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ABSTRACT

Hearing loss affects 30 million people in the United States,
and a subset of these patients have normal low-frequency hearing
and ski-sloped high-frequency hearing loss. For these patients,
hearing aids alone may not provide adequate benefit. Cochlear
implantation alone has been utilized to improve speech perception.
The addition of high-frequency electric hearing to low-frequency
acoustic hearing in these patients is beneficial. Technical improve-
ments have allowed preservation of low-frequency hearing in coch-
lear implant recipients, allowing for electric and acoustic stimulation
in the same ear with significant improvements in speech perception,
sound localization, music appreciation, and quality of life.
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Learning Outcomes: As a result of this activity, the participant will be able to (1) describe at least three

technical and medical developments that have led to improvements in low-frequency hearing preserva-

tion during cochlear implantation; (2) summarize the benefits of EAS listening devices over hearing aids

or cochlear implants alone; (3) summarize the long-term evidence on rates of hearing preservation after

cochlear implantation; (4) summarize current challenges in programming EAS devices for individual

patient use.
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ELECTRIC AND ACOUSTIC
STIMULATION
Hearing loss affects nearly 15% of the U.S.
population, or roughly 28 million people.1 For
cases of mild-to-moderate hearing loss, hearing
aids (HAs) are sufficient to amplify sound for
improved speech perception compared with
listening in an unaided condition. With
severe-to-profound hearing loss, however,
HAs may not provide improvements in speech
perception that allow for communication.2

Cochlear implants (CIs) offer improved speech
perception for patients with severe-to-pro-
found sensorineural hearing loss and limited
speech perception abilities with HAs. Despite
this advance, speech perception in certain con-
ditions, such as in noise, has been variable.

A subset of patients exists with normal-to-
moderate low-frequency hearing sensitivity and
down-sloping, or ski-sloped severe-to-profound
high-frequency hearing loss. This configuration
is often observed with presbycusis, familial hea-
ring loss, and noise-induced hearing loss (Fig. 1).
These patients have poor speech perception since
consonants are typically recognized in the high
frequencies3 and therefore are not effectively

presented via amplification with HAs. Until
recently, these patients were not considered
candidates for cochlear implantation due to
normal-to-moderate low-frequency hearing
and the risk of disrupting residual hearing with
a full-length electrode array. Historically, coch-
lear implantation disrupted residual hearing in
the implanted ear. However, in the mid-1990s,
methods to preserve low-frequency hearing
during cochlear implantation were developed,
either through reduced insertion depths or shor-
ter electrodes, resulting in the first animal and
human data demonstrating hearing preservation
was possible.4–6 Cochlear implantation candi-
dacy criteria have subsequently been relaxed in an
effort to effectively treat patientswithnormal-to-
moderate low-frequencyhearingwhodonot gain
sufficient benefit from HAs. Cochlear implan-
tation in this patient population with preserva-
tion of hearing has led to improved speech
perception in quiet and noise due to the combi-
nation of acoustic and electric stimulation,
known as electric and acoustic stimulation
(EAS). The acoustic component provides low-
frequency cues that are beneficial for complex
listening tasks, such as speechperception innoise,

Figure 1 Example of “ski-sloped” hearing loss, or preservation of low-frequency hearing with severe-to-
profound high-frequency hearing loss.

EAS IN COCHLEAR IMPLANT RECIPIENTS WITH HEARING PRESERVATION/WELCH ET AL 415

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



sound localization, and music/melody percep-
tion. The CI component provides stimulation of
mid-to-high frequency information for impro-
ved representation of speech sounds in this
region, providing speech perception improve-
ments over HAs alone.

HEARING PRESERVATION IN
COCHLEAR IMPLANTATION:
SURGICAL TECHNIQUES,
ADJUNCTIVE THERAPIES, AND
LONG-TERM HEARING
PRESERVATION EXPECTATIONS
A variety of technical advances have enabled
preservation of low-frequency hearing. These
advances include progressive changes in elect-
rode array designs, evolving soft surgical
approaches and insertion techniques, and neu-
roprotective drug utilization.

