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Abstract

Asymptomatic colonization with extended-spectrum beta-lactamase (ESBL) producing

Enterobacteriaceae has been described for humans, various mammal species, and birds.

Here, antimicrobial resistant bacteria were recovered from dog feces originating in Ger-

many, Kosovo, Afghanistan, Croatia, and Ukraine, with a subset of mostly E. coli isolates

obtained from a longitudinal collection over twelve months. In vitro antimicrobial resistance

testing revealed various patterns of resistance against single or all investigated beta-lactam

antibiotics, with none of the 101 isolates resistant against two tested carbapenem antibiot-

ics. Whole genome sequence analysis revealed bacteria species-specific patterns for 23

antimicrobial resistance coding DNA sequences (CDS) that were unapparent from the in

vitro analysis alone. Phylogenetic analysis of single nucleotide polymorphisms (SNP)

revealed clonal bacterial isolates originating from different dogs, suggesting transmission

between dogs in the same community. However, individual resistant E. coli clones were not

detected over a period longer than seven days. Multi locus sequence typing (MLST) of 85 E.

coli isolates revealed 31 different sequence types (ST) with an accumulation of ST744 (n =

9), ST10 (n = 8), and ST648 (n = 6), although the world-wide hospital-associated CTX-M

beta-lactamase producing ST131 was not detected. Neither the antimicrobial resistance

CDSs patterns nor the phylogenetic analysis revealed an epidemiological correlation

among the longitudinal isolates collected from a period longer than seven days. No genetic

linkage could be associated with the geographic origin of isolates. In conclusion, healthy

dogs frequently carry ESBL-producing bacteria, independent to prior treatment, which may

be transmitted between individual dogs of the same community. Otherwise, these antimicro-

bial resistant bacteria share few commonalities, making their presence eerily unpredictable.
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Introduction

Beta-lactams are among the most popular antibiotics, worldwide, for the treatment of bacterial

infections [1]. Unfortunately, multidrug-resistant bacteria producing extended-spectrum beta-

lactamases (ESBL) are also prevalent worldwide [2]. Descriptions of ESBL isolates originating

from patients in intensive care units of European hospitals were first published in the mid-

1980s [1]. Since then, ESBL-producing Enterobacteriaceae have been identified from a pleth-

ora of sources, including humans, animals, food, feed, and other environmental sources [3–7].

ESBL-producing Escherichia coli isolated from dogs were first described in 1988, following

treatment of the dogs with beta-lactam antibiotics [8]. Since then, the presence of ESBL-pro-

ducing bacteria has been described repeatedly for sick, but also completely healthy companion

animals, including dogs [4,9–13]. One longitudinal study occurring over six months identified

a variety of ESBL-producing Enterobacteriaceae in healthy dogs with highly dynamic fecal

shedding patterns, occurring either continuously or periodically [14].

Comprehensive characterization of ESBL-producing Enterobacteriaceae is critical for

understanding transmission routes and persistence in potential reservoirs, as well as their

potential to transfer multidrug-resistant genetic coding elements and/or cause disease [15]. To

date, a variety of methods, including biochemistry, phage typing, serotyping, bacteriocin typ-

ing, analytical isoelectric focusing, and pulsed-field gel electrophoresis have been used for

characterization [1, 9, 16–17]. However, the discriminatory power of these methods has been

incomplete and the reproducibility among different laboratories low, limiting insight into the

epidemiology of these bacteria [1]. High throughput whole genome sequencing provides an

opportunity to gather much more comprehensive data on antimicrobial resistance carrying

genetic elements in various bacteria. And, when coupled with appropriate epidemiological

data, should allow for greater insight into the population dynamics of ESBL-producing bacte-

ria [17–19]. In this study, we combine in vitro diagnostics with whole genome analysis to

investigate the genetic diversity and antimicrobial resistance profiles of ESBL-producing bacte-

ria from dogs living in close proximity to humans and gain a greater understanding of this

overlooked source of antimicrobial resistance.

Material and methods

Strain isolation

ESBL-producing bacteria were exclusively isolated from fresh canine feces. As the dogs were

not at all touched for this purpose, the Institutional Animal Care and Use Committee

(IACUC) was not involved. The authorization of the sample collection regarding animals

within any North Atlantic Treaty Organization (NATO) theatre of operations was given by

direct NATO order and was to be executed by the military veterinary authorities, here authors

of the present study, that must review which diseases were prevalent in the area to which ani-

mals will be deployed [20]. The collection within Germany was carried out within the area of

caserns or on private land in the presence of and in accordance to the commanding officer or

the respective landlord.

Dog feces from a community of 17 German (GER) military dogs, and from three additional

military dogs living in a different community, was sampled over a twelve-month period, from

April 2015 to March 2016. Within this longitudinal subset, fecal samples of all dogs were

screened daily within the first week of investigation, then weekly during the first month, then

monthly for six months, and, finally, once at the end of twelve months. The sampled dogs had

no history of treatment over the previous twelve months. Additional, sporadic samples were

collected from military dogs from other locations, including Croatia (CRO) and Ukraine
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(UKR), and also from stray dogs from military operation zones in Afghanistan (AFG) and

Kosovo (KOS) (S1 Table). Samples were collected from dog feces directly after voiding, and

were processed in the laboratory within a maximum of six hours. Initial screening of fecal sam-

ples was carried out by direct inoculation on a selective Brilliance ESBL AGAR (Oxoid, Wesel,

Germany) containing an antibiotic-mix, using a 10 μl inoculation loop. Plates were incubated

at 37˚C, and putative isolates were harvested based on their colony morphology after 24 h

according to the manufacturer’s instructions. All morphologically suspicious isolates were

picked, with at least three morphologically indistinguishable isolates selected per plate, if avail-

able. Selected isolates were then sub-cultured on Columbia sheep blood agar (Oxoid, Wesel,

Germany). The tentative species of each isolate was determined via mass spectrometry using a

MALDI Biotyper system (Bruker, Bremen, Germany).

