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Abstract

The use of protein nanoparticles for biosensing, biocatalysis and drug delivery has exploded in the 

last few years. The ability of protein nanoparticles to self-assemble into predictable, monodisperse 

structures is of tremendous value. The unique properties of protein nanoparticles such as high 

stability, and biocompatibility, along with the potential to modify them led to development of 

novel bioengineering tools. Together, the ability to control the interior loading and external 

functionalities of protein nanoparticles makes them intriguing nanodevices. This review will focus 

on a number of recent examples of protein nanoparticles that have been engineered towards 

imparting the particles with biocatalytic or biosensing functionality.

Introduction

Protein nanoparticles (PNPs) are made of multiple protein-based building blocks assembled 

either by protein-protein or protein-nucleic acid interactions [1]. It is well known that 

immobilization of functional biomolecules either onto the exterior or the inside of PNPs 

improves their stability and activity [2]. This feature when combined with the ability of 

PNPs to tolerate extreme conditions make PNPs an ideal platform for a wide range of 

bionanotechnology applications in biomedicine [2–4] and biocatalysis [5,6].

Although most PNPs used today are based on biologically evolved protein assemblies such 

as viral capsids [5,7] or multimeric enzymes [6,8], there is a move toward engineering these 

protein nano-assemblies based on in silico design [9,10]. The ability to provide multi-

functionalization is often highly challenging as the modifications may result in a loss of 

nanoparticle self-assembly or protein functionality. In this review, we will discuss recent 

progress in PNP functionalization and their corresponding applications in biocatalysis and 

biomedical diagnosis and imaging. Table 1 summarizes the different types of PNPs reviewed 

in this paper and their corresponding applications.

Virus-Like particles

Virus-Like Particles (VLPs) are naturally occurring multimeric PNPs derived from viruses. 

Unlike intact viruses, VLPs are derived only from the noninfectious protein capsids and 
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provide the benefit of mass-production using simple recombinant DNA technology [11]. 

Similar to other protein-based materials, VLPs can be modified with a wide range of cargos 

such as drugs, enzymes, or other biomolecules using either genetic manipulation, post-

translational conjugation, and/or encapsulation [5,12]. Traditionally, modified VLPs have 

been widely used for vaccine design and drug delivery because of their biocompatibility and 

stability [7]. However, efforts toward the use of engineered VLPs as nanoscale bioreactors 

are gaining traction due to their ability to tolerate harsh conditions [13–14].

In addition to direct tethering, biomolecular cargos can also be encapsulated within some 

VLPs by exploiting their ability to undergo a conformational change upon exposure to 

thermal or pH variations. One example is the bacteriophage P22, which self-assembles into a 

58 nm capsid based on the interaction between the coat proteins (CP) and a helix-turn motif 

on the scaffold proteins (SP) [12]. Heating of P22 VLPs results in an irreversible change in 

the structure as some of the SP subunits are released, leading to an expanded shell of 64 nm. 

Further heating to 75°C results in the formation of a “Wiffleball” structure with an almost 

two-fold increase in the effective volume and multiple 10 nm holes within the icosahedral 

structure (Figure 1a) [12]. Cowpea Chlorotic Mottle Virus (CCMV) is a second VLP that 

offers reversible assembly and allows facile incorporation of cargos to the inside based on 

electrostatic interactions between the positively charged N-terminus and the negatively 

charged cargo. The assembly/disassembly pathway can be easily controlled by pH and ionic 

strength (Figure 1b) [16].

Some VLPs have the benefit of incorporating functional cargos into their interior through 

direct genetic fusions to termini oriented towards the interior, as in the case of Hepatitis B 

Virus (HBV) [17]. Another example is the bacteriophage Qβ, which utilizes the natural 

interaction between the RNA genome and the capsid for cargo encapsulation [13,18].