Among the first developments that allowed
hearing preservation was alteration of the CI
electrode array. The first electrode arrays utili-
zed to preserve hearing were either standard
electrodes that were inserted short of normal
insertion depths, or dramatically shorter elect-
rode arrays. More recently, shallow insertion
with a shorter array in the basal region of the
cochlea has allowed for preservation of func-
tional cochlear structures toward the mid and
apical region of the cochlea and thus preserved
low-frequency hearing sensitivity.4,7–10 These
shorter electrode arrays are specifically designed
to minimize damage to intracochlear structures
and preserve low-frequency residual hearing
while allowing the high-frequency components
of speech and other sounds to be coded electri-
cally.5,11–14 Additionally, this new generation
of electrode arrays are typically more flexible,
have smaller diameters than their predecessors,
and follow the lateral wall of the cochlea, and
each change has resulted in improved hearing
preservation.7,13,14

Overall, there is generally no consensus on
optimal electrode array length for hearing pre-
servation and postactivation speech perception.15

Santa Maria et al16 analyzed several studies and
found that no specific electrode array design
demonstrated a clear advantage in hearing
preservation. Hearing preservation has been
demonstrated in studies with electrode lengths

ranging from 6 to 31 mm.17–32 Despite this,
strong arguments have been made for inter-
mediate length electrode arrays in this spectrum.
Intracochlear trauma increases with depth of
insertion, resulting from progressive increases
in force during insertion beyond 20 mm.33,34

Thus, 20 mmmaybe a key target, as this distance
represents a frequency match of near 1 kHz,
sufficient to enable EAS. Additionally, electrode
arrays shorter than this have been reported to
have poorer speech performance with electric
stimulation.35 Some conceptual advantages also
exist with the use of longer electrode arrays—for
example, the ability to reprogram the device to
present the full speech frequency spectrum
should residual low-frequency hearing be lost
or progress over time.22,23,29 However, some
studies have shown differing effects, with deeper
insertion of electrode arrays resulting in no
improvement in speech perception36 or resulting
in poorer speech perception outcomes with a
perimodiolar electrode array.37 Taking into con-
sideration these results, the HEARRING group
has recommended a flexible approach to elect-
rode array selection for children, which could be
broadly applied to adults as well based on exten-
ded indications for EAS devices (Fig. 2). They
recommend a shorter electrode array length (e.g.,
24 mm) for patients with robust low-frequency
hearing, a slightly longer electrode array for those
with mild-to-moderate low-frequency hearing
loss (e.g., 28 mm), and a long electrode array for
patients with moderate or worse hearing loss
and/or risk factors for hearing loss.38

Assessing cochlear length when choosing an
electrode array has been studied for some time,
but recent debate on appropriate electrode array
length for EAS has renewed interest in these
measures. Recent studies have demonstrated that
electrode array lengths around 28 to 30 mm are
likely suitable for full cochlear coverage.39

Angular insertion depth (AID) measurements
are another method for determining insertion
depth as opposed to electrode array length alone.
AID measures are likely more accurate measures
of cochlear coverage, as they account for variance
in both linear insertion depth and length of the
cochlear duct. Furthermore, it has been recently
demonstrated that increasing AID is directly
correlated with improved speech perception out-
comes from the CI component, but ultimately
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poorer hearing preservation rates, even with
newer electrodes designed for hearing preserva-
tion.40 These findings support the tradeoff
between attempts to improve speech perception
with theCI component, and hearingpreservation
for the acoustic component.

Another area of debate has been the
approach to electrode array insertion, via either
a cochleostomy or round window insertion. The
first insertions were via the round window but
with large, rigid electrode arrays, significant
insertion trauma resulted, and thus cochleosto-
mies became more popular. However, round
window insertion techniques have again
become more widespread due to a more favo-
rable trajectory along the lateral wall of the
cochlea, with AIDs correlating directly with
hearing preservation with the new generation of
flexible electrodes.31,41

