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Abstract

In conventional Magnetic Resonance (MR) image based methods, two stages are often involved to 

capture brain structural information for disease diagnosis, i.e., 1) manually partitioning each MR 

image into a number of regions-of-interest (ROIs), and 2) extracting pre-defined features from 

each ROI for diagnosis with a certain classifier. However, these pre-defined features often limit the 

performance of the diagnosis, due to challenges in 1) defining the ROIs and 2) extracting effective 

disease-related features. In this paper, we propose a landmark-based deep multi-instance learning 

(LDMIL) framework for brain disease diagnosis. Specifically, we first adopt a data-driven learning 

approach to discover disease-related anatomical landmarks in the brain MR images, along with 

their nearby image patches. Then, our LDMIL framework learns an end-to-end MR image 

classifier for capturing both the local structural information conveyed by image patches located by 

landmarks and the global structural information derived from all detected landmarks. We have 

evaluated our proposed framework on 1526 subjects from three public datasets (i.e., ADNI-1, 

ADNI-2, and MIRIAD), and the experimental results show that our framework can achieve 

superior performance over state-of-the-art approaches.
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1. Introduction

Brain morphometric pattern analysis using structural magnetic resonance imaging (MRI) 

data are proven to be effective in identifying anatomical differences between populations of 

Alzheimer’s disease (AD) patients and normal controls (NC), and in helping evaluate the 

progression of mild cognitive impairment (MCI), a prodromal stage of AD. In the literature, 
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extensive MRI-based approaches have been developed to assist clinicians in interpreting and 

assessing structural changes of the brain (Jack et al., 1999; Ashburner and Friston, 2000; 

Cuingnet et al., 2011; Chu et al., 2012). While some of those methods are proposed for 

fundamental MR image analysis (e.g., anatomical landmark detection (Zhang et al., 2017b)), 

many approaches focus on the implementation of computer-aided-diagnosis (CAD) systems.

To support brain disease diagnosis, many types of local or global feature representations 

have been derived from structural MRI, such as gray matter tissue density maps (Ashburner 

and Friston, 2000), volume and shape measurements (Jack et al., 1999; Atiya et al., 2003; 

Dubois et al., 2015), and cortical thickness (Cuingnet et al., 2011; Lotjonen et al., 2011; 

Montagne et al., 2015). These feature representations can be roughly categorized into three 

classes, including 1) voxel-level, 2) region-of-interest (ROI) level, and 3) whole-image-level 

representations. In particular, voxel-level features attempt to identify brain tissue changes in 

a voxel-wise manner, and ROI-level features aim to model structural changes within pre-

defined ROIs. As an alternative solution, whole-image-level features evaluate changes in the 

brain by regarding an MR image as a whole (Wolz et al., 2012), without considering local 

structures within the MR images. It is noteworthy that the appearance of brain MR images is 

often globally similar and locally different, For instance, it is reported that the early stage of 

AD only induces structural changes in small local regions rather than in the isolated voxels 

or the whole brain. Hence, feature representations defined at voxel-level, ROI-level or 

whole-image-level may not be effective in characterizing the early AD-related structural 

changes of the brain.

Recently, several patch-level (an intermediate scale between voxel-level and ROI-level) 

features have been proposed to represent structural MR images for distinguishing AD 

patients from NCs (Tong et al., 2014; Coupe et al., 2012; Zhang et al., 2017a). In these 

methods, all patches from MR images of patients are generally regarded as positive samples, 

while those from MR images of NCs are regarded as negative samples. In other words, the 

conventional patch-based methods usually assign the same class label (e.g., AD patient or 

NC) to all image patches from the same brain image. Since not all image patches are 

necessarily affected by dementia, class labels for patches could be ambiguous. Accordingly, 

a previous study (Tong et al., 2014) adopted multi-instance learning (MIL) for classification 

of dementia in brain MRI. As a weakly supervised approach MIL (Maron and Lozano-Pérez, 

1998) constructs classifiers using weakly labeled training patches, i.e., image-level labels are 

used instead of patch-level labels. However, how to select discriminative patches from tens 

of thousands of patches in each MR image still remains a challenging problem. Moreover, 

most of the existing patch representations (e.g., intensity values, and/or morphological 

features) are based on engineered and empirically pre-defined features, which are often 

independent of subsequent classifier learning procedure. Due to the possible heterogeneous 

nature of features and classifiers, the pre-defined features may lead to sub-optimal learning 

performance for brain disease diagnosis. In addition, global information of the whole MR 

image could not be captured by using only these local patches. In summary, there are at least 

three key challenges in patch-based approaches: 1) how to select informative image patches 

in an efficient way, 2) how to capture both local patch-level and global image-level features, 

and 3) how to integrate feature learning and classifier training jointly.
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We address these three challenges by proposing a landmark-based deep multi-instance 

learning (LDMIL) framework. In LDMIL, we first select discriminative patches from MR 

images based on anatomical landmarks, then jointly learn feature representations of input 

patches and the subsequent classifier in an end-to-end manner, through which both local and 

global features of brain MR images are incorporated. Fig. 1 presents a schematic diagram of 

our proposed LDMIL framework. Specifically, after processing MR images of both training 

and testing subjects, we discover discriminative landmarks via a group comparison between 

AD and NC subjects in the training set. We then extract image patches centered at selected 

landmark locations. These patches from the instances in the MIL terminology, which 

construct one bag to represent each specific subject. Note that the whole-image-level 

(subject-level) class label is assigned to a bag, rather than all image patches in the bag. 

Finally, using the training bags of patches, we design a multi instance CNN model for end-

to-end classifier learning. For a new testing subject, we first identify landmarks via the 

landmark detection algorithm. Then, a bag of patches is extracted from the MR image of the 

testing subject and fed to the learned CNN model for classification. We have evaluated the 

effectiveness of our proposed LDMIL framework using baseline MR images in ADNI-1, 

ADNI-2 (Jack et al., 2008), and MIRIAD (Malone et al., 2013) datasets. Experimental 

results show that LDMIL outperforms the state-of-the-art methods in both AD classification 

and MCI conversion prediction tasks.

The rest of the paper is organized as follows. We first briefly introduce relevant studies in 

Section 2. In Section 3, we describe data used in this study and illustrate the proposed 

method. In Section 4, we present experimental settings and show the results of both AD 

classification and MCI conversion prediction tasks. In Section 5, we compare our method 

with several baseline and state-of-the-art approaches, investigate the influences of 

parameters, and present limitations of the proposed method. In Section 6, we conclude this 

work and discuss future research directions.

2. Related work

In this section, we first review relevant studies on MRI-based brain disease diagnosis. Then, 

we review multi-instance learning approaches and their applications in the medical imaging 

analysis domain.

2.1. MRI-based brain disease diagnosis

A typical MRI-based CAD system usually contains two essential components, including 1) 

feature/biomarker extraction from MR images, and 2) classifier construction. Most of the 

existing feature extraction methods adopt voxel-level, ROI-level, or whole-image-level 

representations for MR images. Specifically, voxel-wise representations are independent of 

any hypothesis on brain structures (Ashburner and Friston, 2000; Maguire et al., 2000; 

Baron et al., 2001; KlÖpel et al., 2008). For instance, voxel-based morphometry measures 

local tissue (e.g., white matter, gray matter, and cerebrospinal fluid) density of a brain in a 

voxel-wise manner. The major challenge of voxel-level representations is that they usually 

lead to the over-fitting problem, since there are only limited (e.g., tens or hundreds) subjects 

with very high (e.g., millions) dimensional features (Friedman et al., 2001). In contrast, 

Liu et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ROI-level representations are defined on specific ROIs, based on a specific hypothesis on 

abnormal regions of a brain from a structural/functional perspective. For instance, a large 

number of MRI-based studies have adopted gray matter volume (Yamasue et al., 2003; 

Maguire et al., 2000; Liu et al., 2017; 2015)), hippocampal volume (Jack et al., 1992; 1999; 

Atiya et al., 2003; Dubois et al., 2015), and cortical thickness (Fischl and Dale, 2000; 

Cuingnet et al., 2011; Lotjonen et al., 2011; Montagne et al., 2015), to measure regionally 

anatomical volume in the brain. However, the definition of ROIs generally requires expert 

knowledge in practice (Small et al., 2000). Also, whole-image-level representations are 

derived by treating an MR image as a whole (Wolz et al., 2012). Due to the globally similar 

property of brain MR images, this kind of methods could not identify subtle changes in brain 

structures. In contrast, patch-level features provide an intermediate scale between voxel-level 

and ROI-level for representative MR images. Actually, patch-level biomarkers can be 

regarded as special ROI-based features, where such ROIs are defined at the scale of local 

image patches. However, it remains a challenging problem to select informative patches 

from MR images and to derive discriminative feature representations for patches.

