 0.76

Shelter grasses 0.17 0.06, 0.28

Grey-sided vole Intercept −1.80 −4.36, 0.67 23, 39.55

Shelter shrubs 0.60 0.13, 1.08

Lemming Intercept 1.42 1.01, 1.78 22, 30.57

Palatable grasses −0.47 −0.67, −0.28

Palatable shrubs 0.32 0.11, 0.52

TABLE  3 Coefficients from the “best” 
models for tundra vole, grey-sided vole 
and lemming abundance. Estimates are on 
log-scale. Residual column shows residual 
degrees of freedom and residual deviance, 
respectively

TABLE  4 Spatial and temporal transferability of predictions for tundra vole, grey-sided vole and lemming abundance, measured as mean 
absolute predictive error (MAE ± standard deviation)

Species Error

Spatial transferability Temporal transferability

Best model Null model Simulated Best model Null model Simulated

Tundra vole Raw 2.37 ± 0.32 
(0.20)

2.84 ± 0.14 
(0.24)

1.41 ± 0.35 
(0.12)

5.26 ± 5.52 
(0.31)

4.77 ± 3.08 
(0.28)

1.48 ± 0.25 
(0.09)

Relative 2.22 ± 0.31 
(0.19)

2.62 ± 0.16 
(0.22)

4.19 ± 5.72 
(0.25)

3.03 ± 2.06 
(0.18)

Grey-sided vole Raw 2.18 ± 0.16 
(0.18)

2.23 ± 0.13 
(0.19)

1.40 ± 0.36 
(0.12)

3.13 ± 2.02 
(0.26)

2.47 ± 1.65 
(0.21)

1.49 ± 0.24 
(0.12)

Relative 2.02 ± 0.16 
(0.17)

2.06 ± 0.18 
(0.17)

2.38 ± 1.70 
(0.20)

2.45 ± 1.61 
(0.20)

Lemming Raw 2.01 ± 3.23 
(0.22)

2.17 ± 0.26 
(0.24)

1.26 ± 0.32 
(0.14)

2.16 ± 1.58 
(0.22)

1.72 ± 1.39 
(0.17)

1.35 ± 0.22 
(0.14)

Relative 1.99 ± 4.34 
(0.22)

2.03 ± 0.30 
(0.22)

2.18 ± 1.53 
(0.22)

1.72 ± 1.39 
(0.17)

Notes. Unit is number of individuals per sampling quadrat. Values in parenthesis show the proportion of the observed range of individuals that the MAE 
represents. Column “Error” refers to type of predictive error (mean absolute prediction error, see methods for exact definitions). “Raw” refers to 
MAERAW (i.e., using raw abundances) and “Relative” to MAERELATIVE (i.e., error for relative differences in rodent numbers between sampling quadrats 
irrespective of potential differences in the average yearly density). Column “Best model” refers to mean ± standard deviation of predictive error based 
on “best” model for each species (cf. Table 3), column “Null model” refers to mean ± standard deviation of predictive error based on null models, and 
column “Simulated” presents the simulated minimum obtainable prediction error based on perfect fit. Note that the simulation results do not depend 
on whether data are centred or not and thus error is given only once.



9706  |     SOININEN et al.

for the shrub tundra zone (Olofsson, te Beest, & Ericson, 2013; 
Ravolainen, Bråthen, Yoccoz, Nguyen, & Ims, 2014) and is indicated 
by the negative relationship we found between palatable plants and 
the abundance of tundra voles and lemmings. While a negative ef-
fect of food could also result from rodents trading off food for shel-
ter, this seems unlikely as food plant biomass had no strong negative 
correlations with shelter plant biomass. Our findings on tundra voles’ 
growth rate and their food plants also exemplify the complexity of 
plant–rodent relationships. During the second peak, tundra voles’ 

growth rate was stronger and the forb biomass lower than during the 
first peak. Such a pattern creates an expectation of a stronger nega-
tive relationship between tundra voles and forbs during the second 
than first peak—exactly the opposite to our findings.

Temporal inconsistency in a plant–herbivore interaction may 
result from interannual variability in the abiotic or biotic contexts 
determining plant growth (e.g., temperature and precipitation; cf. 
Gauthier et al. (2013), van der Wal and Stien (2014) or reindeer 
grazing; c.f. Ravolainen et al. (2011))—an example of contextual 

F IGURE  4 Relationship between plant biomass and rodent abundance. Points show raw data for both peaks (peak 2006–2007 as black 
points and peak 2010–2011 as grey points) and lines denote predicted values (black lines; predictions, stippled lines; 95% confidence interval 
of the prediction) for “best” model from the first peak. For each plot, other variables included in the model were centred on their respective 
means
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sensitivity (cf. Van Bavel, Mende-Siedlecki, Brady, & Reneiro, 2016). 
For instance, rodent grazing may be able to control biomass of food 
plants in years of poor growing conditions or heavy reindeer graz-
ing (i.e., causing a negative relationship between rodent abundance 
and plant biomass). In contrast, plants may compensate for rodent 
grazing under benign growing conditions or light reindeer grazing 
(i.e., causing either no or even positive relationships). Such dynamic 
interaction would likely be better captured by measurements of 
plant productivity than snapshot data of plant biomass, in turn prob-
ably improving transferability of models describing plant–herbivore 
interactions.