A variety of studies have assessed cochleos-
tomy versus round window insertion in both
animals and humans. Several conceptual argu-
ments have been made for round window inser-
tion. Round window insertion typically avoids
acoustic trauma, bone dust and blood entry into

the cochlea, perilymph loss, and long-term
inflammatory and ossifying changes.42 These
concepts have been supported by animal studies
with histopathologic results.42,43 Long-term
retrospective studies also have supported round
window approaches.44 However, a systematic
review by Havenith et al found that no clear
benefit could be found for either approach, lar-
gely due to variances in definitions, methodo-
logy, and the lack of randomized controlled
studies in the clinical setting.45 More recent
studies have also suggested hearing preservation
with either approach.16,46,47 Additionally, after
cochleostomy or round window opening,
demonstrable effects have been shown with
the speed of insertion of the electrode array,
with less trauma incurred with slower speeds.48

However, even with meticulous surgical
technique and optimal electrode array choice
and placement, accessing the cochlea and inser-
ting a foreign body induces significant inflam-
matory and cellular responses. A large body of
research has sought pharmacologic agents to
reduce these responses in an effort to minimize
damage to cochlear structures and to preserve

Figure 2 Audiogram parameters demonstrating basic and expanded indications for hearing preservation
cochlear implantation and electric and acoustic stimulation. Gray indicates the expanded indications and black
indicates the classic indications.
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hearing long-term. The most widely researched
group of agents is the corticosteroids. Corticos-
teroids have a myriad of effects on the auditory
system,47 and have shown the greatest benefit to
date for hearing preservation after cochlear
implantation.

A variety of methods for administering
corticosteroids have been conceived, including
intravenous, intratympanic, topical at the time of
cochlear implantation, intracochlear, and via the
implant itself. There is considerable variation in
how much steroid should be used pre-, intra-,
and postoperatively, but the consensus is that
steroids positively impact hearing preservation
when compared with no steroids regardless of
treatment method.49,50 In a meta-analysis, int-
raoperative topical administration along with
postoperative steroid administration was bene-
ficial, but preoperative intratympanic administ-
ration had no effect.16 In contrast, Rajan et al
showed that preoperative as well as intraopera-
tive transtympanic administration of steroids
improved hearing preservation.51 The mecha-
nismof hearing preservation, however, is unclear
as it has been shown that topical application of
steroids leads to exposure for only about an hour
and the drug effects may only last for 24 hours.52

Additionally, some of the effects are not seen at
frequencies below 2,000 Hz,16 suggesting that
steroids may not reach the apex of the cochlea
where hearing preservation is desired. Thus,
other methods have been considered to allow
more directed and long-term access to the
cochlea by steroids. A variety of studies have
shown that hearing loss induced by implant
insertion trauma could be reduced with drug-
eluting materials placed during implantation,
catheters for infusion, or drug-eluting devices
themselves.53–61 The efficacy and feasibility of
such a drug-eluting system also has been
demonstrated in humans.62 Regardless of the
method, corticosteroids reduce inflammatory
processes caused by electrode insertion resulting
in better preservation of cochlear structures,63

and stabilization of hearing levels.51

Other methods for reducing inflammatory
and oxidative stress during cochlear implanta-
tion have been considered. A variety of antio-
xidants decrease oxidative stress and can prevent
hearing loss.64 N-acetyl cysteine is one agent
that has been applied in a guinea pigmodel with

evidence of both short-term and long-term
effects on hearing preservation.65

Different pharmacologic targets have been
considered in protecting cochlear structures
against trauma. One of the targets that has
shown efficacy is the c-Jun N-terminal kinase
and its signaling pathway. A DJNK inhibitor
(DJNKI-1)was applied in a guinea pigmodel and
reduced immediate and long-term auditory dys-
function.66,67 Studies have investigated pharma-
cologic agents that might promote long-term
survival of spiral ganglion neurons (SGNs) in
an attempt to preserve hearing long-term. Hair
cells and the organ of Corti secrete neurotrophins
which support SGNs, and loss of these neuro-
trophins, as happenswhenhair cells and theorgan
of Corti are damaged, can lead to degeneration.
Direct application of these neurotrophins to the
cochlea can rescue this degenerative process68 and
decrease ABR thresholds in response to injury.69

Such neurotrophins have been coated onto CI
electrode arrays and tested in animal models,
demonstrating increased survival of SGNs.70

Another agent commonly used during CI
surgery, hyaluronic acid, has been utilized due to
its utility as a lubricant and sealant. It is thought
to act as a sealant for perilymph, to reduce friction
during electrode insertion, and prevent entry of
debris generated during implantation into the
cochlea. A meta-analysis by Santa Maria et al
demonstrated no benefit from this material.16