On the other hand, there are a large number of studies focusing on designing advanced 

classifiers for AD-related disease diagnosis using MRI data. Among various approaches, 

support vector machine (SVM), logistic regressors (e.g., Lasso, and Elastic Net (Friedman et 

al., 2001)), sparse representation based classification (SRC) (Wright et al., 2009), random 

forest classifier (Xiang et al., 2014; Moradi et al., 2015) are widely used. To facilitate the 

classifier learning procedure, a number of pre-defined features are usually first extracted 

from MR images. However, training a classifier independent from the feature extraction 

process may lead to sub-optimal learning performance, due to the possible heterogeneous 

nature of classifier and features. In recent years, convolutional neural networks (CNNs) have 

become very popular for automatically learning representations from large collections of 

static images. However, it is unclear how one may extend these successful CNNs to MRI 

data for brain disease diagnosis, especially when the intended task requires capturing 

discriminative changes of the brain (e.g., local and global structure information).

2.2 Multi-instance learning

As a weakly supervised learning method, multi-instance learning (MIL) (Maron and 

Lozano-Perez, 1998; Dietterich et al., attempts to learn a concept from a training set of 

labeled bags, where each bag contains multiple unlabeled instances (Amores, 2013). This 

means that we do not know the labels of individual instances extracted from the bag. Also, it 

is possible that not all instances are necessarily relevant to the class label of the bag. 

Specifically, in MIL framework, positive bags can contain both positive and negative 

instances, and it is generally guaranteed that at least one instance is positive. On the other 

hand, we know that all instances in the negative bags are negative in MIL. For example, 

inside one bag, there might be instances that do not convey any information about the 

category of the bag, or that are more related to other classes, providing confusing 

information. Compared with fully supervised learning methods, MIL has advantages in 

automatically modeling the fine-grained information and reducing efforts of human 

annotations. Many MIL approaches have been proposed in the machine learning domain, 

such as Diverse Density (DD) (Maron and Lozano-Pérez, 1998), EM-DD (Zhang and 
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Goldman, 2001), MI-Kernels (Gärtner et al., 2002), SVM-based methods (Andrews et al., 

2002), and MIL-Boost (Zhang et al., 2005; Cheply-gina et al., 2016).

Recently, MIL has been adopted in the medical imaging analysis domain (Bi and Liang, 

2007; Liu et al., 2010; Lu et al., 2011; Xu et al., 2012; Tong et al., 2014; Xu et al., 2014; Yan 

et al., 2016). In Lu et al. (2011) and Xu et al. (2012), MIL-like methods were developed to 

perform medical image segmentation. In Bi and Liang (2007), a MIL-based method was 

proposed to screen pulmonary embolisms among candidates. Liu et al. (2010) developed a 

MIL-SVM method to predict cardiac events. Tong et al. (2014) proposed a MIL-like model 

for dementia classification with brain MRI data, by first extracting multiple image patches 

and then constructing graph kernels for SVM-based classification. This method adopted 

intensity values within a patch for feature representation that was independent of the 

subsequent SVM classifier. More recently, a multi-instance deep learning method (Yan et al., 

2016) was developed to discover discriminative local anatomies for body-part recognition. 

This method consisted of a two-stage CNN model, where the first-stage CNN was trained in 

a multi-instance learning fashion to locate discriminative image patches, and the second-

stage CNN was boosted using those selected patches.

Inspired by the latest advances in MIL research, we propose a landmark-based deep multi-

instance learning (LDMIL) framework for brain disease diagnosis. Different from the 

previous MIL studies (Tong et al., 2014; Yan et al., 2016), our method can locate 

discriminative image patches via anatomical landmarks identified by a data-driven landmark 

discovery algorithm and does not require any pre-defined engineered features for image 

patches. This is particularly meaningful for medical imaging applications, where annotating 

discriminative regions in the brain and extracting meaningful features from MRI often 

require clinical expertise and high cost. Also, LDMIL is capable of capturing both the local 

information of image patches and the global information of multiple landmarks, by learning 

local-to-global representations for MR images layer by layer. To the best of our knowledge, 

it is the first deep multiinstance model to integrate landmark-based patch extraction with 

local-to-global representation learning for MRI-based brain disease diagnosis.

3. Material and methods

Here, we first introduce datasets and MR image processing pipeline used in this study 

(Section 3.1), and then present the proposed landmark-based deep multi-instance learning 

(LDMIL) method including discriminative landmark discovery (Section 3.2), landmark-

based instance extraction (Section 3.3), and a multiinstance CNN model (Section 3.4).

3.1. Subjects and image processing

Three public datasets were used in this study, including 1) the Alzheimer’s Disease 

Neuroimaging lnitiative-1 (ADNI-1) dataset (Jack et al., 2008), 2) the ADNI-2 dataset (Jack 

et al., 2008), and 3) the MIRIAD (Minimal Interval Resonance Imaging in Alzheimer’s 

Disease) dataset (Malone et al., 2013). Those three datasets contain baseline brain MR 

imaging from Alzheimer’s disease patients and normal control subjects. We report the 

demographic information of studied subjects in Table 1.
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1) ADNI-1 (Jack et al., 2008): Subjects in the baseline ADNI-1 dataset have 1.5T 

T1-weighted structural MRI data. According to some criteria (see http://

adni.loni.usc.edu), such as Mini-Mental State Examination (MMSE) scores and 

Clinical Dementia Rating (CDR), subjects in ADNI-1 are be divided into three 

categories: NC, MCI, and AD. In addition, some MCI subjects had converted to 

AD within 36 months after the baseline time, while the other MCI subjects were 

stable over time. According to whether MCI subjects would convert to AD 

within 36 months after the baseline, MCI subjects are further categorized as two 

classes: (1) stable MCI (sMCI), if the diagnosis was MCI at all available time 

points (0 – 96 months); (2) progressive MCI (pMCI), if the diagnosis was MCI 

at baseline but these subjects converted to AD within 36 months after baseline. 

There is a total of 821 subjects in this dataset, including 199 AD, 229 NC, 167 

pMCI, and 226 sMCI subjects in the baseline ADNI-1 dataset.

2) ADNI-2 (Jack et al., 2008): Similar to ADNI-1, the baseline ADNI-2 dataset 

contains 159 AD, 200 NC, 38 pMCI, and 239 sMCI subjects. The definitions of 

pMCI and sMCI in ADNI-2 are the same as those in ADNI-1, based on whether 

MCI subjects would convert to AD within 36 months after baseline. It is worth 

noting that many subjects included in ADNI-1 also participated in ADNI-2. For 

independent testing, subjects that appear in both ADNI-1 and ADNI-2 are 

removed from ADNI-2. Different from those in ADNI-1, the studied subjects 

from this dataset have 3T T1-weighted structural MR imaging data.

3) MIRIAD (Malone et al., 2013): This dataset includes 69 brain MR images from 

healthy (23) and pathological (46) subjects. Subjects were previously analyzed 

with a MMSE, and the score obtained was used to classify them as normal 

controls (NC) or Alzheimer’s disease patients (AD). As described in Malone et 

al. (2013), images were acquired on a 1.5T Signa MRI scanner (GE Medical 

systems, Milwaukee, WI, USA), using a T1-weighted IR-FSPGR (Inversion 

Recovery Prepared Fast Spoiled Gradient Recalled) sequence. Different from 

ADNI-1 and ADNI-2, the prodromal stages the disease are not categorized and 

the subjects are spread in two categories (i.e., AD, and NC).

For MR images of studied subjects, we process them using a standard procedure. 

Specifically, we first adopt the MIPAV software package2 to perform anterior commissure 

(AC)-posterior commissure (PC) correction for each MR image. Then, we resample each 

image to have the same size of 256 × 256 × 256 and the same spatial resolution of 1 × 1 × 1 

mm3, and correct intensity inhomogeneity of images using the N3 algorithm (Sled et al., 

1998). We then perform skull stripping (Wang et al., 2011) and manual editing to ensure that 

both skull and dura are cleanly removed. Finally, we remove the cerebellum by warping a 

labeled template to each skull-stripped image.