The isolates were named according to their geographic origin (GER, UKR, KOS, CRO,

AFG), individual source (military dog—MD, stray dog–SD, stray fox–SF, companion dog–

CD, environmental–EN, and number indicating specific animal), year and month of isolation,

bacterial species and a running number within the present project; e.g. GER_M-

D06_1505_Eco_007 (S1 Table).

Whole genome analysis confirmed the species identification for the investigated isolates

except for two isolates: the Enterobacter kobei isolate GER_MD16_1505_Esp_090 was labeled

Enterobacter sp. and the Pseudomonas fulva isolate AFG_SD02_1510_Psp_092 was labeled

Pseudomonas sp. due to low measures of identity to reference genomes for each species.

In vitro antimicrobial susceptibility testing

All recovered isolates were tested in vitro for their antimicrobial resistance profile using the

commercially available standard micro-dilution system, MICRONAUT-S Beta-Lactamases

(Merlin, Berlin, Germany). This method included tests for six different singular antimicrobial

substances, including, cefoxitin (COX), cefotaxime (CTX), ceftazidime (CAZ), cefepime

(CEP), ertapenem (ERT), and meropenem (MER), and three additional combinations com-

prised of CTX, CAZ, and CEP tested in combination with clavulanic acid. The minimum

inhibitory concentration (MIC) was determined for each isolate in accordance with the manu-

facturer’s directions (Merlin, Berlin, Germany).

To assess the presence of multiple beta-lactamases (multiple resistance determinants) MIC

values were interpreted according to the breakpoint-value standards set for drug selection and

interpretation by the Clinical and Laboratory Standards Institute (CLSI, Wayne, PA, USA).

Specifically, the CLSI Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that
Grow Aerobically, 27th Informational Supplement (M100-S27), and the VET01/ VET01-S2

guidelines, Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for
Bacteria Isolated From Animals, presented by the Subcommittee on Veterinary Antimicrobial

Susceptibility Testing were used [21–22]. Complete breakpoint values were solely available for

E. coli and P. mirabilis and partially available for CEP and CAZ for Pseudomonas aeruginosa.

However, no breakpoints were available for Enterobacter spp., Aeromonas sp. and Pseudomo-
nas sp. other than P. aeruginosa [21]. By definition, extended-spectrum beta-lactamase is pro-

duced by a bacterium if more than a three twofold concentration decrease in a MIC is

observed for either antimicrobial agent tested in combination with clavulanic acid versus the

MIC of the agent when tested alone [22].

Genome sequencing, assembly, MLST

Whole genome sequencing was attempted for all isolates. DNA was extracted using the

QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany), and sequenced on the Illumina MiSeq
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and NextSeq platforms (TGen, Flagstaff, AZ, USA). Raw sequence data were assembled with a

pipeline that includes Trimmomatic for read trimming [23], SPAdes v3.10.1 for contig assem-

bly [24], Pilon for assembly polishing [25], and BLAST to identify potential sequence contami-

nation [26]. In silico multi-locus sequencing typing (MLST) of identified E. coli genomes was

carried out using a custom script (https://gist.github.com/jasonsahl/2eedc0ea93f90097890

879e56b0c3fa3) that utilizes BLAST and the PubMLST database (https://pubmlst.org/) for

Escherichia coli [26–27].

Screening for CDS associated with antimicrobial resistance and virulence

factors

All recovered genome assemblies were screened for antibiotic resistance genes with ABRicate

(https://github.com/tseemann/abricate), using the ResFinder database (downloaded 2017 July

8) [28]. In addition, virulence gene profiles were determined by screening the genome assem-

blies for selected virulence coding DNA sequences (CDSs) with the large-scale blast score ratio

(LS-BSR) pipeline [29] using the BLAT alignment option [30]. Screened virulence genes

included 35 publicly available CDSs for fimbriae, toxins, and other proteins responsible for

adhesion, agglutination, gene transfer, or iron acquisition. A CDS was considered as present

within a genome if the blast score ratio was above 0.8 [31].

Phylogenetic analyses

Phylogenetic analyses were applied to all of the recovered E. coli sequences to identify genetic

relationships among the isolates. The E. coli genomes were compared to a reference, K-12

W3110 (GCA_000010245.1), and core genome single nucleotide polymorphisms (SNPs) were

identified [32]. Specifically, sequencing reads were aligned to the reference with BWA-MEM

[33]. SNPs were called using the UnifiedGenotyper method in GATK [34–35]. Putative SNP

positions with less than 10X coverage or allele proportions less than 90% were filtered from the

analysis. Any SNP identified from duplicated regions of the reference, as identified through

NUCmer [36] self-alignments, were filtered from downstream analyses. All of the SNP detec-

tion methods were performed in conjunction with the NASP pipeline [37]. Phylogenies were

inferred from the identified SNPs with IQ-TREE v 1.4.4 using the identified best-fit model,

TVM+ASC+G4 (S3 Table) [38].

Results

Isolates

In total, 101 bacterial isolates were recovered using the selective Brilliance ESBL AGAR

between January 2015 and June 2016 (S1 Table). Of these, 75 originated from 16 German mili-

tary dogs, with an additional five originating from two companion dogs (GER_CD71,

GER_CD72) living in the same household as German military dog GER_MD77. Of the foreign

isolates, six originated from stray dogs (n = 2), shelter dogs (n = 3), and a stray fox (n = 1) in

Kosovo; eight originated from stray dogs in Afghanistan; three originated from a Ukrainian

military dog located in Kosovo; and two originated from a Croatian military dog located in

Afghanistan (S1 Table). Two additional isolates originated from routine hygiene samples in

Germany, and were considered as outgroups of non-animal origin.