Another likely reason for the lack of temporal transferability that 
we observed is that tritrophic interactions can create more complex 
relationships between plants and herbivores (Holt & Barfield, 2013). 
Potentially strong top-down impacts of predators were not included 
in our models, and it is very likely that also this have contributed 
to the lack of temporal model transferability. Within the substantial 
body of literature focusing on predator–prey interactions of tun-
dra rodents (e.g., Gilg, Hanski, & Sittler, 2003; Hanski et al., 2001; 
Therrien, Gauthier, Korpimäki, & Bêty, 2014), some models predict 
that prey carrying capacity or prey refuges may play a role in shaping 
rodent cycle amplitude (Hanski & Korpimäki, 1995; Turchin & Hanski, 
1997). Prey carrying capacity can be interpreted as food plants and 
prey refuges as shelter plants, but these models are not tailored to 
address differences between spatial and temporal settings and pro-
vide therefore little aid for interpreting the variability we observed. 
Nonetheless, the sheltering effect of vegetation may depend on 
variable abundances of mobile avian predators (Pokrovsky et al., 
2014). Spatiotemporal variation in predation risk by avian predators 
could therefore introduce corresponding variation in the relation-
ship between shelter plants and rodents.

Herbivore biomass in the productive tall shrub tundra zone is 
predicted to be uncoupled from plant biomass due to strong top-
down regulation by predators (according to EEH; Oksanen et al., 

1981; Aunapuu et al., 2008). Our results from the first peak show 
that plants and rodents can, however, have a clear relationship. 
This apparent discrepancy can be explained by that while the EEH 
considers conditions at equilibrium, predator–prey interactions are 
in reality liable to impacts of environmental stochasticity (Hanski & 
Korpimäki, 1995). Such stochasticity can give scope for clearly man-
ifested plant–rodent interactions also in productive tundra habitats, 
at least when the regulating force of predation is small, as also indi-
cated by Hoset et al. (2017). The spatial setting of rodent–predator 
interactions for a given species of rodent may be by further compli-
cated if the presence of another rodent species attracts predators 
(Henttonen, Oksanen, Jortikka, & Haukisalmi, 1987; Ims et al., 2013) 
or if the role of vegetation for rodents is not limited to food, as ex-
emplified by our study. Hence, expectations of EEH may well apply 
during one cyclic peak but may be overruled by other factors (not 
considered in the EEH framework) in other peaks.

However, modelling several trophic interactions and their in-
terdependencies within the same food web simultaneously is chal-
lenging. In particular, appropriate datasets are mostly lacking as few 
datasets cover several food web components at a fine resolution, 
over long timescales, and across replicated locations. For instance, in 
spite of using data from an extensive food web research programme 
(Ims et al., 2013), we currently lack adequate data on predators and 
plant productivity (as opposed to plant biomass) for incorporating 
them into predictive models. In addition, when different interac-
tions occur at different spatial scales, addressing them with common 
models requires careful work. In addition, different interactions are 
likely to occur at different spatial scales. For example, rodent–plant 
interactions occur at the scale of the home range of a rodent (a few 
tens of metres) whereas predators interact with rodents at a larger 
scale (hundreds of metres to kilometres), many rodents home ranges 
being affected by the same predator. Yet, neither the theory of food 
web ecology nor empirical modelling tools address such variability 
of scales adequately.

F IGURE  5 Observed and predicted abundances of rodents during the second peak (2010–2011). Observed quadrat-specific rodent 
abundances during the second small rodent population peak compared with corresponding densities predicted by statistical models built on 
first peaks data
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Our study also exemplifies the challenge of making temporal 
predictions based on spatial data. The range of several plant bio-
mass variables differed between the peaks (Figure 3), as could be 
expected based on the few time series that describe annual variation 
in Arctic plant biomass (Gauthier et al., 2013; Olofsson et al., 2013; 
van der Wal & Stien, 2014). Thus, longer temporal extent may be 
required to capture the whole span of the variability of plant biomass 
existing through time. This fits well with the fact that our predictions 
for vole abundances had systematic errors (Figure 5). The tempo-
ral variation in plant biomass may also partly explain why we found 
consistently better spatial than temporal transferability. We tested 
the spatial transferability based on a dataset drawn from the original 
range of plant biomass data, the range of plant biomass thus remain-
ing similar to the one used for developing the model. Moreover, the 
temporal transferability did not depend on the spatial extent of the 
dataset during the second peak (Supporting Information Appendix 
S2, Table S5). The spatial extent of our data appears therefore suffi-
cient to encompass the relevant range of plant biomass in the region.

Predictor variable range change is a fundamental problem for 
transferability in ecology (Randin et al., 2006; Thuiller, Brotons, 
Araujo, & Lavorel, 2004). In particular, as ecological relationships are 
rarely linear, sampling different ranges of predictor variables leads 
easily to different models. Indeed, given that most ecological sys-
tems are currently subjected to rapidly changing climatic conditions 
(possibly leading to “novel climates”), numerous environmental and 
biological variables are expected to change their ranges to unknown 
extents. At a decadal temporal extent, both the range of several vari-
ables and the relationship between them can change, as illustrated 
by Morris and Dupuch (2012) for lemming habitat selection. Hence, 
it is debatable to what extent numeric models are able to forecast the 
future states of ecological systems that are also more liable to tran-
sient dynamics (Petchey et al., 2015; Planque, 2016). Nevertheless, 
making model validations and predictions—even based on relatively 
short-term data as performed in the present study—is a valuable 
approach for effective learning about the functioning of ecological 
systems (Dietze, 2017; Dietze et al., 2018).