2http://mipav.cit.nih.gov/index.php.
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3.2. Discriminative landmark discovery

3.2.1. Landmark discovery from training images—There are a large number of 

image patches in each MR image, while most of them may be not informative enough for 

brain disease diagnosis, since the structural changes caused by AD could be subtle in the 

brain. To extract the most informative image patches (i.e., instances) for subsequent feature 

learning and classifier training, we adopt a data-driven landmark discovery algorithm (Zhang 

et al., 2016) to locate the most informative image patches in MRI. The goal is to identify the 

landmarks with statistically significant group differences between AD patients and NC 

subjects in local structures of MRI. Specifically, in the training stage, a voxel-wise group 

comparison between AD and NC groups is performed on the ADNI-1 dataset. Using the 

Colin27 template (Holmes et al., 1998, we use a linear registration to remove global 

translation, scale and rotation differences of MR images, and to resample all the images with 

an identical spatial resolution (i.e., 1 × 1 × 1 mm3). In this study, we do not consider the 

other confounding factors (e.g., age and gender) of subjects. For the linearly-aligned images, 

a non-linear registration is further performed to build the correspondence relationship among 

voxels in different images. Hence, based on the deformation field in the non-linear 

registration, the correspondence between voxels in the template and those in the linearly-

aligned images can be established. Then, morphological features can be extracted from those 

corresponding voxels in the training AD and NC subjects, respectively. A multivariate 

statistical test (i.e., Hotelling’s T2) (Mardia, 1975) is performed on AD and NC groups, 

through which a p-value can be calculated for each voxel in the template. As a result, a p-

value map in the template space is obtained, whose local minima are defined as locations of 

discriminative landmarks in the template space. Finally, these landmarks are directly 

projected to the linearly-aligned training images using their respective deformation fields.

In this study, we have a total of 1741 landmarks identified from AD and NC groups in the 

ADNI-1 dataset, shown in Fig. 2 (a). Those landmarks are ranked in ascending order, 

according to their discriminative capability (i.e., p-values in group comparison) in 

distinguishing AD patients from NCs. That is, a small p-value denotes strong discriminative 

power, while a large one represents weak discriminative capability. As shown in Fig. 2, 

many landmarks are close to each other, and thus image patches centered at these landmarks 

would overlap with each other. To this end, besides considering p-values for landmarks, we 

further define a spatial Euclidean distance threshold (i.e., 18) to control the distance between 

landmarks, to reduce the overlaps among image patches. In Fig. 2(b), we plot the selected 

top 50 landmarks from all 1741 identified landmarks. From this figure, we can observe that 

many landmarks located in the areas of bilateral hippocampal, bilateral parahip-pocampal, 

and bilateral fusiform, and these areas are reported to be related to AD in the previous 

studies (Atiya et al., 2003; De Jong et al., 2008). Besides, the landmarks used in this work is 

only defined according to their discriminative power in identifying AD from NCs, without 

using any prior knowledge of previously discovered disease-related brain areas. In our future 

work, we will further refine the landmark pool by using such prior knowledge.

3.2.2. Landmark detection for testing images—For a new testing image, we can 

detect landmarks for a new testing MR image via a similar registration approach as we did 

for the training MR images. However, such method requires a nonlinear registration process 
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which may generate inaccurate registration results (Miao et al., 2016; Yang et al., 2016; Cao 

et al., 2017). For MRI with AD/MCI, the pair of images under registration often has a large 

shape and anatomical variation, which makes the non-linear registration more difficult to get 

a very accurate result. Hence, in our previous study (Zhang et al., 2016), we learn a 

regression forest as landmark detector based on training data and our discovered landmarks, 

to estimate the 3D displacement from each voxel in a testing image to potential landmark 

positions. Specifically, in the training stage, a regression forest is trained to learn a non-

linear mapping between the image patch centered at each voxel and its 3D displacement to a 

target landmark. We extract morphological features (Zhang et al., 2013) as low-level features 

for representing local image patches. In the testing stage, the learned regression forest can be 

used to estimate a 3D displacement from every voxel in the testing image to the potential 

landmark position, based on the local morphological features extracted from the patch center 

at this voxel. Hence, each voxel can cast a vote to the landmark position via the estimated 

3D displacements. We then obtain a voting map for each testing MR image, by aggregating 

all votes from all voxels. Finally, we can identify the landmark position as the location with 

the maximum vote in the voting map.

Note that this regression forest based landmark detector is learned based on the training data. 

Given a new testing MR image, we can directly apply the learned regression forest to detect 

landmarks, without using any non-linear registration process. It is worth noting that MCI 

(including pMCI and sMCI) subjects share the same landmark pool as identified from AD 

and NC groups. Our assumption here is that, since MCI is the prodromal stage of AD, 

landmarks with group differences between AD and NC subjects are the potential atrophy 

locations in brain MR images of MCI subjects.

3.3. Landmark-based instance extraction

Based on the identified landmarks shown in Fig. 2(b), we extract multiple patches (i.e., 
instances) from a specific MR image (i.e., each bag) for representing each subject (see Fig. 

1). Here, we extract patches with the size of 24 × 24 × 24 centered at each specific landmark 

location. The analysis on why this patch size is selected will be given in Section 4.8. Given 

L landmarks, we can obtain L patches from an MR image to construct a bag for representing 

the subject. To suppress the influence of any registration error, for each landmark, we 

randomly sample different patches on the same landmark location with displacements in a 5 

× 5 × 5 cubic (with the step size of 1). Given L landmarks, we can extract up to 125L bags 

from each MRI.

3.4. Multi-instance convolutional neural network

In this study, we attempt to capture both local and global features for MRI of the brain. Also, 

since not necessarily all image patches extracted from one MR image are significantly 

affected by dementia, the class labels for those image patches could be ambiguous, if we 

replicate the subject label on each of them. Therefore, a weakly supervised approach, rather 

than a supervised one, is appropriate for this situation. To this end, we propose a 

multiinstance CNN (MICNN) model for AD-related brain disease diagnosis, with a 

schematic diagram shown in Fig. 3. Given a subject (i.e., a bag in our MIL terminology), the 
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input data of MICNN are L patches (i.e., instances in our MIL framework) extracted from L 
landmark locations.

To learn representations of individual image patches in the bag, we first run multiple sub-

CNN architectures within our deep learning architecture. Such architecture uses a bag of L 
instances as the input, corresponding to L landmark locations of the brain. It produces patch-

level representations for each MR image. More specifically, we embed L parallel sub-CNN 

architectures with a series of 6 convolutional layers (i.e., Conv1, Conv2, Conv3, Conv4, 

Conv5, and Conv6), and 2 fully-connected (FC) layers (i.e., FC7, and FC8). The rectified 

linear unit (ReLU) activation function is used in convolutional layers, while Conv2, Conv4, 

and Conv6 are followed by max-pooling procedures to conduct the down-sampling 

operation for their outputs, respectively. The size of the 3D kernels in Conv1 and Conv2 is 3 

× 3 × 3, while for the other four convolutional layers it is 2 × 2 × 2. Note that these L sub-

CNNs share the same network architectures but have different network parameters, to learn 

specific path-level features from L local patches.

Since the structural changes caused by dementia can be subtle and distribute across multiple 

brain regions, only one or a few patch(es) cannot provide enough information to represent 

global structural changes of the brain. This is different from the conventional multi-instance 

learning (Yan et al., 2016), in which the image class can be derived by the estimated label of 

the most discriminative patch. In this study, besides patch-level representations learned from 

L sub-CNN architectures, we further learn bag-level representations for each MR image 

using several fully-connected layers (de Brebisson and Montana, 2015). Specifically, we first 

concatenate patch-level representations (i.e., output feature maps of L FC7 layers) at the 

FC8 layer, and then add three fully-connected layers (i.e., FC9, FC10, and FC11) to our 

deep model. Such additional layers are expected to be capable of capturing the complex 

relationship among image patches located by multiple landmarks, and thus, can form a 

global representation of the brain at the whole-image-level. Finally, the output of FC11 is 

fed into a soft-max output layer for predicting the probability of an input brain MR image 

belonging to a particular category.