In addition to surface functionalization and cargo loading, the ability to immobilize PNPs 

onto surfaces has gained interest for biosensing applications. In the case of Tobacco mosaic 

virus (TMV), the 5’-end of TMV nanorods can be partially disassembled at neutral pH to 

expose its mRNA, which can be used for docking TMVs to hydrogel surfaces via DNA 

hybridization [19]. Additional functionalization was achieved by using bioorthogonal 

tetrazine (Tz)-trans-cyclooctene (TCO) “click” chemistry to selectively attach R-

Phycoerythrin (R-PE) to TMV nanorods immobilized on hydrogel microparticles. This 

technology allows higher capacity of protein conjugation to the surface of a hydrogel for 

improved and controlled protein conjugation and biosensing applications.

Enzyme-derived PNPs

Another class of PNPs that is gathering more attention is based on multimeric enzymes that 

naturally self-assemble into nanocages of varying sizes [20–22]. These nanostructures 

provide naturally-evolved, confined reaction spaces for enhanced cellular metabolism and 

are ideal candidates as nanoreactors. The E2 core from the pyruvate dehydrogenase complex 

of Bacillus stearothermophilus is a frequently used PNP because of its thermophilic origin 

[23]. E2 is composed of 60 identical monomers that self-assemble into a highly stable cage-

like structure with an outer diameter of ~24 nm [23]. The thermostability of E2 nanocages 
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allows for simple purification by heating to 70°C to denature cellular proteins without 

affecting the E2 assembly (Figure 1c) [22].

Lumanize synthase (AaLS) is another readily modifiable PNP, roughly 15 nm in diameter, 

capable of carrying cargo because of its highly charged interior [24]. A highly toxic HIV 

protease was incorporated into the interior of AaLS PNPs based on electrostatic interaction 

by tethering a deca-arginine peptide to the C-terminus, thereby shielding bacterial proteins 

from degradation [21]. The number of encapsulated proteins can be fine-tuned by 

controlling the AaLS:protein ratio [25], paving the way for easy encapsulation of multiple 

protein cargos.

Ferritin (Fn), an ubiquitous cage protein found in all domains of life, is composed of 24 

subunits that assemble into a 12 nm hollow spherical structure and naturally encapsulates 

Fe3O4 [20,26,27]. A key structural attribute of Fn is the ability to disassemble at acidic pH 

and reassemble at neutral pH with perfect shape memory [28]. In addition to the 

disassembly/reassembly mechanism, ferritins are also thermodynamically stable, can bind 

different metal ions [26] and are tolerant of genetic fusions [20] making Fn a highly 

multifunctional PNP capable of a number diagnostic and biosensing applications.

Encapsulin, a 30 nm protein nanocage, is known to be involved in oxidative stress responses, 

and has been found in a number of different species, including some thermophiles [29–31]. 

Encapsulin is unique in its ability to natively package cargo proteins via interaction of a 

unique C-terminal signal peptide with the shell protein. Artificial encapsulin-based 

nanocompartments have begun to receive considerable interest because of their potential to 

allow targeted encapsulation of drugs, siRNAs and proteins of interest [29].

Synthetic PNPs

Novel synthetic nanocompartments can be created by designing protein building blocks that 

are able to self-assemble into a cage-like structure. Two different protein building blocks 

with opposite charges, based on the CCMV monomer and avidin, were used to form a 

synthetic PNP [32]. The heterogeneous crystal of this protein block copolymer formed a 

packed body-centered cubic structure that is distinct from the icosahedral assembly that 

CCMV naturally forms. The protein nanocage was fluorescently-labeled or decorated with 

proteins using the biotin-avidin interaction [32]. Even completely synthetic PNPs can be 

designed based on the use of natively oligomeric protein components. Computational 

models were used to generate a cubic nanocage when dimeric and trimeric E. coli proteins 

were fused together with intersecting angles of symmetry of 36.5° [33]. This type of 

synthetic design greatly expands the repertoire of PNPs available for bioengineering 

applications.