There is some suggestion of cytotoxicity from its
use with high concentrations and intracochlear
administration,71 but at lower concentrations no
adverse effects have been seenwhen incorporated
into soft insertion techniques.72

The ultimate goal of the advances described
earlier is the ability to preserve all residual hea-
ring in all patients undergoing cochlear implan-
tation. Postoperative hearing preservation has
been reported in a high number of EAS reci-
pients, but many experience some change in
residual hearing thresholds. Defining the extent
of threshold changes in the long term is made
difficult due to the use of a variety of different
electrode arrays, surgical techniques, and defini-
tions of hearing preservation. Gantz et al
demonstrated that placement of an electrode
array in the cochlea alone did result in a hearing
decrement, but this stabilized over time. Their
results suggested that changes in residual hearing
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thresholds stabilize and that long-term utility of
an EAS device is feasible.73 These hearing
changes are likely the result of a two-component
process that results in neuronal damage. The
initial trauma is caused by insertion of the
electrode array with resultant mechanical
damage. Later-onset damage is likely due to
chronic inflammatory changes in response to the
foreign body within the cochlea as well as
degeneration of neural structures.

Given the recency ofEAS as a technological
development, it has taken some time to accu-
mulate subject numbers to ascertain both short-
term and long-term hearing preservation results.
Several recent studies have delineated long-term
results with hearing preservation after cochlear
implantation, allowing expectations to be set.
One of the early studies using the Hybrid 10
electrode (Cochlear Corporation) demonstrated
that 2 of 87 patients had complete loss of low-
frequency hearing at 1 month, and at 2 year
follow-up an additional 6 patients had progres-
sed, for a preservation rate of 90.8%.74

Results from the European trial of the
longer L24 Hybrid electrode (Cochlear Corpo-
ration) demonstrated preservation of hearing in
89% of patients at 1 month, with a decrease to
74% at 1 year.75 Similar results were found in
another study contrasting hearing preservation
with the Nucleus Freedom CI422 electrode
versus the L24 Hybrid electrode (Cochlear Cor-
poration)with results favoring theL24Hybrid.76

An additional study retrospectively analy-
zed a variety of implanted electrodes (Cochlear
Slim Straight, MED-EL Standard, Medium,
Flex20, and Flex24) and demonstrated similar
short-term results with 79% of patients with
complete or partial hearing preservation imme-
diately postoperatively with 8 cases of complete
loss, and 67% of patients having complete or
partial hearing preservation at 1 year with an
additional 7 completely losing residual hearing.
In the long-term follow-up (mean of 4.3-year
postoperative), the researchers found that 50%
of patients had complete or partial preservation
of hearing suggesting gradual decrement over
time. Ultimately 21% of patients completely
lost all low-frequency hearing.77 As expected,
they found that hearing preservation was
dependent on electrode array design and surgi-
cal approach. They found that patients who lost

all low-frequency hearing performed more
poorly and they also suggested that these
patients be considered for reimplantation with
a full-length electrode given prior evidence of
the utility of this approach.78

A longitudinal study by Gantz et al
demonstrated that 83 to 92% of their subjects
undergoing cochlear implantation with the S8,
S12, and L24 electrodes (Cochlear Corpora-
tion) maintained low-frequency hearing. They
noted an initial decrement in hearing post-
operatively and a second period of decrement
at 3 to 6 months postimplantation, but stabili-
zation after that period.79 They found that
long-term hearing stabilized with a decline
per year consistent with previous studies around
1 dB per year.77,80 More recent updated results
with the L24 electrode array alone demonstra-
ted similar preservation rates at 5 years, with
94% preserving some degree of low-frequency
hearing but only 72% using the EAS compo-
nent of the system.81 Similarly, Pillsbury et al
demonstrated hearing preservation using the
MED-EL EAS system, reporting that 79% of
patients experienced less than 30 dB change in
low-frequency hearing, but they reported a
much higher continued use of the EAS system
at 97% of patients at 1 year follow-up.82 These
findings were in line with previous studies of a
similar EAS system in a smaller number of
subjects.83 However, other multicenter studies
have shown a less robust preservation rate with
hearing preservation electrode arrays, with 66%
of patients demonstrating functional low-fre-
quency hearing preservation at 6 months and
54% in another.84,85 Several of the patients who
did not retain low-frequency hearing chose to
have their device replaced with a standard
electrode array.84