Let’s denote the training set as 𝒳 = Xn n = 1
N , which contains N bags with the 

corresponding labels y = yn n = 1
N . The bag of the nth training image Xn consists of L 

instances, defined as Xn = [xn,1, xn,2, ⋯, xn,L]. As shown in Fig. 1, bags corresponding to all 

training images become the basic training samples for our proposed MICNN model, and the 

labels of those bags are consistent with the bag-level (i.e., subject-level) labels. Here, the 

subject-level label information (i.e., y) is used in a back-propagation procedure for learning 

the most relevant features in the fully-connected layers and also updating network weights in 

the convolutional layers. The learning algorithm aims to find a function Φ : χ → y, by 

minimizing the following loss function:

Loss W = ∑
Xn ∈ 𝒳

−log P yn Xn ; W (1)
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where P(yn|Xn; W) indicates the probability of the bag Xn being correctly classified as the 

class yn using the network coefficients W.

In summary, the proposed MICNN architecture is an end-to-end classification model, where 

local-to-global feature representations can be learned for each MR image. Particularly, we 

first learn patch-level representations via multiple sub-CNN architectures corresponding to 

multiple landmarks, to capture the local structure information of the brain. We further model 

the global information conveyed by multiple landmarks via additional fully-connected 

layers, to represent the brain structure at a whole-image-level. In this way, both local and 

global features of brain MR images can be incorporated into the classifier learning process. 

We optimize the proposed MICNN using the stochastic gradient descent (SGD) algorithm 

(Boyd and Vandenberghe, 2004), with a momentum coefficient of 0.9 and a learning rate of 

10−2. In addition, our proposed network is implemented based on a computer with a single 

GPU (i.e. NVIDIA GTX TITAN 12GB) and the platform of Tensorflow (Abadi et al., 2016). 

Given the patch size of 24 × 24 × 24 and L = 40, the training time for MICNN is about 27 

hours, while the testing time for a new MRI is less than 1 s.

4. Experiments

In this section, we first introduce the competing methods, present the experimental settings. 

We further show the experimental results of both tasks of AD classification and MCI 

conversion prediction, and analyze the influence of parameters.

4.1. Methods for comparison

We first compare the proposed LDMIL method with three state-of-the-art methods, 

including 1) ROI-based method (ROI), 2) voxel-based morphometry (VBM), and 3) 

conventional landmark-based morphometry (CLM) (Zhang et al., 2016). We also compare 

LD-MIL with a landmark-based deep single-instance learning (LDSIL) method that is a 

variant of LDMIL. Four competing methods are briefly summarized below.

1) ROI-based method (ROI): Similar to several previous works, we extract ROI-

specific features from the processed MR images. Specifically, we first segment 

the brain into three different tissue types, i.e., gray matter (GM), white matter 

(WM), and cerebrospinal fluid (CSF), using FAST (Zhang et al., 2001) in the 

FSL software package.3 We then align the anatomical automatic labeling (AAL) 

atlas (Tzourio-Mazoyer et al., 2002), with 90 pre-defined ROIs in the cerebrum, 

to the native space of each subject using a deformable registration algorithm 

(i.e., HAMMER (Shen and Da-vatzikos, 2002)). Finally, we extract volumes of 

GM tissue inside those 90 ROIs as feature representation for each MR image. 

Here, the volumes of GM tissue are normalized by the total intracranial volume, 

which is estimated by the summation of GM, WM, and CSF volumes from all 

ROIs. Using these 90-dimensional ROI features, we train a linear support vector 

machine (SVM) with the parameter C = 1 for classification.

3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
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2) Voxel-based morphometry (VBM) method (Ashburner and Friston, 2000): We 

first spatially normalize all MR images to the same template image using a non-

linear image registration technique, and then extract the gray matter from the 

normalized images. We directly measure the local tissue (i.e., GM) density of 

the brain in a voxel-wise manner, and perform a group comparison using t-test to 

reduce the dimensionality of the high dimensional features. Similar to the ROI-

based method, we feed those voxel-based features to a linear SVM for 

classification.

3) Conventional landmark-based morphometry (CLM) method (Zhang et al., 

2016) with engineered feature representations: As a landmark-based method, 

CLM shares the same landmark pool as our proposed LDMIL method. Different 

from LDMIL, CLM adopts engineered features for representing patches around 

each landmark. Specifically, CLM first extracts morphological features (i.e., 
local energy pattern (Zhang et al., 2013)) from a local patch centered at each 

landmark, and then concatenates those features from multiple landmarks 

together, followed by a z-score normalization (Jain et al., 2005) process. Finally, 

the normalized features are fed into a linear SVM classifier.

4) Landmark-based deep single-instance learning (LDSIL): As a variant of our 

proposed LDMIL method, the architecture of LDSIL is similar to a sub-CNN in 

LDMIL (see Fig. 3), containing 6 convolutional layers (i.e., Conv1, Conv2, 

Conv3, Conv4, Conv5, and Conv6) and 3 fully-connected layers (i.e., FC7, FC8, 

and FC11). Specifically, LDSIL learns a CNN model corresponding to a specific 

landmark, with patches extracted from this landmark as the input and the 

subject-level class label as the output. Hence, the class label for a subject is 

assigned to all patches extracted from the MR image of that subject. Given L 
landmarks, we can learn L CNN models via LDSIL and then obtain L 
probability scores for a test subject. For making a final classification result, we 

simply fuse the estimated probability scores for patches using a majority voting 

strategy. It is worth noting that, different from LDMIL, LDSIL can learn only 

patch-level representations for brain MR images.

4.2. Experimental settings

We validate our proposed LDMIL method on both AD classification (AD vs. NC) and MCI 

conversion prediction (pMCI vs. sMCI) tasks. To evaluate the robustness and generalization 

ability of a specific classification model, in the first group of experiments, we use subjects 

from ADNI-1 as the training set, while subjects from ADNI-2 and MIRIAD as independent 
testing sets. The experimental results are reported in the following sections. Besides, we 

perform two additional groups of experiments in both inter-imaging-center and intra-

imaging-center scenarios. Specifically, in the second group of experiments, we train models 

on the ADNI-2 dataset and test them on both ADNI-1 and MIRIAD, with results reported in 

Table S1 in the Supplementary Materials, In the third group of experiments, we adopt the 

cross-validation strategy (Liu et al., 2016) on both ADNI-1 and ADNI-2 datasets, with 

results reported in Table S2 in the Supplementary Materials. Also, we further report the 
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results of different methods in the task of multi-class classification, i.e., AD vs. pMCI vs. 

sMCI vs. NC classification, with results given in Fig. S1 in the Supplementary Materials.

We adopt seven metrics for performance evaluation, including receiver operating 

characteristic (ROC) curve, the area under ROC (AUC), accuracy (ACC), sensitivity (SEN), 

specificity (SPE), F-Score, and Matthews correlation coefficient (MCC) (Matthews, 1975) 

that is a balanced measure for binary classes. We denote TP, TN, FP, FN, and PPV as true 

positive, true negative, false positive, false negative and positive predictive value, 

respectively. These evaluation metrics are defined as:

ACC = TP+TN
TP+TN+FP+FN ,

SEN = TP
TP+FN , SPE = TN

TN+FP ,

PPV = TP
TP+FP , F‐Score = 2 × SEN × PPV

SEN+PPV ,

MCC = TP × TN − FP × FN
TP+FP × TP+FN × TN+FN .

For a fair comparison, in our proposed LDMIL method and its variant (i.e., LDSIL), the size 

of image patch is empirically set to 24 × 24 × 24, while the number of landmarks we used is 

40. We further illustrate the influence of those two parameters (i.e., the number of landmarks 

and the size of image patch) on LDMIL in Sections 4.7 and 4.8, respectively. Besides, we 

study the influences of these two parameters on LDSIL in Section 5 of the Supplementary 

Materials, and find these two parameters used in the main experiments for LDSIL fall in the 

optimal parameter ranges as shown in Fig. S3. Similar to LDMIL, we optimize the LDSIL 

network using SGD algorithm (Boyd and Vandenberghe, 2004), with a momentum 

coefficient of 0.9 and a learning rate of 10−2. Also, three landmark-based methods (i.e., 
CLM, LDSIL, and LDMIL) share the same landmark pool, while LDSIL and LDMIL use 

the same size of image patches.

