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Abstract

Hyaluronan (HA), a high molecular weight non-sulfated glycosaminoglycan, is an integral
component of the extracellular matrix of developing and mature connective tissues including
tendon. There are few published reports quantifying HA content during tendon growth and
maturation, or detailing its effects on the mechanical properties of the tendon extracellular matrix.
Therefore, the goal of the current study was to examine the role of HA synthesis during post-natal
skeletal growth and maturation, and its influence on tendon structure and biomechanical function.
For this purpose, the morphological, biochemical, and mechanical properties of Achilles tendons
from wild type (WT) and hyaluronan synthase 1 and 3 deficient mouse strains (HasZ”~ (Has1KO),
Has3™~ (Has3KO), and Has1”~37~ (Has1/3KO)) were determined at 4, 8, and 12 weeks of age.
Overall, HAS-deficient mice did not show any marked differences from WT mice in Achilles
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tendon morphology or in the HA and chondroitin/dermatan sulfate (CS/DS) contents. However,
HASI-deficiency (in the single or Has1/3 double KO) impeded post-natal formation of the
retrocalcaneal bursa, implicating HAS1 in regulating HA metabolism by cells lining the bursal
cavity. Together, these data suggest that HA metabolism via HAS1 and HAS3 does not markedly
influence the extracellular matrix structure or function of the tendon body, but plays a role in the
formation/maintenance of peritendinous bursa. Additional studies are warranted to elucidate the
relationship of HA and CS/DS metabolism to tendon healing and repair /n-vivo.
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Introduction

Hyaluronan (HA), a high molecular weight non-sulfated glycosaminoglycan (GAG), is an
integral component of the extracellular matrix (ECM) of developing and mature connective
tissues. At the molecular level, a metastable homeostatic interaction between HA and H,O
molecules can form to promote tissue hydration and surface lubrication (1-3). From a
biophysical perspective, the size, hydration, and hydrodynamic shape of HA polymers
provide for high viscosity and increased relaxation time, thereby conferring viscoelasticity
during physical deformation (4).

While HA is synthesized as a core-protein-free GAG, it is immobilized by cell surface
receptors (5) such as CD44, LYVE, RHAMM, or TLRs, or assembles within the ECM into
networks in association with a variety of specific binding proteins (HABPS) (6). The
interactions of these various HABPs with HA results in distinct mechanical and metabolic
functionalities (7). For example, aggrecan and versican, together with link protein, bind to
HA to form large complexes which contribute to the structural integrity of cartilage and
blood vessels (2). In response to inflammatory stimuli, Tumor Necrosis Factor Stimulated
Gene-6 (TSG-6) and Pentraxin 3 mediate a cross-linking interaction between HA and Heavy
Chains which regulate downstream inflammatory processes (8).

HA is synthesized by transmembrane hyaluronan synthases (HASS) (9). To date, three
isoforms have been identified, HAS1, HAS2, and HAS3, and their functional activity is
regulated transcriptionally (10-13), by post-translational modification (10, 14), and via
transport to the plasma membrane from the Golgi (HAS1 and HAS3) or the endoplasmic
reticulum (HAS2) (10). Specific in-vitro catalytic properties (e.g., Km values and the chain
length generated) distinguish the isoforms (9, 10, 15), and spatial and temporal expression of
the three isoforms during embryonic development has been reported. Specific HAS isoform
expressions have been implicated in tooth (16) and cardiac (17-19) development, with
HAS2 (17) linked to atrioventricular valve morphology and cardiac left-right asymmetry.
Additionally, HAS2 expression appears to spatially complement that of HAS3, specifically
with regard to sensory development. HAS1 expression complements HAS2 during early
development (20). Moreover, HAS1-deficient mice exhibit aberrant dermal wound healing
and excessive fibrotic remodeling of the joint capsule (21, 22), but the /n-vivo functions of
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HAS1 and HAS3 during skeletal development and growth remain largely unknown. Indeed,
recent evidence highlights the role of HAS isoforms in accessory functions other than HA
synthesis (10), with cross-talk between the isoforms representing a relatively un-explored
niche.