Reportsof even longer-term follow-uphave,
expectedly, had small subject numbers aside from
the report from Gantz et al described earlier.79

Mertens et al demonstrated some degree of
hearing preservation in 81% of subjects out to
10 years of follow-up86 andMoteki et al reported
on 19 patients with 89.4% retaining hearing
sufficient to allow EAS use.87

Thus, despite a myriad of electrode arrays,
surgical approaches, and definitions of hearing
preservation, it can generally be concluded that
with newer hearing preservation techniques and
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electrode arrays, low-frequency hearing can be
preserved long term in the majority of patients
allowing for long-term EAS use. Worth
noting, however, is that within each study, a
significant proportion of patients completely
lost all low-frequency hearing, up to 20% of
all patients in one study. This possibility requi-
res upfront counseling before surgery. Addi-
tionally, some studies exclude patients shown to
have poor long-term outcomes, such as those
with older than 65 years and with greater than
30 years of prior deafness and this also should be
taken into consideration with the reported hea-
ring preservation rates.82

BENEFITS OF LOW-FREQUENCY
HEARING PRESERVATION AND
UTILIZATION IN ELECTRIC AND
ACOUSTIC STIMULATION
The successes described earlier with low-fre-
quency hearing preservation have enabled the
fitting of EAS devices. The combination of
acoustic and electric stimulation has resulted in
improved speech perception in quiet and noise
for patients, which exceeds the speech percep-
tion abilities with either stimulation modality
alone.5,8,11–13,73,74,83,88–93 Benefits have also
been reported for song/instrument perception
and localization of sound targets in a noisy
background.94–97 These gains are likely derived
from the addition of acoustic low-frequency
cues that are not effectively represented by CI
signal coding strategies.

Several studies have demonstrated the
importance of low-frequency acoustic informa-
tion in EAS devices.5,8,11–13,73,74,83,88–93 To fur-
ther support the utility ofEASdevices, it has been
demonstrated that when low frequency or com-
plex sounds are presented to places in the cochlea
that are coded for higher frequencies, pitch
perception and identification of low-frequency
information is diminished or disappears.23 This
strongly suggests that providing electrical or
acoustic stimulation to apical regions to carry
this low-frequency information would improve
performance with music and tonality as percep-
tion of these components is reliant on this low-
frequency information. When the temporal code
and place code conflict, sound localization is
primarily coded by the temporal fine structure

which is carried in low frequencies. Conversely,
word perception is driven by the signal envelope
which is carried in higher frequencies. This is
clearly demonstrated inEASusers: EASprovides
both correct place and time coding in the low
frequencies via acoustic stimulation which allows
for improvements in speech perception outcomes
via utilization of the temporal fine structure. The
benefit of adding this acoustic information, even
when minimal, to electric stimulation has been
demonstrated in bimodal listeners, who listen
with a HA in the ear contralateral to the CI
(CI þ HA).98,99 Listening in a bimodal condi-
tion results in greater performance than when
listening with the CI alone.96,98 However, the
bimodal condition may be inferior to the EAS
condition as each ear will be processing sound
cues in entirely different methods, potentially
distorting perception.100

Previous studies have demonstrated that
both interaural level and time differences (ILD
and ITD) allow listeners to locate sound sources
spatially as well as improve speech perception in
complex listening environments such as the
simulated cocktail party.101–103 Zhang et al104

demonstrated improved speech perception in
background noise with provision of acoustic
input for the bimodal condition relative to a
CI alone. ILDs are predominant in higher
frequencies above 1,500 Hz and ITDs are pre-
dominant in frequencies below 1,000 Hz,105

both of which may be accessible to EAS users.
The better performance of the EAS recipients in
challenging test conditions also could be explai-
ned by the improved transmission of fundamen-
tal frequency cues in the lower-frequency region
of acoustic hearing, which likely helps group
auditory targets.106