4.3. Results of AD classification

In the first group of experiments, we perform AD vs. NC classification using the model 

trained on the ADNI-1 dataset. In Table 2 and Fig. 4 (a) and (b), we report the experimental 

results on the ADNI-2 and the MIRIAD datasets, respectively. From Table 2, we can observe 

that our proposed LDMIL method generally outperforms those competing methods in AD 

vs. NC classification on both ADNI-2 and MIRIAD datasets. On ADNI-2, the AUC values 

achieved by LDMIL is 0.959, which is much better than those yielded by ROI, VBM, and 

CLM methods. It is worth noting that MR images from ADNI-2 are scanned using 3T 

scanners, while images from ADNI-1 are scanned using 1.5T scanners. Although MR 
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images in the training set (i.e., ADNI-1) and the testing set (i.e., ADNI-2) have different 

signal-to-noise ratios, the classification model learned by LD-MIL can still reliably 

distinguish AD patients from NCs. This implies that our method has strong robustness and 

generalization ability, which is particularly important in handling multi-center MR images in 

practical applications. On the other hand, as shown in Fig. 4(a) and (b), three landmark-

based methods (i.e., CLM, LDSIL, and LDMIL) consistently outperform both ROI-based 

and voxel-based approaches (i.e., ROI, and VBM) in AD classification. The likely reason is 

that the landmarks identified in this study have a stronger discriminative ability to capture 

differences of structural brain changes between AD and NC subjects compared to the 

predefined ROIs and the isolated voxels. Also, it can be seen from Fig. 4(a) and (b) that 

LDSIL (a variant of our proposed LDMIL method) achieves AUC values comparable to 

LDMIL in AD vs. NC classification.

4.4. Results of MCI conversion prediction

We then report the experimental results of MCI conversion prediction (i.e., pMCI vs. sMCI) 

in Table 3 and Fig. 4(c), with classifiers trained and tested on the ADNI-1 and the ADNI-2 

datasets, respectively. It can be observed from Table 2 that, in most cases, our proposed 

LDMIL method achieves better results than the other four methods in MCI conversion 

prediction. In addition, as shown in Fig. 4, the superiority of LDMIL over LDSIL is 

particularly obvious in pMCI vs. sMCI classification, even though such superiority is not 

that distinct in AD vs. NC classification. The reason could be that LDMIL models both local 

patch-level and global bag-level structure information of the brain, while LDSIL can only 

capture local patch-level information. Since the structural changes of AD brains are obvious 

compared to NCs, only a few landmarks can be discriminative enough to distinguish AD 

from NC subjects. In contrast, while structural changes of MCI brains may be very subtle 

and distribute across multiple regions of the brain, it is difficult to determine whether an 

MCI subject would convert to AD using one or a few landmark(s). In such a case, the global 

information conveyed by multiple landmarks could be crucial for classification. Moreover, 

because each landmark defines only a potential (rather than a certain) atrophy location 

(especially for MCI subjects), it is unreasonable to assign the same subject-level class label 

to all patches extracted from a specific landmark location in LDSIL. Different from LDSIL, 

LDMIL can model both the local information of image patches and the global information 

of multiple landmarks, by assigning the class labels at the subject-level rather than the patch-

level. This explains why LDMIL performs better than LDSIL in pMCI vs. sMCI 

classification, although both methods yield similar results in AD vs. NC classification.

4.5. Influence of transferred knowledge

In the above-mentioned MCI conversion prediction (pMCI vs. sMCI) experiment, we only 

use 187 pMCI and 226 sMCI subjects in the ADNI-1 dataset for classifier training. Recent 

studies (Filipovych et al., 2011; Coupe et al., 2012) have shown that the knowledge learned 

from AD and NC subjects can be adopted to guide the prediction of MCI conversion since 

MCI is a prodromal stage of AD where the structural changes of the brain are between those 

of AD patients and NC subjects. Accordingly, we propose to employ AD and NC subjects to 

guide the task of MCI conversion prediction. Specifically, we first train a classification 

model using both pMCI and AD subjects in ADNI-1 as positive samples, while sMCI and 
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NC subjects are treated as negative samples. Then, we adopt the trained model for pMCI vs. 

sMCI classification on ADNI-2. Using AD and NC subjects as the guidance information for 

MCI conversion prediction, we denote the corresponding models of different methods (i.e., 
ROI, VBM, CLM, LDSIL, and LDMIL) as ROI-G, VBM-G, CLM-G, LDSIL-G, and 

LDMIL-G, respectively. The experimental results are reported in Figs. 4(d) and 5.

It can be observed from Figs. 4(d) and 5, methods using the guidance from AD and NC yield 

consistently better results than their corresponding counterparts. For instance, MCC and F-

Score values achieved by LDMIL-G are 0.2590 and 0.3750, respectively, which are much 

better than those of LDMIL (i.e., MCC=0.2074 and F-Score=0.3333). Similar trends can be 

found for the other four competing methods. That is, using AD and NC subjects as the 

guidance information for classifier training further improves the learning performance of 

MCI conversion prediction. The underlying reason could be that more training samples are 

used for learning the MCI prediction model, and also the task of AD vs. NC classification is 

related to the task of pMCI vs. sMCI classification (Cheng et al., 2015).

4.6 Influence of local-to-global representation

We also investigate the influence of our proposed local-to-global representation for MR 

images in LDMIL. Specifically, as shown in Fig. 3, we concatenate the local patch-level 

representation (in FC8) learned from L sub-CNNs, followed by three fully-connected layers 

to learn the global bag-level representations for the input MR image. Besides the 

concatenation strategy used in this study, there are also two widely used strategies for 

aggregating the instance-level representations (Wu et al., 2015) in multi instance learning, 

i.e., 1) the max operation that focuses on only the representation of the most discriminative 

patch, and 2) the average operation that focuses on the averaged representation multiple 

patch-level features. Here, we compare LDMIL with its two variants, i.e., LDMIL-Max and 

LDMIL-Average that adopt the element-wise max operation and the element-wise average 

operation for aggregating the outputs of patches, respectively. Similar to the multi-instance 

CNN model in Wu et al. (2015), followed by a soft-max layer (called FC9-new), FC8 in 3 is 

transformed into a probability distribution for subjects of two categories (e.g., AD, and NC) 

in both LDMIL-Max and LDMIL-Average. Also, we add another soft-max layer to 

transform FC9-new into a two-dimensional probability score vector for binary classification. 

The AUC values achieved by LDMIL, LDMIL-Max, and LDMIL-Average on three tasks are 

reported in Fig. 6.

From Fig. 6, we notice that in almost all cases, our proposed LDMIL that learns local-to-

global representations for MR images obtains the best performance, especially in the task of 

MCI conversion prediction (i.e., pMCI vs. sMCI classification). These empirical results 

confirm our observation that exploiting both the local and the global structural information 

of MR images can assist AD-related brain disease diagnosis. Also, LDMIL-Max generally 

yields the worse performance, compared with LDMIL and LDMIL-Average. This implies 

that methods focusing on only one single instance (as we do in LDMIL-Max) cannot 

generate good features for representing the structural changes of the brain, while the atrophy 

locations may distribute globally in the brain.
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4.7. Influence of the number of landmarks

We further investigate the influence of the number of landmarks on the classification 

performance, by varying it in the set {1, 5, 10, 15, ⋯, 60}. We report the AUC values 

achieved by the proposed LDMIL method in both AD classification and MCI conversion 

prediction tasks in Fig. 7. Note that the term “pMCI vs. sMCI on ADNI-2 with the guidance 

of AD and NC” denotes the method that adopts AD and NC subjects from the ADNI-1 

dataset as the guidance information for classifier training (see Section 4.5).

From this figure, we can observe that the overall performance increases with the increase in 

the number of landmarks. Using 1 and 50 landmarks in AD vs. NC classification on 

ADNI-2, LDMIL achieves the AUC values of 0.9164 and 0.9597, respectively. In particular, 

in pMCI vs. sMCI classification, LDMIL using less than 15 landmarks cannot yield 

satisfactory results. This implies that the global information conveyed by multiple landmarks 

can help boost the learning performance, especially for MCI subjects with no obvious 

disease-induced structural changes. On the other hand, when the number of landmarks is 

larger than 30, the growth trend of AUC values slows down, and the results are basically 

stable. Hence, it is reasonable to choose the number of landmarks in the range of [30, 50], 

while using more landmarks (e.g., > 55) cannot significantly boost the classification 

performance and will increase the number of network parameters.