Synthetic PNPs with intricate structures can be computationally designed by taking 

advantage of the symmetry in multimeric protein components to minimize the protein-

protein interfaces that need to be redesigned [9,10]. This is done by grafting multimeric 

proteins to a target structure and using computational tools, such as RosettaDesign, to design 

the low-energy, weak, noncovalent protein-protein interactions that mimic those from 
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naturally derived PNPs. This strategy has been used in creating synthetic octahedral (O3–33) 

and tetrahedral (T3–10) PNPs [9] as well as larger viral-like icosahedral structures (I53, I52, 

and I32) [10]. A unique property of the icosahedral PNPs made from two distinct multimeric 

protein components is the controlled in vitro self-assembly of these structures through 

simple mixing of the different components (Figure 1d). While computational models can 

design a library of possible structures, extensive experimental evaluation is necessary to 

select the few PNPs which form stable structures.

Functionalization of Protein Nanoparticles

In order to customize protein nanoparticles toward a particular application, multiple 

functionalities are needed. PNPs are naturally robust nanomaterials, which lend themselves 

to many well-characterized chemical conjugation methods. As PNPs are composed of 

protein monomers, genetic modification strategies have also been employed. Additionally, 

protein engineering has expanded the biological tools available to post-translationally 

modify these components. The selection of a right modification strategy is critical to 

preserving the integrity and the function of the resulting PNPs for the desired applications 

(Figure 2) [34].

Chemical Conjugations

Chemical conjugation methods are often used to attach inorganic, non-proteinaceous 

components such as chemical dyes for imaging [28,35], targeting ligands for drug delivery 

[36], and peptides for immune activation [37]. Typically, well-characterized chemistries can 

be employed to couple substances to reactive side chains that are either surface exposed or 

genetically incorporated into the protein monomer backbone. Site-specific bio-orthogonal 

labeling of PNPs can be achieved through substitution of unnatural amino acids using either 

amber, ocher, opal, four base pair, or methionine codons [38–41]. Such chemistries, 

however, lack control over orientation of the attachment and location on the nanoparticle 

surface and can sometimes deactivate protein cargos [15,42].

Genetic Modifications

Many have explored direct protein attachments by modifying protein monomers at the 

genetic level. This allows guest proteins of interest to be fused directly to the monomers and 

co-assemble into the resulting PNPs. This strategy has been employed effectively in self-

assembling VLPs and other PNPs where the N or C terminus or a flexible loop is exposed 

[20,43]. The Hepatitis B Virus (HBV) VLP contains an exterior loop in which foreign 

domains and whole proteins can be inserted within the peptide chain as long as the distance 

between the N and C terminus of the guest protein is geometrically compatible with the loop 

[43]. Walker and others were able to alleviate this steric constraint by splitting the core 

protein monomer at this loop position [43]. Not only was this “SplitCore” protein able to 

form HBV VLPs, but the divide created additional exposed N and C termini in which each 

could be functionalized through direct fusions in order to display full native proteins relevant 

to vaccine development [43].
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While many PNP systems cannot support direct fusions of large proteins as they can 

interfere with self-assembly [6,42], many platforms can afford the fusion of small functional 

peptides [6,8,36,44]. For instance, the tobacco mosaic virus (TMV) nanorod VLP monomers 

can be modified at the C-terminus with a FLAG tag [44]; however, an “IQ” peptide for 

Genhance 680 fluorophore binding was found to interfere with the folding and assembly. In 

an effort to create more space on the VLP surface, a longer, flexible linker was added to 

enhance folding. Additionally an amber codon was incorporated before the peptide 

sequence, leading to periodic truncated expression so that not every core protein was 

modified [44]. Similar mosaic PNPs with a mixture of modified and wild-type core protein 

can be achieved by co-expressing both versions in vivo [45] or dissociating the PNPs and 

mixing them in vitro [16,46]. However, co-expression of both versions lacks direct control 

over the decoration density, while disassembly for in vitro reassembly requires harsh 

conditions, unless the PNP contains a natural assembly/disassembly switch, such as CCMV 

[16].