Isolates were recovered from 16 of the 20 tested German military dogs. However, repeat iso-

lation of ESBL-producing bacteria from samples taken on different dates was only successful

for five of the 17 German military dogs in the longitudinal study (29%) (S1 Table). The longi-

tudinal collection identified twelve isolates from GER_MD01 over a period of eleven months,

Phenotypic and genotypic analysis of ESBL-producing bacteria, Germany

PLOS ONE | https://doi.org/10.1371/journal.pone.0206252 October 26, 2018 4 / 17

https://gist.github.com/jasonsahl/2eedc0ea93f90097890879e56b0c3fa3
https://gist.github.com/jasonsahl/2eedc0ea93f90097890879e56b0c3fa3
https://pubmlst.org/
https://github.com/tseemann/abricate
https://doi.org/10.1371/journal.pone.0206252


five isolates from GER_MD02 over a period of seven months, ten isolates from GER_MD03

over a period of three months, four isolates from GER_MD06 over a period of seven months,

and eight isolates from GER_MD14 over a period of seven months (S1 Table).

A total of 31 isolates were collected from either the same dog or household within a single

month of sampling, allowing for an examination of ESBL-diversity within a single dog and/or

household over a short period of time. These included three isolates from GER_MD07, three

isolates from GER_MD08, 13 isolates from GER_MD11, two isolates from GER_MD17, seven

isolates from GER_MD77 or his companions GER_CD71 and GER_CD72, and three isolates

from UKR_MD01 (S1 Table).

Identification of the 101 isolates revealed 93 Escherichia coli, one Proteus mirabilis, two

Enterobacter cloacae, one Enterobacter sp. (all family Enterobacteriaceae), one Aeromonas
caviae, one Aeromonas hydrophila, one Pseudomonas aeruginosa, and one Pseudomonas sp.

(S1 Table). For two isolates, the identification was possible only on genus level due to contra-

dictory results based on the MALDI-TOF and the molecular approach.

Antimicrobial susceptibility

MICs for the entire antibiotic test panel were recovered for all isolates (S2 Table). Interpreta-

tion of MICs was carried out for the 94 isolates (E. coli, P. mirabilis) in accordance with CLSI

criteria. Due to limited or missing MIC values in the CLSI guidelines, interpretation was

restricted for CAZ and CEP for the P. aeruginosa isolate and could not be performed for the

Enterobacter, Aeromonas and Pseudomonas non-aeruginosa isolates (S2 Table). For COX, rep-

resenting cephamycin antibiotics within the 2nd generation of cephalosporins, 13 isolates

(14%) were resistant and 81 (86%) were susceptible (S2 Table). For CTX, representing 3rd gen-

eration cephalosporins, 91 isolates (97%) were resistant, one (1%) was susceptible, and two

(2%) had an intermediate state. For CAZ, 34 isolates (36%) were resistant, 51 (54%) were sus-

ceptible, and ten had an intermediate state (S2 Table). For CEP, a 4th generation cephalospo-

rin, 87 isolates (92%) were resistant, six (6%) were susceptible, and two (2%) had an

intermediate state (S2 Table). For the carbapenems, ERT and MER, all tested isolates were sus-

ceptible (S2 Table). Tests of CTX, CAZ, and CEP with the addition of 4 μg/ml clavulanic acid

to inhibit beta-lactamase activity, revealed 88 (93%) out of 95 isolates to be real ESBL-produc-

ers in the in vitro system and according to the CLSI guidelines (S2 Table) [21–22]. One isolate,

GER_MD01_1509_Eco_059, was susceptible to all of the tested substances (S2 Table).

Genome assembly and CDS identification

Draft genome assemblies were generated for 93 isolates, with the remaining eight isolates

excluded due to poor sequence quality (S3 Table). Of these, 85 were identified as E. coli
genomes. Genome assemblies were submitted to GenBank and raw data was submitted to the

sequence read archive (see S3 Table for individual accession numbers).

Use of ABRicate and the ResFinder database revealed sequence hits for 23 of 1,309 screened

CDSs for beta-lactamases amongst the genome assemblies (Table 1 and S4 Table). Regarding

class A beta-lactamase genes, 74 of 85 analyzed E. coli genomes possessed at least one CTX-M-

type beta-lactamase CDS, with 33 positive for blaCTX-M-1, 28 positive for blaCTX-M-15, eleven

positive for blaCTX-M-14, two positive for blaCTX-M-3, and one positive for blaCTX-M-2. One iso-

late was positive for blaSFO-1 and another for blaSHV-12. Forty isolates possessed blaTEM-1-type

beta-lactamase CDSs, with two positive for blaTEM-1A and 38 positive for blaTEM-1B (Table 1

and S4 Table). Regarding class B beta-lactamases, one A. hydrophilia genome was positive for

blaCph-A1 and three E. coli genomes were positive for blaVIM-1 (Table 1). Ten genomes were

positive for class C beta-lactamase CDSs, including three E. coli genomes positive for blaACC-1
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and single isolates positive for blaACT-7, blaACT-14, blaCMY-2, blaMIR-6, blaMOX-5, blaMOX-6, bla-

PAO, and ampH, respectively (Table 1 and S4 Table). Twenty isolates were positive for class D

beta-lactamase CDSs, including 18 E. coli genomes positive for blaOXA-1, one P. aeruginosa
positive for blaOXA-50, and one A. caviae positive for blaOXA-504 (Table 1 and S4 Table). Only

two isolates, the GER_MD10_1505_Pmi_049, and the GER_EN02_1501_Eco_088 were nega-

tive for all of the 1,309 screened beta-lactamase CDSs (Table 1 and S4 Table).

Patterns in the identified antimicrobial resistance CDSs suggested bacterial species spe-

cificity (Table 1). The two E. cloacae isolates were the only isolates to possess blaACT-7 and

blaACT-14, respectively. Likewise, the further Enterobacter sp. isolate was the only isolate to pos-

sess blaMIR-6, the P. aeruginosa isolate was the only isolate to possess blaPAO and blaOXA-50, and

the A. caviae isolate was the only isolate positive for blaMOX-6 and blaOXA-504. Similarly, the

A. hydrophila isolate was the only isolate positive for blaSFO-1, blaCph-A1, blaMOX-5, and ampH,

four antimicrobial resistance coding beta-lactamase genes and the highest number detected in

a single isolate (Table 1).