5  | CONCLUSION

The pronounced spatiotemporal variation in the relationship between 
rodent and plants implies that snapshots of spatial variability may 
not be able to provide generalizable conclusions about biotic inter-
actions. Indeed, we would have drawn rather different conclusions 
about the role of plant functional groups for rodents if using data 
from the first or the second peak only. We propose that predictions 
of biotic interaction strength may be improved by parameterizing a 
more complete set of a priori determined key functional links within 
the food web and the impacts of the abiotic environment. A crucial 
limitation for achieving such models is the scarcity of fine-grained 
large-scale (cf. Wisz et al., 2013) datasets that cover spatiotempo-
ral variation of such key players. This is unsurprising, as such data-
sets are extremely laborious to achieve. As a potential solution, we 

suggest strengthened collaboration between researchers whose main 
research interests lay in different parts of the food web. In particular, 
employing common study designs that allow for combining datasets 
across the food web will enable simultaneous modelling of several 
food web interactions.

ACKNOWLEDG MENTS

We thank Ingrid Jensvoll and Mette Nilsen for field work leader-
ship and help with logistics; Xabier Ancin, Sandra Hamel, Øyvind 
Haugland, Fride Høistad, Kristoffer H. Juell, Trond Kvitvik, Kjell 
Eivind Madsen, Philip Mellison, Karen Lone, Kjersti Nilsen, Pia 
Rännänen, Guro Saurdal, Gunnhild Skogstad, Aslak Smalås, Johan 
Nils Swärd, Leif Einar Støveren, Raymond Sørensen, Ole Torland, 
Vegar Nilsen Trasti, and Geir Vie who collected data on vegetation 
and/or small rodents in 2006/2007 and 2010/2011. We are thank-
ful for constructive comments by Katrine Hoset and Douglas Morris 
on earlier versions of the manuscript. This study was financed by 
the Norwegian Research Council (projects Ecosystem Finnmark, 
EcoFinn, and SUSTAIN) and the FramCentre through the Climate-
Ecological Observatory for Arctic Tundra (COAT). The publication 
charges for this article have been funded by a grant from the publica-
tion fund of UiT The Arctic University of Norway.

CONFLIC T OF INTERE S T

None declared.

AUTHOR CONTRIBUTIONS

All authors contributed to the design of the study. EMS, JAH, VTR, 
KAB, and STK collected field data. EMS and JAH analysed data. EMS 
wrote the paper with contributions from all authors.

DATA ACCE SSIBILIT Y

Data are available through Dryad (doi: 10.5061/dryad.7r5d56c).

ORCID 

Eeva M. Soininen   http://orcid.org/0000-0003-4280-8350  

R E FE R E N C E S

Abrams, P. A., & Cortez, M. H. (2015). The many potential indirect in-
teractions between predators that share competing prey. Ecological 
Monographs, 85, 625–641.

Andreassen, H. P., Hertzberg, K., & Ims, R. A. (1998). Space-use re-
sponses to habitat fragmentation and connectivity in the root 
vole Microtus oeconomus. Ecology, 79, 1223–1235. https://doi.
org/10.1890/0012-9658(1998)079[1223:SURTHF]2.0.CO;2

Andreassen, H. P., & Ims, R. A. (2001). Dispersal in patchy vole 
populations: Role of patch configuration, density depen-
dence, and demography. Ecology, 82, 2911–2926. https://doi.
org/10.1890/0012-9658(2001)082[2911:DIPVPR]2.0.CO;2

https://doi.org/10.5061/dryad.7r5d56c
http://orcid.org/0000-0003-4280-8350
http://orcid.org/0000-0003-4280-8350
https://doi.org/10.1890/0012-9658(1998)079[1223:SURTHF]2.0.CO;2
https://doi.org/10.1890/0012-9658(1998)079[1223:SURTHF]2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082[2911:DIPVPR]2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082[2911:DIPVPR]2.0.CO;2


     |  9709SOININEN et al.

Aunapuu, M., Dahlgren, J., Oksanen, T., Grellmann, D., Oksanen, L., 
Olofsson, J., … Hygen, H. O. (2008). Spatial patterns and dynamic 
responses of arctic food webs corroborate the exploitation ecosys-
tems hypothesis (EEH). American Naturalist, 171, 249–262. https://
doi.org/10.1086/524951

Barraquand, F., Louca, S., Abbott, K. C., Cobbold, C. A., Cordoleani, F., 
DeAngelis, D. L., … Tyson, R. C. (2017). Moving forward in circles: 
Challenges and opportunities in modelling population cycles. Ecology 
Letters, 20, 1074–1092. https://doi.org/10.1111/ele.12789

Bartomeus, I., Gravel, D., Tylianakis, J. M., Aizen, M. A., Dickie, I. A., & 
Bernard-Verdier, M. (2016). A common framework for identify-
ing linkage rules across different types of interactions. Functional 
Ecology, 30, 1894–1903. https://doi.org/10.1111/1365-2435.12666