Enzymatic Ligation

The main disadvantage of protein nanoparticle modification through direct genetic fusions is 

the limitation in incorporating multiple components. An alternative strategy would be to 

incorporate domains that can be manipulated post-assembly. This provides a site-specific, 

covalent linkage with controlled orientation onto the surface of the nanoparticle structure. 

Sortase A from Staphylococcus aureus is often used for its tail-to-head ligations between a 

small C-terminal LPXTG motif and small N-terminal poly-glycine motif [47]. Sortase A has 

been utilized for the functionalization of a triglycine modified E2 protein nanocage [6,22]. 

Our group demonstrated the ligation of LPETG modified elastin-like polypeptide (ELP) and 

a tetrameric β-galactosidase onto E2 [6]. The latter exemplifies the utility of this post-

assembly mechanism in coordinating the quaternary structures of both the multimeric 

enzyme and the protein nanoparticle without interfering with self-assembly. This decoration 

strategy also provides a level of control over the ligation density as well as the modular 

ability to incorporate multiple decorations. Three LPETG-tagged components, an ELP 

purification tag, an IgG binding Z-domain, and a nanoluciferase, can be sequentially ligated 

onto the E2 surface. By controlling the ratios of the reacting LPETG tagged components, the 

number ligated to E2 can be easily controlled [22].

For VLPs made from multiple distinct coat proteins, the use of orthogonal ligation tags 

allows the ability to independently control the ligation of separate proteins of interest to 

different parts of the VLP. Sortase A from Streptococcus pyogenes catalyzes the ligation 

between a C-terminal LPXTA motif and a poly-alanine N-terminal motif. By adding a G5 

tag to the N-terminus of two end proteins p3 and p9 in conjunction with an N-terminal AA 

tag to the p8 phage body protein, a single M13 phage was dually labeled with the TAMRA 

dye on p8 and a single domain antibody VHH7 on p3 using these two orthogonal sortases 

[42].

In addition to sortases, covalent linkage through isopeptide bonds has also been recently 

employed in PNP decoration [15]. The CnaB2 domain from the fibronectin binding protein 

of Streptococcus pyogenes naturally forms an intramolecular isopeptide bond [48]. This 
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protein was engineered into two, split components, named SpyCatcher and SpyTag, which 

retain the bond formation between the pair upon complementation. Using this system, the 15 

kDa Spy-catcher was genetically fused to the N-terminus of the coat protein of the 

bacteriophage AP205 [15], which allowed the covalent conjugation of various malarial and 

cancerous antigens containing the 13 residue SpyTag. This created a modular “Plug-and-

Display” vaccine carrier where theoretically any antigen of interest could be placed onto the 

same adapter carrier. While the SpyCatcher reaction is quick, adaptable to a variety of buffer 

conditions, and independent of calcium ions, like many sortases, the use of this pair in PNPs 

is reliant on the PNP to tolerate the fusion of the whole SpyCatcher or SpyTag peptide.

Cargo Encapsulation

VLP and protein cage structures have the additional utility of incorporating functional 

cargos into their interior lumen through either co-encapsulation in vivo or in vitro 
encapsulation. Co-encapsulation utilizes genetic fusions to termini oriented towards the 

interior [17], or accessory proteins or signal peptides, which direct them into the interior 

during formation. The P22 phage encapsulation system had been used for a variety of 

proteins and enzymes because its unique SP can specifically direct guest proteins of interest 

into the VLP with high loading efficiency [12,49–51]. This system has been used for the 

encapsulation of a homotetrameric protein CelB [51] as well as a three-enzyme cascade into 

the interior [49]. Bacterial nanocompartments, such as encapsulins, employ a similar 

strategy in which a conserved targeting sequence is fused to either the N or C terminus of the 

protein which localizes the cargo to the interior [16,29–31,52]. Using the natural interaction 

of genomic material and capsid in the Qβ VLPs, a dual binding RNA-adapter with binding 

motifs for the capsid monomer and the cargo was used to package fluorescent proteins or 

enzymes inside the VLP [14,18].