Sequence hits for seven of 35 screened virulence CDSs were detected among the genome

assemblies originating from the present study group (Table 2). Sequence hits included eleven

isolates positive for an adhesion protein CDS (i.e., the long polar fimbriae lpfA), one isolate

positive for the agglutination protein temperature sensitive hemagglutinin CDS (tsh). A CDS

Table 1. Prevalence of 23 specific beta-lactamase (BL) genes coding for antimicrobial resistance showing a clear species specificity (also S4 Table).

category BL, extended-spectrum BL (ESBL) specific resistance

gene

positive strains (n) out of

93

bacterial species

class A BL (penicillinase) cefotaximase-Munich, ESBL blaCTX-M-1 33 Escherichia coli
blaCTX-M-2 1 Escherichia coli
blaCTX-M-3 2 Escherichia coli
blaCTX-M-14 11 Escherichia coli
blaCTX-M-15 28 Escherichia coli

Serratia fonticola class A BL blaSFO-1 1 Aeromonas hydrophila
sulphydryl variable class A BL blaSHV-12 1 Escherichia coli
Temoneira, class A BL blaTEM-1A 2 Escherichia coli

blaTEM-1B 38 Escherichia coli
class B BL

(carbapenemase)

carbapenem-hydrolyzing metallo BL blaCph-A1 1 Aeromonas hydrophila

zinc dependent Verona integron-encoded metallo BL blaVIM-1 3 Escherichia coli
class C BL

(cephalosporinase)

Ambler class C-1 cephalosporin-hydrolyzing class C BL blaAcc-1 3 Escherichia coli

ampicillin type cephalosporin-hydrolyzing class C BL blaAct-7 1 Enterobacter cloacae
blaAct-14 1 Enterobacter cloacae

aminopenicillin-inactivating (Amp) cephalosporinase blaAmpH 1 Aeromonas hydrophila
cephamycinase, plasmid derived pYMG-1 bla blaCMY-2 1 Escherichia coli
methoxy-/ imino-Res; cephalosporin-hydrolyzing class C

BL

blaMIR-6 1 Enterobacter sp.

moxalactam-inactivating cephalosporinase blaMOX-5 1 Aeromonas hydrophila
blaMOX-6 1 Aeromonas caviae

Pseudomonas aeruginosa cephalosporinase blaPAO 1 Pseudomonas
aeruginosa

class D BL oxacillin-hydrolyzing BLs blaOXA-1 18 Escherichia coli
blaOXA-50 1 Pseudomonas

aeruginosa
blaOXA-504 1 Aeromonas caviae

https://doi.org/10.1371/journal.pone.0206252.t001
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catalyzing site specific integration into chromosome and responsible for horizontal gene trans-

fer (argW tRNA gene) was detected in 20 of the isolates [39–40]. The CDS for iron acquisition,

and iron carrier system, siderophore receptor A (ireA) was detected in four of the isolates [41].

Regarding toxin production, one isolate was positive for E. coli heat-stable (ST) enterotoxin A

(estA) and the ETEC heat-stable enterotoxin (STp). Finally, four isolates were positive for Shi-
gella enterotoxin B (senB) (Table 2). No isolate possessed more than two of the detected viru-

lence CDSs (S1 Table).

MLST, SNPs and phylogenetic analysis

The MLST, SNP and phylogenetic analyses were limited to the E. coli sequences. Of the 85

identified E. coligenomes, 81 could be classified as one of 31 out of> 7,000 known E. coli
sequence types (STs) based on MLST. The most frequently identified STs were ST744 (n = 9),

ST10 (n = 8), ST648 (n = 6), ST58 (n = 4), and ST315 (n = 4), with the remaining 26 STs repre-

sented�3 times among the 85 genomes (Fig 1 and S1 Table). The remaining four E. coli
genomes each contained one or two novel MLST alleles, resulting in three new, as yet unas-

signed STs (S1 Table). Phylogenetic analysis of 215,629 concatenated SNPs identified among

the core genome of the analyzed E. coli isolates revealed clustering consistent with the identi-

fied STs (Fig 1). Within MLST ST10, ST101, and ST58, the SNP analysis revealed higher dis-

criminatory power than pure MLST. Isolates belonging to these STs were collected on

different dates, from different dogs and possessed different resistance CDSs (Fig 1, S3 Table).

No clustering according to the geographic origin was observed among the study isolates, as

most isolates from KOS, AFG, UKR, and CRO revealed different MLST STs, CDSs contents,

and phylogenetic SNP clustering (Fig 1 and S1 Table).

In three cases, identical clones were detected from different dogs living in close contact.

First, the combination of blaCTX-M-14 and blaTEM-1B was found in nine ST744 clonal isolates

originating from five different dogs isolated within the same month (Fig 1 and S1 Table). Sec-

ond, the six ST648 isolates, originating from two different dogs in the same month, were the

only isolates found to contain the combination of blaCTX-M-15 and blaOXA-1 (Fig 1 and S1 Table).

Finally, three ST410 isolates, collected from three different dogs over five months, were all found

to contain blaCTX-M-15 and blaOXA-1. However, the isolate recovered five months after the other

two did differ somewhat in that it was found to lack the senB gene (Fig 1 and Table 2). In one

household, three dogs shed three ESBL-producing E. coli with identical MLST ST58 within 18

days, but these possessed SNP and gene content differences (GER_MD77_1507_Eco_075,

GER_CD72_1507_082) (Fig 1 and S1 and S3 Tables). Focusing only on clonal isolates within lon-

gitudinal reshedding in individual dogs, a maximum isolation-time difference of seven days could

Table 2. Virulence genes detected in the isolates of the present study using whole genome sequence analysis.