Unilateral EAS recipients listening with a
HA in the contralateral ear (EAS þ HA)
demonstrate improved speech perception in spa-
tially separated noise and localization tasks likely
due to the presence of bilateral acoustic low-
frequency stimulation. The benefit of listening
withEAS þ HAas comparedwithEAS alone is
often not realized when speech perception mate-
rials are presented in quiet.107,108 Dillon et al108

reported a significant improvement with EAS þ
HA over EAS alone on a speech perception task
where the target and 4-talker masker were co-
located. Similarly, Gifford et al109 demonstrated
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an improvement in speech perception abilities of
CI subjects with binaural low-frequency hearing
as compared with a bimodal listening configura-
tion when presented with target and masker that
were either co-located or spatially separated.
With localization, subjects listening with EAS
þ HA perform similarly when listening with
bilateral HAs. However, localization is poorer
in a bimodal condition than when bilateral
acoustic information is provided, which suggests
again a binaural benefit from the acoustic compo-
nent alone.97

Interestingly, the utility of EAS in speakers
of tonal languages, such as Mandarin Chinese,
where use of CIs alone results in perception of
only about half of presented tones, is likely to be
quite high. Intonation cues appear to be derived
from low-frequency information, and as such
are often excluded with electric stimulation
alone.110 Amplification of frequencies around
the fundamental frequency allowed better tone
identification and strategies have been under-
taken to improve access to these signals which
are located in the lower frequencies for tonal
listeners.111

While retaining the capacity to improve
speech perception, sound localization, and
music perception through hearing preservation
as well as offering different CI signal coding
strategies due to greater cochlear coverage,
there are suggestions of additional benefits
with the use of longer electrode arrays. Some
authors suggest that the 24-mm range may be
ideal to offer better coverage of the cochlea
tonotopically, and also good residual hearing
preservation. The ideal length will likely vary in
each individual based on anatomy, cochlear
duct length, and parameters of hearing loss,
which can be assessed by AID.41 Furthermore,
the refinement of atraumatic insertion techni-
ques as well as softer, more flexible, lateral
cochlear wall electrodes will likely enhance
hearing preservation rates.31

ELECTRIC AND ACOUSTIC
STIMULATION DEVICE
PROGRAMMING
CONSIDERATIONS
While the benefits of combining acoustic and
electric information in an ipsilateral condition

are known, there are fewer studies investigating
the optimization of EAS device programming.
One parameter that has been studied is the
crossover frequency between acoustic and elect-
ric stimulation. This allows for the sound signal
presented by the processor to be mapped to
either acoustic or electric stimulation, or even
both. CIs of conventional CI recipients are
programmed where the full-speech spectrum
is represented electrically. In cases of EAS,
better speech perception outcomes have been
obtained when the electrical stimulation was
limited to the mid and high-frequency infor-
mation.112–115 Overlapping acoustic and
electrical stimulation, or those with a gap
between the two, yielded poorer performance
than the “meet” program where there was
minimal overlap.91,92,112,115,116 Typically,
determining the crossover frequency has relied
on the unaided audiogram for the implanted
ear. The audiologist reviews where the patient’s
hearing exceeds that of where benefit can be
achieved with the acoustic component. Howe-
ver, the definition for this cutoff has been
variable, with some suggesting assigning the
frequency to where residual hearing exceeds 65
up to 80 dBHL.10,13,15,74,88,112,117More recent
analyses of the fitting methods of EAS reci-
pients have demonstrated improved outcomes
when greater spectral overlap was provided by
assigning the crossover to a lower frequency or
providing a higher low-pass frequency
cutoff.117 Recent work by Gifford and collea-
gues has demonstrated that setting the low-
frequency CI cutoff to where the audiogram is
reaches 70 dB hearing loss. Additionally, utili-
zing full CI bandwidth was not the ideal
condition, but setting a boundary at 313 or
438 Hz in the bilateral EAS condition provided
the greatest benefits, particularly in noisy envi-
ronments. Again, competing hypotheses may
suggest why these cutoffs are effective, either
with better place mapping from the CI compo-
nent or better transmission of low-frequency
harmonics.118 Additional strategies have
utilized more personalized calculations, such
as frequency-to-place map calculations92 and
individually optimized frequency measure-
ments115,119 to improve encoding of both the
acoustic and electrical signals. In any case,
researchers may be underestimating the benefits
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of EAS due to limited knowledge on the
programming of these combined devices.