The contribution of endogenous HA to tendon structure and biomechanical function is
poorly understood. To date, there are very few published reports quantifying HA content
during tendon growth and maturation, nor detailing the possible effect on the mechanical
properties of the tendon ECM. Early studies demonstrated that both the dermatan sulfate
(DS) and HA contents of rat tail tendons decreased during maturation (23). Additionally,
murine studies with gene-deletions have characterized the influence of chondroitin/dermatan
sulfate (CS/DS) and keratan sulfate substituted small leucine rich proteoglycans (SLRPs) on
tendon ultrastructural and mechanical properties at various stages of growth and
development (24-30). Their absence leads to the formation of irregularly-shaped collagen
fibrils and altered fibril diameter distributions with age and tendon-specific alterations in
tissue mechanical properties. In the context of the /n-vivo function of the Achilles-calcaneus
complex, it is important to note that in addition to the tendon body, HA is a component of
the tendon-bone insertion, and it is secreted into the retrocaneal bursa by the surrounding
lining cells.

The goal of the current study was to examine the role of HA synthases in post-natal
maturation and biomechanical function of the Achilles-calcaneus complex. Given the role of
HAS isoforms in accessory functions such as inflammation (21, 31, 32) and wound healing
(10), we hypothesized that HAS1 and HAS3 exhibit unique non-redundant effects on tendon
structure and function. We report here on the morphological characteristics of the Achilles-
calcaneus complex, as well as the gene expression, biochemical, and mechanical properties
of the tendon in C57BI6 wild type and hyaluronan synthase 1 and 3 deficient mouse strains,
(Has1KO), (Has3KO), and (Has1/3KO) at 4, 8, and 12 weeks of age.

Materials and Methods

Animals

All animal use was approved by the Rush University IACUC. Wild-type (WT), Has1KO,
Has3KO, and Has1/3KO mice were bred in-house as previously described (21). Of note,
investigation of Has2knockout in the present study design was not feasible since
constitutive knockout of this gene is lethal in mice (33). A total of 248 mice were used for
this study, with 107, 82, and 125 mice used for 4, 8, and 12 week old time-points,
respectively. Experimental groups and outcomes are summarized in Table 1. At weaning,
male pups were separated and distributed randomly into the experimental groups, with n=6
animals per cage. Mice had free access to water and chow, and were exposed to the same
light cycles (12 hour light, 12 hour dark) during the growth period. Mice were sacrificed at
4, 8, or 12 weeks of age by CO» asphyxiation and cervical dislocation. Within 15 minutes of
sacrifice, Achilles tendons from both limbs were isolated from all surrounding tissues with
the peritenon left intact and immediately placed into proteinase K or RNALater solutions,
and processed for FACE or gene expression analysis, respectively, as described below. For
histology, both legs were dissected of all skin and placed in formalin for at least 1 day,
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followed by decalcification in EDTA for 2 weeks, as previously described (34, 35). For
biomechanical testing, carcasses were frozen at —20°C until the day of testing.

Histology and Picrosirius Red Staining

Specimens were formalin fixed, decalcified, processed, embedded in paraffin, and 5 um thin
sagittal sections were cut through the entire ankle joint. For histopathology, sections were
stained with Safranin O and Fast-Green counterstain. This stain was used to assess potential
aggrecan deposits in tendons of the KO mice and to assess the appearance of
fibrocartilaginous region at the tendon/calcaneous insertion site (Figure 2). For HA staining,
sections were deparaffinized, and incubated overnight at 4°C for hyaluronan which was
localized using a biotinylated HA Binding Protein (bHrTSG6) under a MTA from Halozyme
(San Diego, CA).

To assess collagen alignment, tissue sections were rehydrated and stained with picrosirius
red solution (PRS) of 0.1% w/v sirius red F3B (Direct Red 80, Sigma-Aldrich, St. Louis,
MO) in saturated aqueous solution of picric acid (Sigma Aldrich) for 1 hour. Sections were
then rinsed with acidified water (1% acetic acid), dehydrated, mounted, and visualized under
polarized light to capture maximal birefringence. Note that larger, highly aligned, densely
packed collagen fibers are red or orange under polarized light (longer wavelengths) while
smaller collagen fibers are green, with the absence of color in an area indicative of the
absence of aligned collagen fibers (36, 37).