Protein

function

Gene Full name and effect Number of isolates carrying the

respective gene

Accession Number

adhesion lpfA long polar fimbriae 11 AB161111.1

agglutination tsh temperature sensitive hemagglutinin, autotransporter protein 1 AF218073.1

gene transfer argW tRNA gene; site specific integration into chromosome and horizontal

gene transfer

20 U11296.1

iron acquisition ireA Siderophore, iron carrier receptor 4 KU295572.1

toxin estA E. coli heat stable toxin A/ +variant 1 (environment) AF005091.1

toxin STp ETEC heat-stable enterotoxin 1 (environment) FN649417.1:c57269-

57051

toxin senB Shigella enterotoxin B 4 Z54195.1

https://doi.org/10.1371/journal.pone.0206252.t002
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GER MD77 1507 Eco 077 ST 162

GER MD03 1505 Eco 005 ST 315

GER MD03 1505 Eco 006 ST 101

GER MD14 1511 Eco 063 ST 90

AFG SD07 1510 Eco 097 ST N

GER MD02 1511 Eco 060 ST 23

GER MD11 1505 Eco 021 ST 48

GER MD01 1509 Eco 054 ST 1163

GER MD67 1606 Eco 100 ST 345

GER MD01 1505 Eco 048 ST 101

AFG SD04 1510 Eco 094 ST 181

GER MD01 1505 Eco 004 ST 10

GER CD71 1507 Eco 079 ST 1056

GER CD72 1507 Eco 082 ST 58

GER MD06 1511 Eco 065 ST 23

GER EN02 1501 Eco 088 ST 120

GER MD15 1507 Eco 052 ST 1662

GER MD03 1505 Eco 018 ST 744

GER MD03 1507 Eco 050 ST 973

GER MD01 1509 Eco 057 ST 868

GER MD01 1509 Eco 058 ST 398

GER MD06 1505 Eco 007 ST 744

GER MD02 1505 Eco 034 ST 744

UKR MD01 1506 Eco 067 ST 10

KOS DS01 1507 Eco 070 ST 10

GER MD11 1505 Eco 029 ST 2325

GER MD14 1507 Eco 051 ST 1662

GER MD14 1505 Eco 043 ST 648

GER MD06 1505 Eco 002 ST 744

GER MD90 1604 Eco 099 ST 372

GER MD08 1505 Eco 019 ST 88

GER CD71 1507 Eco 078 ST 1056

GER MD02 1511 Eco 064 ST 410

GER MD17 1505 Eco 039 ST 648

KOS SD04 1507 Eco 073 ST 155

GER MD14 1505 Eco 037 ST 648

GER MD01 1505 Eco 009 ST 10

GER MD03 1505 Eco 010 ST 744

GER MD14 1505 Eco 038 ST 648

GER MD07 1505 Eco 013 ST 681

GER MD03 1505 Eco 016 ST 315

UKR MD01 1506 Eco 069 ST 69

GER MD01 1509 Eco 055 ST 1163

GER MD07 1505 Eco 012 ST 681

GER MD11 1505 Eco 042 ST 2459

GER MD07 1505 Eco 014 ST 681

GER MD11 1505 Eco 025 ST 48

GER MD11 1505 Eco 030 ST 744

Reference Ecoli str K-12 substr W3110 ST 10
GER MD11 1505 Eco 024 ST N

GER MD11 1505 Eco 031 ST N

GER MD01 1505 Eco 047 ST 101

GER MD03 1505 Eco 011 ST 744

GER MD17 1505 Eco 045 ST 648

GER MD02 1505 Eco 040 ST 744

AFG SD08 1510 Eco 098 ST N

GER MD11 1505 Eco 026 ST 744

GER MD08 1505 Eco 035 ST 88

GER MD01 1509 Eco 059 ST 868

GER MD03 1505 Eco 041 ST 973

GER MD06 1511 Eco 062 ST 410

AFG SD06 1510 Eco 096 ST 3586

GER CD72 1507 Eco 080 ST 58

GER MD77 1507 Eco 075 ST 58

GER MD14 1507 Eco 053 ST 1662

CRO MD01 1509 Eco 084 ST 2450

GER MD01 1603 Eco 066 ST 453

AFG SD05 1510 Eco 095 ST 3586

GER EN01 1501 Eco 087 ST 10

GER MD11 1505 Eco 023 ST 2325

GER MD11 1505 Eco 036 ST 2459

GER MD11 1505 Eco 020 ST 2459

GER MD01 1505 Eco 001 ST 10

KOS SD05 1507 Eco 074 ST 127

KOS SF06 1605 Eco 101 ST 10

GER MD11 1505 Eco 027 ST 2325

GER MD03 1505 Eco 017 ST 58

GER MD14 1505 Eco 044 ST 648

GER MD03 1505 Eco 003 ST 315

KOS DS02 1507 Eco 071 ST 162

UKR MD01 1506 Eco 068 ST 10

GER MD02 1511 Eco 061 ST 23

GER MD03 1505 Eco 015 ST 315

GER MD01 1509 Eco 056 ST 868

GER MD11 1505 Eco 032 ST 48

GER CD72 1507 Eco 081 ST 410
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be shown for five dogs (GER_MD03, GER_MD07, GER_MD08, GER_MD11, GER_MD14) (Fig

1 and S1 Table).

Discussion

We collected 101 bacterial isolates during a 12-month ESBL-screening study of clinically

healthy dogs and characterized their antimicrobial resistance phenotypes and genotypes

through in vitro testing and whole genome sequence analysis. Here, 16 of 20 German military

dogs (80%) that had no history of medical treatment for the previous twelve months were

found to shed ESBL-producing bacteria at least once within the study period (S1 Table).

Although a high prevalence of ESBL-producing bacteria is suspected in livestock, our findings

were surprising considering that the investigated animals were clinically healthy and untreated

[42]. Also concerning was the result that 9% of the characterized E. coli isolates from clinically

healthy German dogs were completely resistant against all tested cephalosporins (COX, CTX,

CAZ, and CEP) (S2 Table). As the microbiological resistance against third-generation cephalo-

sporins in European countries was stated as generally low in a review of 2012 data provided by

the European Centers for Disease Control (ECDC), this result can be interpreted as a trend

towards increasing multidrug resistance [43].