Batzli, G. O., & Lesieutre, C. (1995). Community organization of arvi-
coline rodents in Northern Alaska. Oikos, 72, 88–98. https://doi.
org/10.2307/3546042

Birney, E. C., Grant, W. E., & Baird, D. D. (1976). Importance of vegeta-
tive cover to cycles of microtus populations. Ecology, 57, 1043–1051. 
https://doi.org/10.2307/1941069

Bråthen, K. A., & Hagberg, O. (2004). More efficient estimation of plant 
biomass. Journal of Vegetation Science, 15, 653–660. https://doi.
org/10.1111/j.1654-1103.2004.tb02307.x

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel infer-
ence: A practical information-theoretic approach. New York, NY: Springer.

Chapman, E. J., & Byron, C. J. (2018). The flexible application of carrying 
capacity in ecology. Global Ecology and Conservation, 1–12. e00365. 
https://doi.org/10.1016/j.gecco.2017.e00365

Cox, D. R., & Wermuth, N. (1992). A comment on the coefficient of deter-
mination for binary responses. American Statistician, 46, 1–4.

Dehn, M. M., Ydenberg, R. C., & Dill, L. M. (2017). Experimental addition 
of cover lowers the perception of danger and increases reproduc-
tion in meadow voles (Microtus pennsylvanicus). Canadian Journal of 
Zoology, 95, 463–472. https://doi.org/10.1139/cjz-2016-0169

Dietze, M. C. (2017). Ecological forecasting. Princeton, NJ: Princeton 
University Press. https://doi.org/10.1515/9781400885459

Dietze, M. C., Fox, A., Beck-Johnson, L. M., Betancourt, J. L., Hooten, M. 
B., Jarnevich, C. S., … White, E. P. (2018). Iterative near-term ecolog-
ical forecasting: Needs, opportunities, and challenges. Proceedings 
of the National Academy of Sciences of the United States of America, 
115, 1424–1432. https://doi.org/10.1073/pnas.1710231115

Dupuch, A., Morris, D. W., Ale, S. B., Wilson, D. J., & Moore, D. E. (2014). 
Landscapes of fear or competition? Predation did not alter habi-
tat choice by Arctic rodents. Oecologia, 174, 403–412. https://doi.
org/10.1007/s00442-013-2792-7

Dupuch, A., Morris, D. W., & Halliday, W. D. (2014). Patch use and vig-
ilance by sympatric lemmings in predator and competitor-driven 
landscapes of fear. Behavioral Ecology and Sociobiology, 68, 299–308. 
https://doi.org/10.1007/s00265-013-1645-z

Ekerholm, P., Oksanen, L., & Oksanen, T. (2001). Long-term dynamics of 
voles and lemmings at the timberline and above the willow limit as a 
test of hypotheses on trophic interactions. Ecography, 24, 555–568. 
https://doi.org/10.1034/j.1600-0587.2001.d01-211.x

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological 
explanation and prediction across space and time. Annual Review of 
Ecology and Systematics, 40, 677–697. https://doi.org/10.1146/an-
nurev.ecolsys.110308.120159

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of 
prediction errors in conservation presence/absence models. Environmental 
Conservation, 24, 38–49. https://doi.org/10.1017/S0376892997000088

Gauthier, G., Bêty, J., Cadieux, M. C., Legagneux, P., Doiron, M., 
Chevallier, C., … Berteaux, D. (2013). Long-term monitoring at mul-
tiple trophic levels suggests heterogeneity in responses to climate 
change in the Canadian Arctic tundra. Philosophical Transactions of 
the Royal Society B-Biological Sciences, 368, 20120482. https://doi.
org/10.1098/rstb.2012.0482

Gellner, G., & McCann, K. S. (2016). Consistent role of weak and strong 
interactions in high- and low-diversity trophic food webs. Nature 
Communications, 7, 1–7.

Gilg, O., Hanski, I., & Sittler, B. (2003). Cyclic dynamics in a simple verte-
brate predator-prey community. Science, 302, 866–868. https://doi.
org/10.1126/science.1087509

Gravem, S. A., & Morgan, S. G. (2016). Prey state alters trait-mediated 
indirect interactions in rocky tide pools. Functional Ecology, 30, 1574–
1582. https://doi.org/10.1111/1365-2435.12628

Gripenberg, S., & Roslin, T. (2007). Up or down in space? Uniting the bot-
tom-up versus top-down paradigm and spatial ecology. Oikos, 116, 
181–188. https://doi.org/10.1111/j.0030-1299.2007.15266.x

Hambäck, P. A., Schneider, M., & Oksanen, T. (1998). Winter 
herbivory by voles during a population peak: The rel-
ative importance of local factors and landscape pat-
tern. Journal of Animal Ecology, 67, 544–553. https://doi.
org/10.1046/j.1365-2656.1998.00231.x

Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L., & Turchin, P. (2001). 
Small-rodent dynamics and predation. Ecology, 82, 1505–1520. https://
doi.org/10.1890/0012-9658(2001)082[1505:SRDAP]2.0.CO;2

Hanski, I., & Korpimäki, E. (1995). Microtine rodent dynamics in Northern 
Europe - parameterized models for the predator-prey interaction. 
Ecology, 76, 840–850. https://doi.org/10.2307/1939349