Fluorophore Assisted Carbohydrate Analyses (FACE)

The content of HA and chondroitin sulfate/dermatan sulfate (CS/DS) in Achilles tendons
was quantified as previously described (38). For each experimental group (Table 1), two or
four pools of 5-8 Achilles tendons each were digested with 100-150 uL of Proteinase K
(PK) at 55°C for 18 hours prior to isolation of GAGs, chondroitinase ABC digestion,
fluorotagging, and electrophoretic separation of AdiHA, AdiOS, Adi6S and Adi4S (38-40).
Contents were normalized to the digest volume followed by normalization to the tendon
geometric volume (total number of tendons in the digest X average tendon volume, as
measured from the samples undergoing biomechanical testing). Statistical significance
between age-matched genotypes was determined using a one-way ANOVA with Tukey’s
post-hoc tests (p<0.05) in GraphPad Prism 7. For genotype matched age comparisons
between groups with more than 2 replicate pools (4 vs. 12 week age groups only), a
Student’s t-test (p<0.05) was used.

Gene Expression

RNA was isolated from tissue pools each containing 10-24 individual tendons (Table 1), as
previously described (34, 35). While RNA vyields were similar among the four genotypes,
yields varied by age (~1040 ng/tendon at 4 weeks, ~540 ng/tendon at 8 weeks, and ~220 ng/
tendon at 12 weeks of age). cDNA was synthesized with 0.5ug of mMRNA (A260:A280>1.90)
using the RT2 First Strand Kit (Qiagen) and transcript abundances were determined via qt-
PCR using Tagman primers from Life Technologies (Carlsbad, CA) for the following genes:
Glyceraldehyde-3-phosphate dehydrogenase (Gapadh, (Mm99999915 g1), Collagen Type I
alpha 1 (Collal, Mm00801666_g1), Collagen Type Il alpha 1 (Col3a1, Mm00802331_m1),
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Decorin (Dcn, Mm00514535), Biglycan (Bgn, Mm01191753), Fibromodulin, (Fmod,
mMO00491215), Hyaluronan Synthase 1 (Has1, Mm00468496_m1), Hyaluronan Synthase 2
(Has, Mm00515089_m1), and for Hyaluronan Synthase 3 (Has3, Mm00515092_m1). ACt
values (Ct gene of interest minus Ct for Gapah) were used to calculate an apparent transcript
abundance (2°-(ACt)*1000) with arbritary units. Additionally, the fold change in HAS-
deficient genotypes relative to WT was calculated as 2"- AACt, with AACt calculated from
ACt of HAS-deficient genotype minus ACt of WT. Has3and Col2al transcripts were not
detected (Ct>34) in any experimental group.

Statistical comparisons between groups with n=3 pools (WT, Has1KO, and Has3KO at 4 and
12 weeks of age only, see Table 1) was conducted in GraphPad Prism 7. Specifically,
comparisons among age-matched genotypes was determined using a one-way ANOVA with
Tukey’s post-hoc tests (p<0.05). For genotype-matched age comparisons, a Student’s t-test
(p<0.05) was used. Overall, pooling of 10-24 tendons per group ensured high yields of pure
RNA (see Supplemental Table 1), for the assay of multiple genes. The Ct expression values
of Gapadhand Collal across our studies utilizing 12 week old WT murine Achilles tendons
demonstrates the reproducibility of our expression assays (34, 35).