The overall trends of increasing antimicrobial resistance have led to several actions in

recent years. In 2015, increasing concern on the animal welfare consequences of antimicrobial

resistance in bacteria from animal sources led to the establishment of a sub-committee for Vet-

erinary Antimicrobial Susceptibility Testing (VetCAST) of the European Committee on Anti-

microbial Susceptibility Testing (EUCAST) [44]. In 2018, the national German veterinary

pharmacy regulation law was enforced. According to this law, if a veterinarian applies antibiot-

ics to animals, the MIC of bacterial isolates must be determined in case of repeated or change

of medication, rededication, or regarding therapy of flocks or regarding animals bred for spe-

cific purposes [45]. This enforcement was aimed at a reduction of the use of antibiotics, but as

well as at avoiding an increase of antimicrobial resistance through non-suitable therapy. Since

2014, the amounts and application of antibiotics in animal husbandry in Germany are offi-

cially collected in a large database. The Federal Veterinary Surgeons’ Association regularly

publish guidelines for the prudent use of veterinary antimicrobial drugs, and may consider

data regarding the use, but also antimicrobial resistance [46]. The data of the present study

contribute to comprehend trends within the complex field of antimicrobial resistance.

Resistance against single antibiotics within the class of cephalosporins was common among

the investigated isolates, with 14% of the evaluated isolates resistant to COX and 92% resistant

to CEP (S2 Table). COX is a 2nd generation cephamycin, frequently used in the treatment of

dogs and other companion animals [46]. CEP is a 4th generation cephalosporin limited to use

in humans, making the 92% resistance rate observed here unexpectedly high (S2 Table) [47].

These results should be considered when revising the drug application recommendations for

human and animal patients [21].

Among the currently available beta-lactams, the carbapenems, such as ERT and MER, are

antibiotics of last resort. They are unique in that they are resistant to a high degree against

hydrolysis by most beta-lactamases. They can sometimes act as “slow substrates” or inhibitors

of beta-lactamases, and, yet, still target penicillin-binding proteins [2]. Although carbapenems

Fig 1. Phylogenetic tree of 85 ESBL-producing E. coli. Phylogenetic analysis based on 215,629 concatenated SNPs

revealed clustering according to their MLST sequence type. E. coli K-12 substr W3110 was used as reference strain. All

genome sequences except for the reference strain, and the environmental isolate GER_EN02_1501 revealed genes

coding for antimicrobial resistance.

https://doi.org/10.1371/journal.pone.0206252.g001
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are limited to use in humans only, off-label use or prescription may allow animals to be treated

with these antibiotics [48]. In this study, we did not find any carbapenem resistance using the

in vitro microbouillon dilution method (S2 Table). The in silico analysis detected similarly low

levels of resistance, identifying only four isolates with a single carbapenemase CDS each (S4

Table). This suggests that dogs do not represent a likely source for the high rates of carbape-

nem resistance that have been published for hospital-acquired strains [49].

Antimicrobial resistance–in vitro and in silico analyses

Initial isolate selection was based on growth on supposedly ESBL- selective Brilliance ESBL

AGAR (Oxoid, Wesel, Germany) containing an unknown antibiotic-mix. The in vitro analysis

and subsequent interpretation according to current CLSI guidelines revealed 88 out of 95 iso-

lates to be actual ESBL-producers [21–22]. As there were no interpretation guidelines available

for six of the investigated bacterial isolates, including the Enterobacter spp., the Aeromonas
spp., and Pseudomonas species other than P. aeruginosa isolates, we did not assign these as

ESBL-producers in S2 Table [21–22]. However, for one out of these isolates (Aeromonas hydro-
phila), ESBL-activity according to the rule “more than a three twofold concentration decrease

comparing growth in the presence of CTX and CTX in combination with clavulanic acid” was

observed (S2 Table) [21]. Pure antimicrobial resistance without ESBL-activity revealed five out

of the investigated isolates. One more isolate, GER_EN01_1501_Eco_087, revealed an inter-

mediate status, and another isolate, GER_MD01_1509_Eco_059, did not even reveal antimi-

crobial resistance in the in vitro testing. Finally, the Pseudomonas aeruginosa isolate,

GER_MD14_1510_Pae_083, did not reveal ESBL-activity, it was considered as a susceptible

isolate according to the CLSI guidelines for CAZ and CEP (S2 Table) [21]. These results indi-

cate some lack of specificity for the selective Brilliance ESBL AGAR (Oxoid, Wesel, Germany).

We compared the in vitro results with the detection of ESBL-specific CDSs in the in silico anal-

ysis (S5 Table). The susceptible isolate GER_MD01_1509_Eco_059, and the intermediate iso-

late GER_EN01_1501_Eco_087 revealed a single ESBL-CDS each, blaTEM-1B and blaOXA-1,

respectively (S4 Table). In contrast, the two in vitro antimicrobial resistant isolates GER_E-

N02_1501_Eco_088 and GER_MD10_1505_Pmi_049 did not reveal any ESBL-CDSs at all (S5

Table). Although the results from the two methodologies do not match entirely, we consider

this a fairly high level of concordance between the in vitro and in silico analyses. It further sug-

gests that the initial screening method for ESBL-producers was not highly specific, as eight iso-

lates could grow on the selective media, but did not reveal true ESBL-properties (S2 Table).

The isolates GER_MD03_1507_Eco_050 and GER_MD11_1505_Eco_023 were found to

possess only a single beta-lactamase gene (S4 Table). However, they revealed multiple resis-

tance in vitro, against CTX and CEP, and were identified as ESBL-producers (S2 Table). In
vitro and in silico correlation is therefore still too complex to predict a particular resistance

from the result of a single detected beta-lactamase gene. Nevertheless, amongst the E. coli
ESBL-producers, the most frequent ESBL-specific CDSs were blaCTX-M1, blaCTX-M15, blaTEM-

1B, and blaOXA-1 in the present study, as it has been published (Table 1) [3, 11].

