Table 2.
Results of AD vs. NC classification on both ADNI-2 and MIRIAD datasets, with models trained on the ADNI-1 dataset.
| ADNI-2 | MIRIAD | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| ROI | VBM | CLM | LDSIL | LDMIL(Ours) | ROI | VBM | CLM | LDSIL | LDMIL(Ours) | |
| AUC | 0.8673 | 0.8762 | 0.8811 | 0.9574 | 0.9586 | 0.9178 | 0.9206 | 0.9537 | 0.9584 | 0.9716 |
| ACC | 0.7917 | 0.8050 | 0.8222 | 0.9056 | 0.9109 | 0.8696 | 0.8841 | 0.8986 | 0.9130 | 0.9275 |
| SEN | 0.7862 | 0.7735 | 0.7736 | 0.8742 | 0.8805 | 0.9130 | 0.9130 | 0.9783 | 0.9565 | 0.9348 |
| SPE | 0.7960 | 0.8300 | 0.8607 | 0.9303 | 0.9350 | 0.7826 | 0.8261 | 0.7391 | 0.8261 | 0.9130 |
| F-Score | 0.7692 | 0.7784 | 0.7935 | 0.8910 | 0.8974 | 0.9032 | 0.9130 | 0.9278 | 0.9362 | 0.9451 |
| MCC | 0.5800 | 0.6044 | 0.6383 | 0.8082 | 0.8191 | 0.7037 | 0.7391 | 0.7702 | 0.8018 | 0.8391 |