Biomechanical Testing

The Achilles-calcaneus complex was dissected from all surrounding tissue. Width and
length were measured for each tendon using precision calipers and thickness was measured
using a laser displacement sensor (Model #LK-G82, Keyence, Itasca, IL), as previously
described (38). These dimensions were recorded at three locations along the tendon length,
and cross-sectional area (CSA) was calculated as the product of the average width and
thickness. Volume (used to normalize GAG content measurements, as detailed below) was
calculated as the product of the CSA and tendon length. The calcaneus was potted in dental
cement (Stoelting Co., Wood Dale, IL) and the tendon-bone construct was oriented at 45°
plantar flexion using custom fixtures. All tensile testing was conducted in a room
temperature isotonic saline bath. The following protocol was utilized for each specimen:
preload to establish initial tendon length, preconditioning (20 cycles), 15-minute stress-
relaxation test at 5% grip-to-grip strain, and load-to-failure at 0.05 mm/sec. Due to
differences in tendon size across the age groups for 4, 8, and 12 week tendons, clamped (un-
loaded) tendon lengths were 4mm, 5mm, and 6mm; pre-load magnitudes were 0.01N,
0.02N, and 0.05N, while preconditioning load endpoints were 0.01-0.08N, 0.05-0.15N, and
0.05-0.55N, respectively.

From stress relaxation testing, the following parameters were calculated: percent relaxation

; (o2 - Ge
(determined as -2

where o, is peak stress and o, is equilibrium stress), and the Quasi-
p

Linear Viscoelastic (QLV) mathematical modeling parameters A, B, C, Taul, and Tau2
determined by curve-fitting the experimental data. QLV theory has been shown to accurately
model the stress-relaxation behavior of ligaments and tendons (41, 42) using test protocols
closely resembling that of the present study. QLV coefficients describe the non-linear elastic
behavior (elastic stress constant A and elastic power constant B) as well as the viscous
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components (relaxation index C, and short and long relaxation time constants Taul, and
Tau2, respectively) of the material (43).

From load-to-failure testing, structural properties including maximum force, extension at
maximum force, stiffness, and work to maximum force were determined. Additionally,
material properties (maximum stress, strain at maximum stress, elastic modulus, and energy
to maximum stress) were calculated by normalizing the load and displacement values by the
CSA and initial length (38). Separate 1-way ANOVAs were used to compare the four
genotypes at each age as well as to examine age-dependent differences within each
genotype. When the independent factors (age or genotype) revealed a significant difference
(p<0.05), Tukey’s post-hoc comparisons were used to determine pairwise differences among
levels within each factor. All statistical tests were conducted in GraphPad Prism 7 (La Jolla,
CA) (p<0.05).

The Effect of HAS Deficiency on Tendon Morphology and HA Concentrations

SafraninO stained sections of the Achilles tendon body showed no marked differences
between genotypes with regard to collagen organization, cell density, or overall morphology
(Figure 1A). Additionally, localization studies (Figure 1A), showed no marked differences in
intra-tendinous HA staining between genotypes at any age. Also, no significant (p>0.05)
difference in tendon HA concentration (approximately 0.015-0.025 ug/ul), relative to tendon
volume (mm3), was detected between the genotypes at 4 and 12 weeks of age (Figure 1B),
and age-dependent changes were not detected for any genotype. Notably, the range of values
was markedly greater at 4 weeks in all genotypes relative to 8 and 12 weeks, possibly due to
variability in tendon growth at 4 weeks due to pre-weaning (litter size and feeding success)
and/or post-weaning (ease of climbing to access food and water) variables. Notably, no
significant differences in HAS isoform expression was detected in WT (HasZ: p=0.79, Has2:
p=0.32), Has1KO (Hasz. p=0.78), or Has3KO (HasZ: p=0.51, Has2: p=0.40) tendons with
age (Table 2). Additionally, age-matched genotype comparisons of Has2expression yielded
no significant differences (4 weeks: p=0.19, 12 weeks: p=0.99, Table 2).

The Effect of HAS Deficiency on Formation of the Retrocalcaneal Bursa

HAS1-deficiency (in the single or Has1/3 double KO) at all ages was accompanied by a
failure to develop an HA-rich fluid-filled retro-calcaneal bursa (Figure 2). Instead, this
bursal space was filled with a cell-rich fibrous ingrowth extending from the proximal
Kager’s fat pad, which stained strongly for the presence of HA at all ages. For both HAS1-
positive genotypes (WT and Has3KO) at 8 and 12 weeks, the bursal space was filled with a
lightly-stained and largely cell-free matrix, consistent with a typical HA-containing fluid-
filled bursa.