In addition to changing how sounds are
presented via the processor, researchers have
demonstrated that there is cortical plasticity
that occurs with continued implant use.
McDermott and Varsavsky120 and Reiss
et al121 both showed that pitch interpretation
through a CI changes with duration of use in a
predictable manner. Providing a higher percen-
tage of cochlear coverage by extending electro-
des into the apical region reduces the degree of
required cortical remapping and may lead to a
faster rate of learning with the implant, though
nearly all implant users require several months
for adaptation to the new device. There also
appear to be limitations to this cortical plasticity
and remapping with only a range of tolerance
for remapping.122 Buchman and colleagues35

investigated the influence of electrode array
insertion depth on CI performance, reporting
a rapid improvement in speech perception with
longer electrode arrays. As discussed in previous
sections, this improvement in speech perception
with longer electrode arrays may come at the
tradeoff of loss of hearing with deeper insertion
depths. Lastly, new electric signal coding stra-
tegies that incorporate temporal fine structure
such as fundamental frequency in these lower
frequencies123,124 provided significantly impro-
ved speech perception as well as music appre-
ciation with these new strategies only after
1 year of use.

FUTURE DIRECTIONS TO IMPROVE
SPEECH PERCEPTION OUTCOMES
Over time, it is anticipated that the technological
advances described herein will expand the indi-
cations for cochlear implantation into patients
with greater amounts of residual hearing. Bila-
teral EAS use, taking advantage of residual
hearing bilaterally, is currently considered the
most advanced listening condition, though some
studies suggest that unilateral EAS coupledwith
a contralateral HA, providing binaural acoustic
hearing, may be best for speech perception in
nearly all conditions without requiring additio-
nal surgery or the risk of damage to thehearing in
the contralateral ear. A great deal of research
remains in defining optimized programming of

the acoustic and electric components for maxi-
mum benefit.

Many factors that are responsible for preser-
vationof hearing in cochlear implantationbeyond
preventing physical and inflammatory damage to
cochlear structures remain a mystery. The main-
tenanceof existinghearing is critical forEAS, and
research has focused on numerous factors that
could protect hair cells and SGNs after hearing
loss and during cochlear implantation including
neurotrophic factors, anti-inflammatory steroids,
antiapoptotic agents, or a combination of these.
The means of locally delivering these agents
continues to be researched and advanced, in
particular the challenge of providing longer-
term exposure of these agents to deeper cochlear
structures to allow for their preservation.

In addition to pharmacological techniques,
much research has focused on soft insertion
techniques as well as the use of shorter electrode
arrays to allow avoidance of damage to the low-
frequency regions located in the apex of the
cochlea. As noted earlier, flexible long straight
electrode arrays have become available which
allow deeper insertion into the cochlea while
avoiding trauma due to the flexible nature of the
electrodes as well as their smaller cross-section.
These electrode arrays have the potential to
maintain low-frequency hearing as well as
additional benefits of improved tonotopic
stimulation.

Attempts have been made to assess for
possible cochlear damage and hearing loss int-
raoperatively during electrode insertion. Round
windowelectrocochleographyhasbeen shown to
be highly indicative of preimplant cochlear func-
tional status,125–127 and can be predictive of
speech perception outcome in adults.127 It is
highly sensitive to electrophysiologic changes
during electrode array insertion and may allow
for the future prediction of hearing loss, or
adjustment of insertion technique intraoperati-
vely to prevent hearing loss intraoperatively and
immediately postoperatively.128

CONCLUSION
The image of the CI candidate has evolved from
those with profound hearing loss to those with
normal to moderate levels of low-frequency hea-
ring thanks to innovations in surgical procedures

422 SEMINARS IN HEARING/VOLUME 39, NUMBER 4 2018

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



and electrode array design. When postoperative
hearing preservation is achieved, EAS recipients
experience significant improvements in speech
perception in noise, sound localization, and
quality of life. Even music appreciation is main-
tained. Further gains in these areas may be
realizedwithnew research into the programming
of combined devices.
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