Henden, J.-A., Ims, R. A., Yoccoz, N., Sørensen, R., & Killengreen, 
S. (2011). Population dynamics of tundra voles in relation 
to configuration of willow thickets in southern arctic tun-
dra. Polar Biology, 34, 533–540. https://doi.org/10.1007/
s00300-010-0908-7

Henttonen, H., Gilg, O., Ims, R. A., Korpimäki, E., & Yoccoz, N. G. (2017). 
Ilkka Hanski and small mammals: From shrew metapopulations to 
vole and lemming cycles. Annales zoologici Fennici, 54, 153–162. 
https://doi.org/10.5735/086.054.0114

Henttonen, H., Oksanen, T., Jortikka, A., & Haukisalmi, V. (1987). How much 
do weasels shape microtine cycles in the northern Fennoscandian 
taiga. Oikos, 50, 353–365. https://doi.org/10.2307/3565496

Holt, R. D., & Barfield, M. (2013). Direct plant-predator interactions as 
determinants of food chain dynamics. Journal of Theoretical Biology, 
339, 47–57. https://doi.org/10.1016/j.jtbi.2013.04.034

Hoset, K. S., Ruffino, L., Tuomi, M., Oksanen, T., Oksanen, L., Mäkynen, 
A., … Moe, T. (2017). Changes in the spatial configuration and 
strength of trophic control across a productivity gradient during a 
massive rodent outbreak. Ecosystems, 20, 1–15.

Huang, J., & Frimpong, E. A. (2016). Limited transferability of stream-
fish distribution models among river catchments: Reasons and im-
plications. Freshwater Biology, 61, 729–744. https://doi.org/10.1111/
fwb.12743

Hunter, M. D., & Price, P. W. (1992). Playing chutes and ladders - hetero-
geneity and the relative roles of bottom-up and top-down forces in 
natural communities. Ecology, 73, 724–732.

Ims, R. A. (1987). Responses in spatial-organization and behavior to 
manipulations of the food resource in the vole Clethrionomys-
Rufocanus. Journal of Animal Ecology, 56, 585–596. https://doi.
org/10.2307/5070

Ims, R. A., & Fuglei, E. (2005). Trophic interaction cycles in tundra ecosys-
tems and the impact of climate change. BioScience, 55, 311–322. https://
doi.org/10.1641/0006-3568(2005)055[0311:TICITE]2.0.CO;2

Ims, R. A., Henden, J.-A., Thingnes, A. V., & Killengreen, S. T. (2013). 
Indirect food web interactions mediated by predator–rodent dy-
namics: Relative roles of lemmings and voles. Biology Letters, 9, 
20130802. https://doi.org/10.1098/rsbl.2013.0802.

Ims, R. A., Jepsen, J. U., Stien, A., & Yoccoz, N. G. (2013). Science plan for 
COAT: Climate ecological observatory for arctic tundra. Norway: Fram 
Centre.

Ims, R. A., Yoccoz, N. G., & Killengreen, S. T. (2011). Determinants of lem-
ming outbreaks. Proceedings of the National Academy of Sciences of the 

https://doi.org/10.1086/524951
https://doi.org/10.1086/524951
https://doi.org/10.1111/ele.12789
https://doi.org/10.1111/1365-2435.12666
https://doi.org/10.2307/3546042
https://doi.org/10.2307/3546042
https://doi.org/10.2307/1941069
https://doi.org/10.1111/j.1654-1103.2004.tb02307.x
https://doi.org/10.1111/j.1654-1103.2004.tb02307.x
https://doi.org/10.1016/j.gecco.2017.e00365
https://doi.org/10.1139/cjz-2016-0169
https://doi.org/10.1515/9781400885459
https://doi.org/10.1073/pnas.1710231115
https://doi.org/10.1007/s00442-013-2792-7
https://doi.org/10.1007/s00442-013-2792-7
https://doi.org/10.1007/s00265-013-1645-z
https://doi.org/10.1034/j.1600-0587.2001.d01-211.x
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1098/rstb.2012.0482
https://doi.org/10.1098/rstb.2012.0482
https://doi.org/10.1126/science.1087509
https://doi.org/10.1126/science.1087509
https://doi.org/10.1111/1365-2435.12628
https://doi.org/10.1111/j.0030-1299.2007.15266.x
https://doi.org/10.1046/j.1365-2656.1998.00231.x
https://doi.org/10.1046/j.1365-2656.1998.00231.x
https://doi.org/10.1890/0012-9658(2001)082[1505:SRDAP]2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082[1505:SRDAP]2.0.CO;2
https://doi.org/10.2307/1939349
https://doi.org/10.1007/s00300-010-0908-7
https://doi.org/10.1007/s00300-010-0908-7
https://doi.org/10.5735/086.054.0114
https://doi.org/10.2307/3565496
https://doi.org/10.1016/j.jtbi.2013.04.034
https://doi.org/10.1111/fwb.12743
https://doi.org/10.1111/fwb.12743
https://doi.org/10.2307/5070
https://doi.org/10.2307/5070
https://doi.org/10.1641/0006-3568(2005)055[0311:TICITE]2.0.CO;2
https://doi.org/10.1641/0006-3568(2005)055[0311:TICITE]2.0.CO;2
https://doi.org/10.1098/rsbl.2013.0802


9710  |     SOININEN et al.