The investigated isolates belonged to six different bacterial species. Noticeably, the in silico
results showed strict bacterial species-specific CDS patterns regarding antimicrobial resistance

(Table 1). Although species specificity has been described for some of these resistance genes

such as the “Pseudomonas aeruginosa cephalosporinase” (blaPAO) [50], other classes can be

found within various bacterial species belonging to the family Enterobacteriaceae such as the

“sulphydryl variable class A beta-lactamase” (blaSHV) [1]. Finally, some beta-lactamases, such

as the “oxacillin-hydrolyzing beta-lactamase” (blaOXA), and the “cefotaximase-Munich

extended-spectrum beta-lactamase” (blaCTX-M), were described for genetically distant bacterial
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genera such as the Gram-positive Enterococcus and Gram-negative Escherichia [51]. Apart

from their presence, enzymes may also vary regarding their kinetic activity. The “Temoneira

class A beta-lactamases” (TEM-1) are able to hydrolyze ampicillin at a greater rate than carbe-

nicillin, oxacillin, or cephalothin, and have negligible activity against extended-spectrum ceph-

alosporins. Similar findings have been published for the CTX-M and OXA beta-lactamase

subtypes [1]. The isolate GER_MD90_1604_Eco_099 was revealed to be resistant against 2nd

and 3rd generation cephalosporins, COX, CTX, and CAZ (S2 Table). As previously published,

a single resistance CDS, the cephamycinase blaCMY-2, was likely responsible for this phenotype.

Interestingly, this isolate was not an ESBL-producer by definition (S4 Table) [14]. Therefore,

neither of the methods, either the phenotypic characterization nor whole genome analysis, can

completely replace the other due to lack of crucial information. Thus, it is currently not possi-

ble to predict the phenotype using pure whole genome analysis and vice versa. However, due

to its relevance for clinical diagnostics and treatment recommendations, the in vitro analysis

will likely remain the gold standard at this time [21]. Drawbacks to this method include the

fact that inoculum effects and in vitro conditions may affect MIC measurements, which may

obscure a true underlying resistance genotype in various bacterial species [51–54]. In addition,

non-Enterobacteriaceae organisms are currently not considered in CLSI guidelines for ESBL

detection, impeding treatment recommendations for clinical patients affected by other species

[1, 21].

In previous studies, PCR detection was used to identify individual CDSs of beta-lactamase

subgroups of blaCTX-M, blaCMY, blaTEM, blaSHV, blaPSE, blaOXA, blaAmpC, blaACC in isolates

originating from companion animals [3, 4, 10–12, 51, 55–60]. By utilizing whole genome

sequencing, we were able to identify seven additional beta-lactamase types and subtypes,

including, blaSFO, blaCph, blaVIM, blaAct, blaMIR, blaMOX, and blaPAO (Table 1 and S4 Table).

Similar findings have been published after the analysis of human derived ESBL-producing bac-

teria, reflecting the superior detection capabilities offered by whole genome sequence analysis

[17]. In summary, not using whole genome sequence analysis, an investigator risks missing

crucial information concerning antibiotic resistance that could be helpful and sometimes even

crucial for subsequent epidemiological interpretation.

Prevalence of specific MLST STs and resistance genes

By the year 2000, a CTX-M beta-lactamase producing ST131 E. coli was recognized as a clone

with worldwide prevalence, with about half of all hospital acquired ESBL-infections associated

with this sequence type [17, 61–63]. In the present study, ST131 was not detected among the

dog-derived isolates, suggesting that this ST might be less adapted to the canine host [64]. The

two most common MLST ST identified in the present study were ST744 and ST10, with nine

and eight isolates among the 85 isolates, respectively (Fig 1 and S1 Table). Several predominant

ESBL-producing E. coli lineages have been identified for animals. The MLST ST10 was repeat-

edly isolated from pigs in Ireland, ST410 from small animals in Switzerland, and finally ST38

and ST131 from poultry and small animals in the Netherlands [51, 65–67]. As the MLST ST10

dog-isolates of the present study originated from Germany, Kosovo, Ukraine and Afghanistan,

a significant geographic cumulation of MLST ST10 cannot be concluded from the present data

(Fig 1 and S1 Table).

Regarding the transmission and prevalence of certain beta-lactamase subtypes, it has been

suggested that human isolates hosting the CTX-M beta-lactamase subtypes vary by geographic

origin [17]. In Germany, the plasmid coded blaCTX-M-15 gene is the most frequent subtype

originating from human patient isolates [7, 62]. In the present study, blaCTX-M-15 was detected

in 30% (28 isolates with the gene out of 89 true ESBL-producers) of the isolates originating

Phenotypic and genotypic analysis of ESBL-producing bacteria, Germany
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from Germany, however also from the countries Kosovo, Ukraine, Croatia, and Afghanistan

(S4 Table). As an additional 54% of isolates were found to carry blaCTX-M-subtypes other than

blaCTX-M-15 (S4 Table), it may be assumed that the CTX-M beta-lactamases have a generally

high prevalence, regardless of source.

A recent publication indicated large-scale transmission of hospital-associated blaIMP-carry-

ing isolates into wildlife after feeding of birds at a local waste depot [6]. But this finding could

not be supported by results of a study from the same year with hardly any confirmed transmis-

sion from 22 ESBL-positive humans to their companion dogs [68]. Hypotheses regarding

transmission pathways and reservoirs are often oversimplified in single studies whereas the

reality is far more complex [42].

Phylogeny

The bacterial species E. coli possesses great genetic diversity, with>7,000 identified MLST STs

[27]. Although the vast majority of E. coli is a prolific commensal part of the gut microbiome,

selected serotypes cause serious disease, including the enterohemorrhagic or extraintestinal

pathogenic E. coli (EHEC, ExPEC), which express various virulence and toxin genes [64, 69–

70]. Outbreak investigation revealed that an epidemiological linkage was estimated if two iso-

lates revealed the same MLST ST, and differed by less than ten core SNPs [17, 71]. In contrast,

antimicrobial resistance in E. coli is not restricted to specific clones, as it has been identified in

a broad variety of genotypes isolated from human and animal sources [11, 42, 51, 67, 70, 72].

We observed representative diversity among the 85 ESBL-producing E. coli characterized here,

with 34 different MLST STs, including three currently unassigned STs (Fig 1 and S1 Table).