Encapsulation in vitro is also used to incorporate cargos into the nanoparticle. This is 

accomplished through denaturation of the cage structure and reassembling it in the presence 

of cargos [28,53]. In many cases the specificity and loading efficiency can be increased 

through the use of electrostatics [21,25,38,54–56]. Unfortunately, complete modification of 

each core monomer with internal cargos often interferes with VLP assembly, and a more 

successful approach for cargo loading was achieved by in vitro mixing of genetically 

modified and unmodified core monomers [16].

Biosensing and Bioimaging Applications of PNPs

PNPs are ideally suited for sensing and imaging applications as they provide a high surface-

area-to-volume ratio [57] and the potential to be simultaneously modified in both the interior 

and exterior [58] for multifunctional capabilities [22]. Functional molecules such as 

fluorophores, metal nanoparticles, antibodies, and aptamers have been displayed on the PNP 

surface to create new functionalities [22,38,58,59]. Taking advantage of the ability to 

modulate the number of nanoluciferase for signal amplification using Sortase A, highly 

sensitive E2-based nanosensors using either antibodies, or aptamers, as the detection 

moieties were created [22]. This method offers the advantage of modularity of the input and 

output signal and simple purification of nanoparticles [22] (Figure 3a). PNPs based on 
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human apoferritin (AFTN) were also modified to create a modular platform for sensitive 

biomolecular diagnosis. AFTN heavy chain was genetically fused to protein G followed by a 

hexahistidine tag that allows binding of antibodies as well as Ni-NTA nanoparticles to the 

PNP surface. This modular assembly can be used to bind QDs, metal, and magnetic 

nanoparticles for immunofluorescence, electron microscopy, and Magnetic Resonance 

Imaging (MRI) [57]. The ability of ferritin nanocages to naturally encapsulate ~4500 iron 

atoms [26,60] and the possibility to display fluorescent proteins were exploited for enhanced 

detection of tumors [20,26]. Matsumoto and coworkers engineered Fn PNPs to increase iron 

uptake by 3-fold, which resulted in a five-fold enhancement in the MRI imaging resolution 

[27].

Loading fluorescent proteins inside PNPs while allowing the exterior for decoration with 

functional receptors make these engineered PNPs a desirable platform for molecular 

imaging. Packing Qβ nanoparticles with GFP while displaying CD22 receptor ligand on the 

surface resulted in easy cell imaging by these PNPs [14]. Virus-like particles have also been 

used for creating ultrasensitive immunosensors since antibodies can be displayed on the 

VLP surface with a high packing density and improved orientation for target binding. Taking 

advantage of the cylindrical shape and dual labeling of surface proteins in M13 

bacteriophage, the detection level of enzyme-linked immunosorbent assay (ELISA) was 

significantly enhanced. The coat protein 3 (p3) located at the tip of the rod-shaped phage 

was modified to bind to the antibody, and the major protein 8 (p8) covering the entire phage 

surface was modified with biotin to bind avidin-conjugated enzymes. The resulting VLPs 

modified with anti-rTNFa (recombinant human tumor necrosis factor alpha) antibodies using 

this strategy showed approximately 4-fold improvement in the ELISA signal [35]. VLPs 

have been also modified to bind both Ni nanohairs and troponin antibodies in a three-

dimensional structure made from engineered HBV capsids. A complex is formed via 

interaction between a displayed hexahistidine tag and the Ni nanohairs as well as binding 

between IgG and protein A displayed on the surface. The three-dimensional assembly 

showed enhanced detection in troponin levels in human serum samples up to seven orders of 

magnitude [59].