United States of America, 108, 1970–1974. https://doi.org/10.1073/
pnas.1012714108

Kéfi, S., Berlow, E. L., Wieters, E. A., Navarrete, S. A., Petchey, O. L., 
Wood, S. A., … Brose, U. (2012). More than a meal.. integrating non-
feeding interactions into food webs. Ecology Letters, 15, 291–300. 
https://doi.org/10.1111/j.1461-0248.2011.01732.x

Kéry, M., & Royle, A. J. (2016). Applied hierarchical modeling in ecology: 
Analysis of distribution, abundance and species richness in R and BUGS. 
1st ed. London: Elsevier.

Kimbro, D. L., Byers, J. E., Grabowski, J. H., Hughes, A. R., & Piehler, M. 
F. (2014). The biogeography of trophic cascades on US oyster reefs. 
Ecology Letters, 17, 845–854. https://doi.org/10.1111/ele.12293

Kissling, W. D., Dormann, C. F., Groeneveld, J., Hickler, T., Kuhn, I., 
McInerny, G. J., … O’Hara, R. B. (2012). Towards novel approaches 
to modelling biotic interactions in multispecies assemblages at large 
spatial extents. Journal of Biogeography, 39, 2163–2178. https://doi.
org/10.1111/j.1365-2699.2011.02663.x

Krebs, C. (2011). Of lemmings and snowshoe hares: The ecology of 
Northern Canada. Philosophical Transactions of the Royal Society B-
Biological Sciences, 278, 481–489.

Krebs, C. J. (2013). Population fluctuations in rodents. Chicago, IL: 
The University Press Of Chicago. https://doi.org/10.7208/
chicago/9780226010496.001.0001

Krebs, C. J., Bryant, J., Kielland, K., O’Donoghue, M., Doyle, F., Carriere, 
S., … Golden, H. (2014). What factors determine cyclic amplitude in 
the snowshoe hare (Lepus americanus) cycle? Canadian Journal of 
Zoology, 92, 1039–1048. https://doi.org/10.1139/cjz-2014-0159

Laundre, J. W., Hernandez, L., Medina, P. L., Campanella, A., Lopez-
Portillo, J., Gonzalez-Romero, A., … Browning, D. M. (2014). The 
landscape of fear: The missing link to understand top-down and bot-
tom-up controls of prey abundance? Ecology, 95, 1141–1152. https://
doi.org/10.1890/13-1083.1

Maron, J. L., Baer, K. C., & Angert, A. L. (2014). Disentangling the drivers 
of context-dependent plant-animal interactions. Journal of Ecology, 
102, 1485–1496. https://doi.org/10.1111/1365-2745.12305

Morris, D. W., & Dupuch, A. (2012). Habitat change and the 
scale of habitat selection: Shifting gradients used by co-
existing Arctic rodents. Oikos, 121, 975–984. https://doi.
org/10.1111/j.1600-0706.2011.20492.x

Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputie, A., 
Eveillard, D., … Loreau, M. (2015). Predictive ecology in a chang-
ing world. Journal of Applied Ecology, 52, 1293–1310. https://doi.
org/10.1111/1365-2664.12482

Myers, J. H. (2018). Population cycles: Generalities, exceptions and re-
maining mysteries. Proceedings. Biological Sciences, 285, 20172841. 
https://doi.org/10.1098/rspb.2017.2841.

Myllymäki, A., Paasikalio, A., Pankakoski, E., & Kanevo, V. (1971). 
Removal experiments on small quadrats as a means of rapid assess-
ment of the abundance of small mammals. Annales Zoologici Fennici, 
8, 177–185.

Oksanen, L., Fretwell, S. D., Arruda, J., & Niemelä, P. (1981). Exploitation 
ecosystems in gradients of primary productivity. American Naturalist, 
118, 240–261. https://doi.org/10.1086/283817

Olofsson, J., te Beest, M., & Ericson, L. (2013). Complex biotic interac-
tions drive long-term vegetation dynamics in a subarctic ecosys-
tem. Philosophical Transactions of the Royal Society of London. Series 
B, Biological Sciences, 368, 20120486. https://doi.org/10.1098/
rstb.2012.0486.

Petchey, O. L., Pontarp, M., Massie, T. M., Kéfi, S., Ozgul, A., Weilenmann, 
M., … Pearse, I. S. (2015). The ecological forecast horizon, and ex-
amples of its uses and determinants. Ecology Letters, 18, 597–611. 
https://doi.org/10.1111/ele.12443

Planque, B. (2016). Projecting the future state of marine ecosystems, “la 
grande illusion”? ICES Journal of Marine Science, 73, 204–208. https://
doi.org/10.1093/icesjms/fsv155

Pokrovsky, I., Ehrich, D., Ims, R. A., Kulikova, O., Lecomte, N., & 
Yoccoz, N. G. (2014). Diet, nesting density, and breeding success 
of rough-legged buzzards (Buteo lagopus) on the Nenetsky Ridge, 
Arctic Russia. Polar Biology, 37, 447–457. https://doi.org/10.1007/
s00300-013-1441-2

R Development Core Team. (2014).R: A language and environment for 
statistical computing. Vienna, Austria: R Foundation for Statistical 
Computing.