4.8. Influence of the size of image patches

In the above-mentioned experiments, we adopt a fixed patch size (i.e., 24 × 24 × 24) for our 

proposed LDMIL method. We now investigate the influence of the patch size on the 

performance of LDMIL, by varying the patch size and testing all the values in the set {8 × 8 

× 8, 12 × 12 × 12, 24 × 24 × 24, 36 × 36 × 36, 48 × 48 × 48, 60 × 60 × 60}. In Fig. 8, we 

report the AUC values of AD vs. NC classification on the ADNI-2 dataset. From this figure, 

we can see that the best results are obtained by LDMIL using the patch size of 48 × 48 × 48. 

Also, LDMIL is not very sensitive to the size of the image patch within the range of [24 × 24 

× 24, 48 × 48 × 48]. When we use patches with the size of 8 × 8 × 8, the AUC value 

(0.8139) is not satisfactory. This implies that very small local patches are not capable of 

capturing enough structural information from the brain. Similarly, the results are not good 

using very large patches (e.g., 60 × 60 × 60), since subtle structural changes within the large 

patch could be dominated by uninformative normal regions. In addition, using large patches 

will bring huge computational burden, and thus affect the utility of our method in practical 

applications. Besides, we investigate the influences of the number of landmarks and size of 

image patches on LDSIL, with results given in Fig. S2 in the Supplementary Materials.

5. Discussion

5.1. Comparison with previous studies

Different from conventional voxel-level and whole-image-level feature representations for 

MRI, the proposed LDMIL method is capable of capturing both local and global information 

of MR images. Specifically, we first learn patch-level representations via multiple sub-CNNs 

to model the local information, and further learn bag-level representations to capture the 

global information of brain MR images. In this way, a local-to-global representation can be 
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automatically extracted from MR images. Different from conventional ROI-based 

approaches, our LDMIL method does not require any pre-defined ROIs, which is 

particularly useful in practice.

Compared with conventional patch-based approaches (Tong et al., 2014; Liu et al., 2012), 

our method can locate discriminative image patches based on anatomical landmarks, and the 

landmarks are identified by a data-driven landmark discovery algorithm. More specifically, 

we first identify discriminative anatomical landmarks via group comparison between AD 

and NC subjects in the training set and then extract image patches centered at multiple 

landmark locations. Also, while previous patch-based studies usually define engineered 

features for image patches (Tong et al., 2014; Liu et al., 2012), our LDMIL method can 

automatically learn representations for patches using an end-to-end learning model. Hence, 

the learned feature representations in LDMIL are consistent with the subsequent classifier, 

leading to optimal learning performance. Furthermore, our method only requires weak 
supervision at a global whole-image-level, where the subject-level class label is assigned to a 

bag rather than instances in the bag. This can reduce the confusion induced by patches that 

do not convey any information about the category of the bag.

Besides, the proposed LDMIL method is similar to, but different from, the conventional 

multi-instance learning (MIL) methods. Since not necessarily all image patches extracted 

from an MR image are significantly affected by dementia, the class labels for those image 

patches could be ambiguous, if we simply assign the subject-level label to each of them. In 

LDMIL, we assign the class label of a subject to a bag other than to each instance (i.e., 

image patch), and hence we only require bag-level (i.e., subject-level) other than instance-

level (i.e., patch-level) class label information for subjects, which is similar to the 

conventional MIL methods (Yan et al., 2016; Wu et al., 2015). However, different from the 

conventional MIL methods that focus on only the representation of the most discriminative 

instance (i.e., image patch) or the averaged representation of multiple instance-level features, 

our LDMIL method does not assume that at least one instance can determine whether a bag 

belongs to the positive category. Since the structural changes induced by AD could be subtle 

and distribute in different areas of the brain, we attempt to learn local-to-global feature 

representations for brain MRI images. Experimental results in Table 3 and Fig. 6 suggest 

that the local-to-global representation plays an important role in boosting the learning 

performance.

5.2. Limitations

Although our proposed LDMIL method achieves promising results in both AD classification 

and MCI conversion prediction, there are several technical issues to be considered in the 

future. First, even though we can extract hundreds of thousands of image patches from 

multiple landmark locations for classifier training, the number of training subjects is limited 

(i.e., hundreds). Luckily, there are a large number of longitudinal MR images in three 

datasets (i.e., ADNI-1, ADNI-2, and MIRIAD), which can be utilized to further improve the 

robustness of the proposed deep learning model. Second, in the current work, we treat 

landmark detection and landmark-based classification as two stand-alone tasks, which may 

lead to sub-optimal learning performance. In the future work, we will study to integrate the 
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process of landmark detection and the training of classification models into a unified 

framework. Specifically, we will design a two-stage deep neural network, where the first-

stage network aims to learn features for image patches, and the second-stage network 

focuses on identifying discriminative landmarks by using the learned features for patches. 

We could first train these two-stage networks separately, and then jointly optimize them as a 

whole network. In addition, our LDMIL method is a single-task model, where only the class 

label is estimated for a given MR image. Actually, there are many clinical scores for each 

subject, and those scores are related to class labels. Since predicting clinical scores is a 

regression problem, it is reasonable to develop a multi-task learning model based on 

LDMIL, where both classification and regression tasks can be learned jointly. Considering 

the underlying correlation among clinical scores and class labels, the joint learning could 

further promote the learning performance. Besides, we don’t consider several confounding 

factors (e.g., age, gender, and education years) of studied subjects. In future work, we will 

address these confounding factors by incorporating them into the proposed deep learning 

framework. Furthermore, in this work, we consider only the problem of brain disease 

diagnosis via the proposed landmark-based deep learning framework, based on the baseline 

MRI data in ADNI-1, ADNI-2, and MIRIAD. It is interesting to develop a deep learning 

framework for predicting the progression of brain diseases based on the baseline data, which 

will also be our future work.

6. Conclusion

We have presented a landmark-based deep multi-instance learning (LDMIL) framework for 

AD-related brain disease diagnosis using MR imaging data. To model both local and global 

information of the brain, we first proposed to localize image patches (through the detection 

of anatomical landmarks) for the subjects, and then adopted a multi-instance CNN model to 

perform end-to-end classification. Experiments on a large cohort of subjects from three 

datasets show that our method achieves better performance compared to the state-of-the-art 

approaches, especially in the task of MCI conversion prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This study was supported by NIH grants (EB006733, EB008374, EB009634, MH100217, AG041721, AG042599, 
AG010129, AG030514). Data used in the preparation of this article were partially obtained from the Alzheimer’s 
Disease Neuroimaging lnitiative (ADNI) dataset and the Minimal lnterval Resonance lmaging in Alzheimer’s 
Disease (MIRIAD) dataset. The investigators within the ADNI and the MIRIAD did not participate in analysis or 
writing of this study. A complete listing of ADNI investiga tors can be found online (https://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf). The MIRIAD dataset is made available 
through the support of the UK Alzheimers Society (Grant RF116), while the original data collection was funded by 
an unrestricted educational grant from GlaxoSmithKline (Grant 6GKC).

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, 
et al., 2016 Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv 
preprintarXiv:1603.04467.

Liu et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.13039/100000002
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://arXiv:1603.04467


Amores J, 2013 Multiple instance classification: review, taxonomy and comparative study. Artif. Intell 
201, 81–105.

Andrews S, Tsochantaridis I, Hofmann T, 2002 Support vector machines for multiple-instance learning 
In: Advances in Neural Information Processing Systems, pp. 561–568.

Ashburner J, Friston KJ, 2000 Voxel-based morphometrythe methods. Neurolm-age 11 (6), 805–821.

Atiya M, Hyman BT, Albert MS, Killiany R, 2003 Structural magnetic resonance imaging in 
established and prodromal Alzheimer disease: a review. Alzheimer Dis. Assoc. Disord 17 (3), 177–
195. [PubMed: 14512832] 

Baron J, Chetelat G, Desgranges B, Perchey G, Landeau B, De La Sayette V, Eustache F, 2001 In vivo 
mapping of gray matter loss with voxel-based morphometry in mild alzheimer’s disease. 
Neurolmage 14 (2), 298–309.

Bi J, Liang J, 2007 Multiple instance learning of pulmonary embolism detection with geodesic 
distance along vascular structure In: IEEE Conference on Computer Vision and Pattern Recognition. 
IEEE, pp. 1–8.