Biocatalysts applications of PNPs

Biochemical reactions can be substantially enhanced by confining enzymes to nanoscale 

compartments which improves enzymatic activity and substrate channeling based on enzyme 

proximity [5,49]. PNPs provide a simple platform to achieve this nanoscale assembly either 

by displaying enzymes at high local concentration on the surface or by packaging them 

inside PNPs. Moreover, the encapsulation of enzymes inside PNPs improves stability of 

enzymes by protecting the enzyme against proteases, thermal denaturation, and other similar 

exposures [5].

VLPs based on P22 have been widely used to generate nano-biocatalysts by genetic fusion 

of enzymes to the SP subunits (Figure 3b). Hydrogenase activity was improved by 100-fold 

when packaged inside P22 nanocage. Hydrogenase was expressed prior to the capsid 

assembly since hydrogenase maturation is low and this is necessary to retain activity [50]. 

Alcohol dehydrogenase D (AdhD) was also encapsulated inside the P22 protein nanocage as 
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a fusion to the N-terminus of SP [12]. Although the kcat of encapsulated AdhD was not 

increased in this case, the effect of substrate inhibition was decreased compared to the free 

enzyme, possibly due to limited substrate diffusion into the PNP [12]. Using the same 

approach, even a multienzyme complex consisting of CelB, ATP-dependet galactokinase 

(GALK), and the dimeric ADP-dependent glucokinase (GLUK) has been encapsulated 

within P22. The encapsulated enzymes exhibited a two-fold increase in the conversion of 

lactose to G6P and G1P [49].

Other VLPs have also been used to generate nanobioreactors. To control the number of 

enzymes packaged within the CCMV nanocompartment, a heterodimeric coiled-coil linker 

was used to bind the Pseudozyma antartica lipase B (PalB) in order to assemble multiple 

PalB inside the PNP [61]. The spatially organized PalB showed overall reaction rates upto 5-

fold over that of the free enzyme, however, increasing the number of encapsulated PalBs 

adversely affected the reaction rates [61]. TMV-based VLP was also engineered to introduce 

a cysteine residue to the coat protein, allowing the introduction of a biotin tag to this 

nanorod-shaped VLP using maleimide chemistry. Streptavidin-tagged (SA) horseradish 

peroxidase and glucose oxidase were immobilized onto the TMV surface generating a 

nanobiocatalyst with 45-fold higher enzyme activity [62].

An excellent example of the ability to hijack a bacterial microcompartment (BMC) to 

sequester an alternative cascade reaction was the engineering of an empty Pdu BMC to 

create an ethanol bioreactor [63]. The interaction between N-terminal residues of C. freundii 
PduP and PduD with PduK, a shell protein, enabled the heterologous enzymes of an ethanol 

production pathway to be localized to the Pdu BMC. The BMC bioreactor encapsulated 

pyruvate decarboxylase and alcohol dehydrogenase was able to produce 56% more ethanol 

than free enzymes [63]. However, a recent report showed that when a four-enzyme pathway 

was targeted for encapsulation by Pdu BMC using the same targeting peptides, the enzymes 

did not encapsulate inside the shell proteins, but rather aggregated in inclusion bodies [52].

Conclusions and Future Perspectives

Although the use of PNPs as biocatalysts and biomedical sensors has been expanding, there 

are still many remaining hurdles for their widespread usage. A facile and low-cost method 

for the large-scale production and purification of PNPs is a key factor for their industrial 

applications. Recent advances in recombinant DNA technology have already resulted in 

several microbial hosts, such as E. coli or yeast, as suitable expression platforms. However, 

ultracentrifugation and ion-exchange chromatography remain the major methods for 

purification. Recent reports on the use of ELP to facilitate purification based on reversible 

phase transition offers a potential strategy to bypass these limitations. For human 

applications, the ability to hide PNPs from the native immune response will necessitate the 

use of sophisticated strategies for surface modifications. Again, learning how native viruses 

evolve mechanisms to evade the immune system may provide the necessary clues in this 

respect. Finally, the use of VLPs and enzyme nanocages isolated from extreme thermophilic 

environments will likely expand the stability and the reaction temperatures required for 

high-performance nanoreactor systems.
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HIGHLIGHTS

• Review of Virus-Like Particles (VLPs) and enzyme-derived nanoparticles as 

biosensors and biocatalysts.