Randin, C. F., Dirnbock, T., Dullinger, S., Zimmermann, N. E., Zappa, M., & 
Guisan, A. (2006). Are niche-based species distribution models trans-
ferable in space? Journal of Biogeography, 33, 1689–1703. https://doi.
org/10.1111/j.1365-2699.2006.01466.x

Ravolainen, V. T., Bråthen, K. A., Ims, R. A., Yoccoz, N. G., Henden, J. 
A., & Killengreen, S. T. (2011). Rapid, landscape scale responses in 
riparian tundra vegetation to exclusion of small and large mamma-
lian herbivores. Basic and Applied Ecology, 12, 643–653. https://doi.
org/10.1016/j.baae.2011.09.009

Ravolainen, V. T., Bråthen, K. A., Ims, R. A., Yoccoz, N. G., & Soininen, 
E. M. (2013). Shrub patch configuration at the landscape scale is re-
lated to diversity of adjacent herbaceous vegetation. Plant Ecology 
& Diversity, 6, 257–268. https://doi.org/10.1080/17550874.2013.77
3104

Ravolainen, V. T., Bråthen, K. A., Yoccoz, N. G., Nguyen, J. K., & Ims, R. A. 
(2014). Complementary impacts of small rodents and semi-domesticated 
ungulates limit tall shrub expansion in the tundra. Journal of Applied 
Ecology, 51, 234–241. https://doi.org/10.1111/1365-2664.12180

Ravolainen, V. T., Yoccoz, N. G., Bråthen, K. A., Ims, R. A., Iversen, M., 
& Gonzalez, V. T. (2010). Additive partitioning of diversity reveals 
no scale-dependent impacts of large ungulates on the structure 
of tundra plant communities. Ecosystems, 13, 157–170. https://doi.
org/10.1007/s10021-009-9308-7

Sequeira, A. M. M., Bouchet, P. J., Yates, K. L., Mengersen, K., & Caley, 
M. J. (2018). Transferring biodiversity models for conservation: 
Opportunities and challenges. Methods in Ecology and Evolution, 9, 
1250–1264. https://doi.org/10.1111/2041-210X.12998

Soininen, E. M., Ehrich, D., Lecomte, N., Yoccoz, N. G., Tarroux, A., 
Berteaux, D., … Ims, R. A. (2014). Sources of variation in small ro-
dent trophic niche: New insights from DNA metabarcoding and sta-
ble isotope analysis. Isotopes in Environmental and Health Studies, 50, 
361–381. https://doi.org/10.1080/10256016.2014.915824

Soininen, E. M., Ravolainen, V. T., Bråthen, K. A., Yoccoz, N. G., Gielly, L., 
& Ims, R. A. (2013). Arctic small rodents have diverse diets and flex-
ible food selection. PLoS ONE, 8, e68128. https://doi.org/10.1371/
journal.pone.0068128

Soininen, E. M., Zinger, L., Gielly, L., Bellemain, E., Bråthen, K. A., 
Brochmann, C., … Ims, R. A. (2013). Shedding new light on the 
diet of Norwegian lemmings: DNA metabarcoding of stomach 
content. Polar Biology, 36, 1069–1076. https://doi.org/10.1007/
s00300-013-1328-2

Steen, H., & Haydon, D. (2000). Can population growth rates vary with the 
spatial scale at which they are measured? Journal of Animal Ecology, 
69, 659–671. https://doi.org/10.1046/j.1365-2656.2000.00424.x

Terraube, J., Villers, A., Ruffino, L., Iso-Iivari, L., Henttonen, H., Oksanen, 
T., & Korpimäki, E. (2015). Coping with fast climate change in north-
ern ecosystems: Mechanisms underlying the population-level re-
sponse of a specialist avian predator. Ecography, 38, 690–699. https://
doi.org/10.1111/ecog.01024

Therrien, J. F., Gauthier, G., Korpimäki, E., & Bêty, J. (2014). Predation 
pressure by avian predators suggests summer limitation of small-
mammal populations in the Canadian Arctic. Ecology, 95, 56–67. 
https://doi.org/10.1890/13-0458.1

Thuiller, W., Brotons, L., Araujo, M. B., & Lavorel, S. (2004). Effects of 
restricting environmental range of data to project current and fu-
ture species distributions. Ecography, 27, 165–172. https://doi.
org/10.1111/j.0906-7590.2004.03673.x