Boyd S, Vandenberghe L, 2004. Convex Optimization. Cambridge University Press. de Brebisson A, 
Montana G, 2015 Deep neural networks for anatomical brain segmentation. In: Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28.

Cao X, Yang J, Gao Y, Guo Y, Wu G, Shen D, 2017 Dual-core steered non-rigid registration for multi-
modal images via bi-directional image synthesis. Med. Image Anal 41, 18–31. [PubMed: 28533050] 

Cheng B, Liu M, Zhang D , Munsell BC, Shen D, 2015 Domain transfer learning for MCI conversion 
prediction. IEEE Trans. Biomed. Eng 62 (7), 1805–1817. [PubMed: 25751861] 

Cheplygina V, Tax DM, Loog M, 2016 Dissimilarity-based ensembles for multiple instance learning. 
IEEE Trans. Neural Netw. Learn. Syst 27 (6), 1379–1391. [PubMed: 27214351] 

Chu C, Hsu A-L, Chou K-H, Bandettini P, Lin C, 2012 Does feature selection improve classification 
accuracy? Impact of sample size and feature selection on classification using anatomical magnetic 
resonance images. Neurolmage 60 (1), 59–70.

Coupé P, Eskildsen SF, Manjon JV, Fonov VS, Pruessner JC, Allard M, Collins DL, Initiative ADN, et 
al., 2012 Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease. 
Neurolmage 1 (1), 141–152.

Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehericy S, Habert M-O, Chupin M, Benali H, Colliot 
O, 2011 Automatic classification of patients with Alzheimer’s disease from structural MRI: a 
comparison of ten methods using the ADNI database. Neurolmage 56 (2), 766–781.

De Jong L, Van der Hiele K , Veer I, Houwing J, Westendorp R, Bollen E , De Bruin P , Middelkoop 
H, Van Buchem M, Van Der Grond J, 2008 Strongly reduced volumes of putamen and thalamus in 
Alzheimer’s disease: an MRI study. Brain 131 (12), 3277–3285. [PubMed: 19022861] 

Dietterich TG, Lathrop RH, Lozano-Pérez T, 1997 Solving the multiple instance problem with axis-
parallel rectangles. Artif. Intell 89 (1), 31–71.

Dubois B, Chupin M, Hampel H, Lista S, Cavedo E, Croisile B , Tisserand GL, Touchon J, Bonafe A, 
Ousset PJ, et al., 2015 Donepezil decreases annual rate of hippocampal atrophy in suspected 
prodromal Alzheimer’s disease. Alzheimer’s Dementia 11 (9), 1041–1049.

Filipovych R, Davatzikos C, lnitiative ADN, et al., 2011 Semi-supervised pattern classification of 
medical images: application to mild cognitive impairment (MCl). NeuroImage 55 (3), 1109–1119. 
[PubMed: 21195776] 

Fischl B, Dale AM, 2000 Measuring the thickness of the human cerebral cortex from magnetic 
resonance images. Proc. Nat. Acad. Sci 97 (20), 11050–11055. [PubMed: 10984517] 

Friedman J, Hastie T, Tibshirani R , 2001 The elements of statistical learning, 1. Springer series in 
statistics Springer, Berlin.

Gartner T, Flach PA, Kowalczyk A, Smola AJ, 2002 Multi-instance kernels. In: International 
Conference on Machine Learning, 2, pp. 179–186.

Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC, 1998 Enhancement of MR images 
using registration for signal averaging. J. Comput. Assist. Tomogr 22 (2), 324–333. [PubMed: 
9530404] 

Liu et al. Page 18

Med Image Anal. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jack C, Petersen RC, Xu YC, OBrien PC, Smith GE, Ivnik RJ, Boeve BF , Waring SC, Tangalos EG , 
Kokmen E, 1999 Prediction of AD with MRI-based hippocampal volume in mild cognitive 
impairment. Neurology 52 (7), 1397–1397 [PubMed: 10227624] 

Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ , L 
Whitwell J, Ward C, 2008 The Alzheimer’s disease neuroimaging initiative (ADNI): MRI 
methods. J. Magn. Reson. Imaging 27 (4), 685–691. [PubMed: 18302232] 

Jack CR, Petersen RC, O’Brien PC, Tangalos EG, 1992 MR-based hippocampal volumetry in the 
diagnosis of Alzheimer’s disease. Neurology 42 (1), 183–183 [PubMed: 1734300] 

Jain A, Nandakumar K, Ross A, 2005 Score normalization in multimodal biometric systems. Pattern 
Recognit. 38 (12), 2270–2285.

KlÖppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CR, 
Ashburner J, Frackowiak RS, 2008 Automatic classification of MR scans in Alzheimer’s disease. 
Brain 131 (3), 681–689. [PubMed: 18202106] 

Liu M, Zhang D, Shen D, 2012 Ensemble sparse classification of Alzheimer’s disease. Neurolmage 60 
(2), 1106–1116.

Liu M, Zhang D, Shen D, 2015 View-centralized multi-atlas classification for Alzheimer’s disease 
diagnosis. Hum. Brain Mapp. 36 (5), 1847–1865. [PubMed: 25624081] 

Liu M, Zhang D, Shen D, 2016 Relationship induced multi-template learning for diagnosis of 
Alzheimer’s disease and mild cognitive impairment. IEEE Trans. Med. Imaging 35 (6), 1463–
1474. [PubMed: 26742127] 

Liu M , Zhang J, Yap P-T, Shen D , 2017 View-aligned hypergraph learning for Alzheimer’s disease 
diagnosis with incomplete multi-modality data. Med. Image Anal. 36, 123–134. [PubMed: 
27898305] 

Liu Q, Qian Z, Marvasty I, Rinehart S, Voros S, Metaxas DN, 2010 Lesion-specific coronary artery 
calcium quantification for predicting cardiac event with multiple instance support vector machines 
In: International Conference on Medical Image Computing and Computer-Assisted Intervention. 
Springer, pp. 484–492.

LÖtjÖnen J, Wolz R, Koikkalainen J, Julkunen V, Thurfjell L, Lundqvist R, Walde-mar G , Soininen 
H, Rueckert D, Initiative ADN, et al., 2011 Fast and robust extraction of hippocampus from MR 
images for diagnostics of Alzheimer’s disease. NeuroImage 56 (1), 185–196. [PubMed: 21281717] 

Lu L, Bi J, Wolf M, Salganicoff M, 2011 Effective 3D object detection and regression using 
probabilistic segmentation features in CT images In: IEEE Conference on Computer Vision and 
Pattern Recognition. IEEE, pp. 1049–1056.

Maguire EA, Gadian DG, Johnsrude IS, Good CD , Ashburner J, Frackowiak RS, Frith CD , 2000 
Navigation-related structural change in the hippocampi of taxi drivers. Proc. Nat. Acad. Sci 97 (8), 
4398–4403. [PubMed: 10716738] 

Malone IB , Cash D, Ridgway GR, MacManus DG, Ourselin S, Fox NC, Schott JM, 2013 MIRIAD-
Public release of a multiple time point Alzheimer’s MR imaging dataset. NeuroImage 70, 33–36. 
[PubMed: 23274184] 

Mardia K, 1975 Assessment of multinormality and the robustness of Hotelling’s T2 test. Appl. Stat 
163–171.

Maron O, Lozano-Pérez T, 1998 A framework for multiple-instance learning. Adv. Neural Inf. Process. 
Syst 570–576.

Matthews BW, 1975 Comparison of the predicted and observed secondary structure of T4 phage 
lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struct. 405 (2), 442–451.