• Protein nanoparticles are excellent platforms for adding multiple 

functionalities.

• Novel nanoparticles that can be designed de novo are expanding the field.

• Modification techniques for functionalization are reviewed.
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Figure 1. 
Examples of protein nanoparticles with applicable features. a) The VLP from bacteriophage 

P22 self-assembles into a 58 nm capsid, upon heating, the capsid expands allowing the 

internal volume of the nanoparticle to increase. Further heating results in the opening of 

pores in the structure known as a “wiffleball” structure. Adapted with permission from 

Patterson DP, Prevelige PE, Douglas T: Nanoreactors by programmed enzyme 
encapsulation inside the capsid of the bacteriophage P22. ACS Nano 2012, 6:5000–5009. 

Copyright 2012, American Chemical Society. b) Cowpea Chlorotic Mottle Virus (CCMV) 

VLPs are formed by mixing shell proteins (green) with or without fused cargo proteins 
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(blue) at pH 7.5 then dialyzing the protein mixture at pH 5.0 overnight to form capsids. This 

process can be reversed by raising the pH back to 7.5. Adapted with permission from Rurup 

WF, Verbij F, Koay MS, Blum C, Subramaniam V, Cornelissen JJ: Predicting the loading 
of virus-like particles with fluorescent proteins. Biomacromolecules 2014, 15:558–563. 

Copyright 2014, American Chemical Society. c) The thermophilic nature of E2 (purple 

spheres) allows for simple purification by heating to 70°C allowing most cellular proteins to 

denature and be removed by centrifugation. Adapted with permission from Sun Q, Chen Q, 

Blackstock D, Chen W: Post-Translational Modification of Bionanoparticles as a 
Modular Platform for Biosensor Assembly. ACS Nano 2015, 9:8554–8561. Copyright 

2015, American Chemical Society. d) Computational design was used to create synthetic 

protein nanoparticles which self-assemble into icosahedral structures by simply mixing two 

separate multimeric proteins. For example, I53 architecture was obtained through mixing 

trimer and pentamer components with computationally optimized protein-protein 

interactions.
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Figure 2. 
In vivo and in vitro functionalization of PNPs. Protein nanoparticles can be loaded with a 

protein(s) of interest by genetic fusion to the monomer shell protein. As the shell proteins 

self-assemble in vivo, the nanoparticle will become decorated with the protein(s) of interest. 

For nanocages that aren’t amenable to genetic fusions, proteins can be decorated on the 

surface of the particle through chemical or enzymatic conjugation. Small molecules or 

proteins can be encapsulated in vivo by fusion to an interaction domain that will associate 

with the inner core of a nanoparticle. Small molecules can be encapsulated PNPs by mixing 

in vitro provided the conditions present are sufficient for disassembly of the PNP to 

incorporate the molecules upon reassembly of the PNP.
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Figure 3. 
Examples of PNP biosensors and biocatalyst. a) The E2 PNP has the ability to be decorated 

with multiple sensing and output domains allowing it to be an efficient biosensor against a 

number of targets. Reprinted with permission from Sun Q, Chen Q, Blackstock D, Chen W: 

Post-Translational Modification of Bionanoparticles as a Modular Platform for 
Biosensor Assembly. ACS Nano 2015, 9:8554–8561. Copyright 2015, American Chemical 

Society. b) A three enzyme synthetic metabolon was incorporated into the P22 VLP to create 

a more efficient bioreactor. The three enzymes and shell protein were co-expressed and 

allowed to self-assemble into a nanobioreactor. Reprinted with permission from Patterson 

DP, Schwarz B, Waters RS, Gedeon T, Douglas T: Encapsulation of an enzyme cascade 
within the bacteriophage P22 virus-like particle. ACS Chem Biol 2014, 9:359–365. 

Copyright 2014, American Chemical Society.
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