Amongst the isolates belonging to MLST ST10, additional SNP diversity could be identified,

likely related to the different countries of origin for these isolates (Fig 1 and S3 Table).

In the present study, four clusters (ST744, ST648, ST410, ST23) were identified that

included isolates of different dog-origin that also showed similar beta-lactamase CDS profiles

and lacked SNP differences (Fig 1). This suggests that these isolates epidemiologically share

the same ancestor, which may be explained by mutual/ reciprocal transmission, as the dogs in

question regularly share the same training facility and runout (Fig 1). Similar findings were

recently published where low genetic diversity was described for 297 ST131 E. coli strains iso-

lated in a longitudinal study from a group of patients living in a long-term care facility, indicat-

ing acquisition from a common source or person-to-person transmission [63].
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S1 Table. Origin of the studied isolates, MLST ST data and virulence CDSs.

(XLSX)

S2 Table. Results of the microbouillon dilution method and interpretation of the MICs
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tant) [21–22].
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S4 Table. Results of the in silico analysis regarding antimicrobial resistance CDSs with the
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(TÄHAV). http://www.gesetze-im-internet.de/t_hav/index.html

46. Federal Veterinary Surgeons’ Association (Bundestierärztekammer, BTK). Guidelines for the prudent

use of veterinary antimicrobial drugs -with notes for guidance-. Addendum to the German Veterinary

Gazette 3/2015. http://www.bundestieraerztekammer.de/downloads/btk/antibiotika/AB_Leitlinien2015_

EN.pdf

47. Jan S, Ragunanthan B, DiBrito SR, Alabi O, Gutierrez M. Cefepime Efficacy and Safety in Children: A

Systematic Review and Meta-analysis. Front Pediatr. 2018 Mar 6; 6:46. https://doi.org/10.3389/fped.

2018.00046 PMID: 29560346

48. Reeves PT, Boothe DM, Scott MM, Tizard I, Schubot RM, Vercruysse J, et al. Guidelines for the Use of

Antibiotic Drugs. Veterinary Maual, Merck, July 2017. http://www.merckvetmanual.com/special-pet-

topics/drugs-and-vaccines/guidelines-for-the-use-of-antibiotic-drugs.

49. Mahon CR, Lehman DC, Manuselis G. Textbook of Diagnostic Microbiology. 5th Ed, 2014, Elsevier,

ISBN-13: 978–0323089890. Pp. 268.

50. Murugan N, Malathi J, Umashankar V, Madhavan HN. Comparative Genomic Analysis of Multidrug-

Resistant Pseudomonas aeruginosa Clinical Isolates VRFPA06 and VRFPA08 with VRFPA07.

Genome Announc. 2014 Mar 6; 2(2). pii: e00140-14. https://doi.org/10.1128/genomeA.00140-14 PMID:

24604649

51. Dierikx CM, van Duijkeren E, Schoormans AH, van Essen-Zandbergen A, Veldman K, Kant A, et al.

Occurrence and characteristics of extended-spectrum-beta-lactamase- and AmpC-producing clinical

isolates derived from companion animals and horses. J Antimicrob Chemother. 2012 Jun; 67(6):1368–

74. https://doi.org/10.1093/jac/dks049 PMID: 22382469

52. Dudley MN, Ambrose PG, Bhavnani SM, Craig WA, Ferraro MJ, Jones RN. Antimicrobial Susceptibility

Testing Subcommittee of the Clinical and Laboratory Standards Institute: Background and rationale for

revised clinical and laboratory standards institute interpretive criteria (Breakpoints) for Enterobacteria-

ceae and Pseudomonas aeruginosa: I. Cephalosporins and Aztreonam. Clin Infect Dis. 2013 May; 56

(9):1301–9. https://doi.org/10.1093/cid/cit017 PMID: 23334813

53. Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with

extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother.

2001 Dec; 45(12):3548–54. https://doi.org/10.1128/AAC.45.12.3548-3554.2001 PMID: 11709338

54. Kang CI, Cha MK, Kim SH, Wi YM, Chung DR, Peck KR, et al. Extended-spectrum cephalosporins and

the inoculum effect in tests with CTX-M-type extended-spectrum beta-lactamase-producing Escheri-

chia coli: potential clinical implications of the revised CLSI interpretive criteria. Int J Antimicrob Agents.

2014 May; 43(5):456–9. https://doi.org/10.1016/j.ijantimicag.2014.01.030 PMID: 24690213

55. So JH, Kim J, Bae IK, Jeong SH, Kim SH, Lim SK, et al. Dissemination of multidrug-resistant Escheri-

chia coli in Korean veterinary hospitals. Diagn Microbiol Infect Dis. 2012 Jun; 73(2):195–9. https://doi.

org/10.1016/j.diagmicrobio.2012.03.010 PMID: 22516765

56. Shaheen BW, Nayak R, Foley SL, Kweon O, Deck J, Park M, et al. Molecular characterization of resis-

tance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals

in the United States. Antimicrob Agents Chemother. 2011 Dec; 55(12):5666–75. https://doi.org/10.

1128/AAC.00656-11 PMID: 21947397

57. Aly SA, Debavalya N, Suh SJ, Oryazabal OA, Boothe DM. Molecular mechanisms of antimicrobial

resistance in fecal Escherichia coli of healthy dogs after enrofloxacin or amoxicillin administration. Can

J Microbiol. 2012 Nov; 58(11):1288–94. https://doi.org/10.1139/w2012-105 PMID: 23145826

58. Liao XP, Liu BT, Yang QE, Sun J, Li L, Fang LX, et al. Comparison of plasmids coharboring 16s rrna

methylase and extended-spectrum beta-lactamase genes among Escherichia coli isolates from pets

and poultry. J Food Prot. 2013 Dec; 76(12):2018–23. https://doi.org/10.4315/0362-028X.JFP-13-200

PMID: 24290675

59. Poirel L, Nordmann P, Ducroz S, Boulouis HJ, Arné P, Millemann Y. Extended-spectrum beta-lacta-
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