https://doi.org/10.1073/pnas.1012714108
https://doi.org/10.1073/pnas.1012714108
https://doi.org/10.1111/j.1461-0248.2011.01732.x
https://doi.org/10.1111/ele.12293
https://doi.org/10.1111/j.1365-2699.2011.02663.x
https://doi.org/10.1111/j.1365-2699.2011.02663.x
https://doi.org/10.7208/chicago/9780226010496.001.0001
https://doi.org/10.7208/chicago/9780226010496.001.0001
https://doi.org/10.1139/cjz-2014-0159
https://doi.org/10.1890/13-1083.1
https://doi.org/10.1890/13-1083.1
https://doi.org/10.1111/1365-2745.12305
https://doi.org/10.1111/j.1600-0706.2011.20492.x
https://doi.org/10.1111/j.1600-0706.2011.20492.x
https://doi.org/10.1111/1365-2664.12482
https://doi.org/10.1111/1365-2664.12482
https://doi.org/10.1098/rspb.2017.2841
https://doi.org/10.1086/283817
https://doi.org/10.1098/rstb.2012.0486
https://doi.org/10.1098/rstb.2012.0486
https://doi.org/10.1111/ele.12443
https://doi.org/10.1093/icesjms/fsv155
https://doi.org/10.1093/icesjms/fsv155
https://doi.org/10.1007/s00300-013-1441-2
https://doi.org/10.1007/s00300-013-1441-2
https://doi.org/10.1111/j.1365-2699.2006.01466.x
https://doi.org/10.1111/j.1365-2699.2006.01466.x
https://doi.org/10.1016/j.baae.2011.09.009
https://doi.org/10.1016/j.baae.2011.09.009
https://doi.org/10.1080/17550874.2013.773104
https://doi.org/10.1080/17550874.2013.773104
https://doi.org/10.1111/1365-2664.12180
https://doi.org/10.1007/s10021-009-9308-7
https://doi.org/10.1007/s10021-009-9308-7
https://doi.org/10.1111/2041-210X.12998
https://doi.org/10.1080/10256016.2014.915824
https://doi.org/10.1371/journal.pone.0068128
https://doi.org/10.1371/journal.pone.0068128
https://doi.org/10.1007/s00300-013-1328-2
https://doi.org/10.1007/s00300-013-1328-2
https://doi.org/10.1046/j.1365-2656.2000.00424.x
https://doi.org/10.1111/ecog.01024
https://doi.org/10.1111/ecog.01024
https://doi.org/10.1890/13-0458.1
https://doi.org/10.1111/j.0906-7590.2004.03673.x
https://doi.org/10.1111/j.0906-7590.2004.03673.x


     |  9711SOININEN et al.

Thuiller, W., Munkemuller, T., Lavergne, S., Mouillot, D., Mouquet, N., 
Schiffers, K., & Gravel, D. (2013). A road map for integrating eco-
evolutionary processes into biodiversity models. Ecology Letters, 16, 
94–105. https://doi.org/10.1111/ele.12104

Turchin, P., & Batzli, G. (2001). Availability of food and the population 
dynamics of arvicoline rodents. Ecology, 82, 1521–1534. https://doi.
org/10.1890/0012-9658(2001)082[1521:AOFATP]2.0.CO;2

Turchin, P., & Hanski, I. (1997). An empirically based model for latitudi-
nal gradient in vole population dynamics. American Naturalist, 149, 
842–874. https://doi.org/10.1086/286027

Van Bavel, J. J., Mende-Siedlecki, P., Brady, W. J., & Reneiro, D. 
A. (2016). Contextual sensitivity in scientific reproducibility. 
Proceedings of the National Academy of Sciences of the United 
States of America, 113, 6454–6459. https://doi.org/10.1073/
pnas.1521897113

van der Wal, R., & Stien, A. (2014). High-arctic plants like it hot: A long-
term investigation of between-year variability in plant biomass. 
Ecology, 95, 3414–3427.

Wenger, S. J., & Olden, J. D. (2012). Assessing transferability of eco-
logical models: An underappreciated aspect of statistical valida-
tion. Methods in Ecology and Evolution, 3, 260–267. https://doi.
org/10.1111/j.2041-210X.2011.00170.x

Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, 
C. F., … Svenning, J. C. (2013). The role of biotic interactions in shap-
ing distributions and realised assemblages of species: Implications 

for species distribution modelling. Biological Reviews, 88, 15–30. 
https://doi.org/10.1111/j.1469-185X.2012.00235.x

Wogan, G. O. U. (2016). Life history traits and niche instability impact 
accuracy and temporal transferability for historically calibrated dis-
tribution models of North American birds. PLoS ONE, 11, e0151024. 
https://doi.org/10.1371/journal.pone.0151024

Yang, L. H., Edwards, K. F., Byrnes, J. E., Bastow, J. L., Wright, A. N., & 
Spence, K. O. (2010). A meta-analysis of resource pulse-consumer 
interactions. Ecological Monographs, 80, 125–151. https://doi.
org/10.1890/08-1996.1

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article. 

How to cite this article: Soininen EM, Henden J-A, Ravolainen 
VT, et al. Transferability of biotic interactions: Temporal 
consistency of arctic plant–rodent relationships is poor. Ecol 
Evol. 2018;8:9697–9711. https://doi.org/10.1002/ece3.4399

https://doi.org/10.1111/ele.12104
https://doi.org/10.1890/0012-9658(2001)082[1521:AOFATP]2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082[1521:AOFATP]2.0.CO;2
https://doi.org/10.1086/286027
https://doi.org/10.1073/pnas.1521897113
https://doi.org/10.1073/pnas.1521897113
https://doi.org/10.1111/j.2041-210X.2011.00170.x
https://doi.org/10.1111/j.2041-210X.2011.00170.x
https://doi.org/10.1111/j.1469-185X.2012.00235.x
https://doi.org/10.1371/journal.pone.0151024
https://doi.org/10.1890/08-1996.1
https://doi.org/10.1890/08-1996.1
https://doi.org/10.1002/ece3.4399