Miao S, Wang ZJ, Liao R, 2016 A CNN regression approach for real-time 2D/3D registration. IEEE 
Trans. Med. Imaging 35 (5), 1352–1363. [PubMed: 26829785] 

Montagne A, Barnes SR , Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW , Jacobs RE, Liu 
CY, Amezcua L, et al. , 2015 Blood-brain barrier breakdown in the aging human hippocampus. 
Neuron 85 (2), 296–302. [PubMed: 25611508] 

Moradi E, Pepe A,Gaser C,Huttunen H, Tohka J, Initiative ADN, et al., 2015 Machine learning 
framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage 
104, 398–412. [PubMed: 25312773] 

Liu et al. Page 19

Med Image Anal. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Shen D, Davatzikos C, 2002 HAMMER: hierarchical attribute matching mechanism for elastic 
registration. IEEE Trans. Med. Imaging 21 (11), 1421–1439. [PubMed: 12575879] 

Sled JG, Zijdenbos AP, Evans AC, 1998 A nonparametric method for automatic correction of intensity 
nonuniformity in MRI data. IEEE Trans. Med. Imaging 17 (1), 87–97. [PubMed: 9617910] 

Small GW, Ercoli LM, Silverman DH, Huang S-C, Komo S, Bookheimer SY, Lavretsky H, Miller K, 
Siddarth P, Rasgon NL, et al., 2000 Cerebral metabolic and cognitive decline in persons at genetic 
risk for Alzheimer’s disease. Proc. Nat. Acad. Sci 97 (11), 6037–6042. [PubMed: 10811879] 

Tong T, Wolz R, Gao Q, Guerrero R, Hajnal JV, Rueckert D, 2014 Multiple instance learning for 
classification of dementia in brain MRI. Med. Image Anal. 18 (5), 808–818. [PubMed: 24858570] 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Del-croix N, Mazoyer B, 
Joliot M, 2002 Automated anatomical labeling of activations in SPM using a macroscopic 
anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15 (1), 273–289. 
[PubMed: 11771995] 

Wang Y, Nie J , Yap P-T , Shi F, Guo L , Shen D, 2011 Robust deformable-surface-based skull-
stripping for large-scale studies In: Medical Image Computing and Computer-Assisted 
Intervention-MICCAI 2011. Springer, pp. 635–642.

Wolz R , Aljabar P , Hajnal JV , Lotjonen J , Rueckert D , 2012 Nonlinear dimensionality reduction 
combining MR imaging with non-imaging information. Med. Image Anal. 16 (4), 819–830. 
[PubMed: 22244037] 

Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y, 2009 Robust face recognition via sparse 
representation. IEEE Trans. Pattern Anal. Mach. Intell 31 (2), 210–227. [PubMed: 19110489] 

Wu J , Yu Y, Huang C, Yu K, 2015 Deep multiple instance learning for image classification and auto-
annotation In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp. 3460–
3469.

Xiang S, Yuan L , Fan W , Wang Y, Thompson PM , Ye J , 2014 Bi-level multisource learning for 
heterogeneous block-wise missing data. NeuroImage 102, 192–206. [PubMed: 23988272] 

Xu Y, Zhang J, Eric I, Chang C, Lai M, Tu Z, 2012 Context-constrained multiple instance learning for 
histopathology image segmentation In: International Conference on Medical Image Computing 
and Computer-Assisted Intervention. Springer, pp. 623–630.

Xu Y, Zhu J-Y, Eric I, Chang C, Lai M, Tu Z, 2014 Weakly supervised histopathology cancer image 
segmentation and classification. Med. Image Anal. 18 (3), 591–604. [PubMed: 24637156] 

Yamasue H, Kasai K, Iwanami A , Ohtani T , Yamada H, Abe O, Kuroki N, Fukuda R , Tochigi M, 
Furukawa S, et al., 2003 Voxel-based analysis of MRI reveals anterior cingulate gray-matter 
volume reduction in posttraumatic stress disorder due to terrorism. Proc. Nat. Acad. Sci 100 (15), 
9039–9043. [PubMed: 12853571] 

Yan Z, Zhan Y, Peng Z, Liao S, Shinagawa Y, Zhang S, Metaxas DN, Zhou XS, 2016 Multi-instance 
deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. 
Imaging 35 (5), 1332–1343. [PubMed: 26863652] 

Yang X, Kwitt R, Niethammer M , 2016 Fast predictive image registration In: International Workshop 
on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Springer, pp. 48–57.

Zhang C, Platt JC , Viola PA, 2005 Multiple instance boosting for object detection In: Advances in 
Neural Information Processing Systems, pp. 1417–1424.

Zhang J, Gao Y, Gao Y, Munsell B, Shen D , 2016 Detecting anatomical landmarks for fast 
Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging 35 (12), 2524–2533. [PubMed: 
27333602] 

Zhang J, Liang J, Zhao H, 2013 Local energy pattern for texture classification using self-adaptive 
quantization thresholds. IEEE Trans. Image Process. 22 (1), 31–42. [PubMed: 22910113] 

Zhang J, Liu M, An L, Gao Y, Shen D, 2017 Alzheimer’s disease diagnosis using landmark-based 
features from longitudinal structural MR images. IEEE J. Biomed. Health Inform,. DOI: 10.1109/
JBHI.2017.2704614.

Zhang J, Liu M, Shen D, 2017 Detecting anatomical landmarks from limited medical imaging data 
using two-stage task-oriented deep neural networks. IEEE Trans. Image Process. 26 (10), 4753–
4764. [PubMed: 28678706] 

Liu et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhang Q, Goldman SA, 2001 EM-DD: an improved multiple-instance learning technique In: Advances 
in Neural Information Processing Systems, pp. 1073–1080.

Zhang Y, Brady M, Smith S, 2001 Segmentation of brain MR images through a hidden Markov 
random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20 
(1), 45–57. [PubMed: 11293691] 

Liu et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Illustration of the proposed landmark-based deep multi-instance learning (LDMIL) 

framework using MR imaging data. There are four main components, including 1) MR 

image processing, 2) discriminative landmark discovery, 3) landmark-based instance 

extraction, and 4) multi-instance convolutional neural network (CNN) classification.
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Fig. 2. 
Illustration of (a) all 1741 landmarks discovered by group comparison between AD and NC 

subjects in the ADNI-1 dataset, and (b) selected top 50 AD-related landmarks shown in the 

sagittal view, the axial view, and the coronal view, respectively. Different colors in (b) 

denote p-values in group comparison between AD and NC, i.e., a small p-value indicates a 

strong discriminative power and vice versa.
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Fig. 3. 
Illustration of the proposed landmark-based multi-instance convolutional neural network 

(MICNN), including L sub-CNN architectures corresponding to L landmarks. Given an 

input MR image, the input data of the deep model are L local image patches extracted from 

L landmark locations.
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Fig. 4. 
ROC achieved by different methods in (a) AD vs. NC classification on the ADNI-2 dataset, 

(b) AD vs. NC classification on the MIRIAD dataset, and (c) pMCI vs. sMCI classification 

on the ADNI-2 dataset, and (d) pMCI vs. sMCI classification on the ADNI-2 dataset with 

the guidance of AD and NC subjects. Here, classification models are trained on the ADNI-1 

dataset.

Liu et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Results of MCI conversion prediction (pMCI vs. sMCI) on the ADNI-2 dataset with and 

without transferred knowledge from AD and NC subjects. Given “A” denoting a method 

using only MCI subjects in ADNI-1 for model training, its variant “A-G” represents the 

method using AD and NC as the guidance information for model training. For instance, 

LDMIL-G denotes the method with a classifier trained using pMCI and AD as positive 

samples, and sMCI and NC subjects as negative ones in ADNI-1.
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Fig. 6. 
Influence of different representation learning strategies for MR images, including 1) 

LDMIL-Max using instance-level max representation, 2) LDMIL-Average using instance-

level averaged representation, and 3) LDMIL using local-to-global representation. Here, 

classification models are trained on the ADNI-1 dataset.

Liu et al. Page 27

Med Image Anal. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Influence of the number of landmarks on the performance of the proposed LDMIL method 

in tasks of AD vs. NC classification and pMCI vs. sMCI classification. Here, classification 

models are trained on the ADNI-1 dataset.
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Fig. 8. 
Influence of the size of image patches on the performance of LDMIL in AD vs. NC 

classification on the ADNI-2 dataset, with models trained on the ADNI-1 dataset.
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Table 3

Results of pMCI vs. sMCI classification on the ADNI-2 dataset, with models trained on the ADNI-1 dataset.

Method ROI VBM CLM LDSIL LDMIL(Ours)

AUC 0.6377 0.5929 0.6363 0.6448 0.7764

ACT 0.6606 0.6426 0.6859 0.7004 0.7690

SEN 0.4737 0.3684 0.3947 0.3684 0.4211

SPE 0.6904 0.6862 0.7322 0.7531 0.8243

F-Score 0.2769 0.2205 0.2564 0.2523 0.3333

MCC 0.1198 0.0402 0.0967 0.0949 0.2074
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