The Effect of HAS Deficiency on Collagen Organization and Expression in Achilles

Tendons

Picrosirius red (PSR) staining showed minor apparent differences at 4 weeks of age in the
four genotypes examined (Figure 3). Primarily, the collagen fibers appeared less organized
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with single HAS1-deficiency (Has1KO) throughout the tendon body, and at the insertion site
(white arrows, Figure 3), but these differences were not evident with SafO staining (Figure
1A). Conversely, HAS3-deficiency (Has3KO and Has1/3KO) appeared to result in more
densely packed fibers in the distal tendon body (black arrows, Figure 3). By 12 weeks of
age, no differences in PSR outcomes were detected between the genotypes suggesting a
more highly organized ECM with the completion of growth of all genotypes (Figure 3).
With respect to collagen expression, HAS1-deficiency only (Has1KO) resulted in reduced
expression of Co/3al relative to WT at 12 weeks of age (—13.54-fold, p=0.003, Table 3). No
other significant differences in Collal and Col3al expression in HAS-deficient genotypes
relative to age-matched WT were detected. Notably, with maturation, a significant reduction
in Collal and Col3al was evident in both WT (Col1al: p=0.002, Col3al: p=0.02) and
Has1KO (Col/1al: p=0.01, Col3al.p=0.008) genotypes, and Col3al was significantly
(p=0.04) reduced in Has3KO mice.

The Effect of HAS Deficiency on CS/DS contents in Achilles Tendons

As observed for HA, the concentration of CS/DS relative to tendon volume (mm3), was
markedly variable at 4 weeks compared to 8 and 12 weeks in all genotypes (Figure 4),
consistent with the expected differences between individual mice in the rapid growth phase.
No significant differences in CS/DS contents were detected from age-matched genotypic
comparisons (4 weeks: p=0.98, 12 weeks: p=0.86). Genotype-matched comparisons of
CS/DS content between 4 and 12 week age groups also did not reach statistical significance,
except with HAS3-deficiency (p=0.034)), which highlights the decrease in CS/DS contents
with tendon maturation in the absence of HAS3 only. At 4 weeks of age, HAS1-deficiency
(Has1KO) resulted in decreased expression of Dcn (—3.23-fold, p=0.03), Bgn (-2.65-fold,
p=0.004), and Fmod (-4.55-fold, p=0.01) relative to WT, and HAS3-deficiency (Has3KO)
resulted in reduced expression of Bgn (—3.68-fold, p=0.001) only. These reductions in
expression returned to WT levels by 12 weeks of age (p>0.05, Table 3). Notably, maturation
from 4 to 12 weeks of age in WT mice significantly reduced the expression of Bgn
(p=0.001) and Fmod (p=0.007). Conversely, HASI-deficiency resulted in increased Dcn
expression (p=0.009) with maturation. No age-related changes with HAS3-deficiency were
observed (p>0.05, Table 3).

The Effect of HAS Deficiency on Geometric and Biomechanical Properties in Achilles

Tendons

Tendon cross-sectional area (CSA) for all genotypes increased by approximately 50%
(p<0.05) between 4 weeks and 12 weeks, consistent with rapid growth (Figure 5A). Tendons
deficient in both HAS1 and HAS3 (Has1/3KO) showed a significant (p<0.05) difference
(20% decrease) relative to age-matched WT, but only at 4 weeks (Figure 5A).

Similarly, no significant differences in stress relaxation percentage or QLV modeling
coefficients were detected among genotypes, except for QLV coefficient B which showed
significant differences (p<0.05), but only with HAS3-deficiency at 8 weeks (Figure 5B).
With the exception of QLV coefficient A for WT tendons, elastic parameters A and B
generally showed increases with age for each genotype, indicative of increased stiffness
during low strain mechanical behavior. However, for the primary indices of viscoelastic
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behavior (% relaxation and QLV coefficient C), the only significant (p<0.05) age-related
difference observed was a decrease in % relaxation with age in HAS3-deficient (Has3KO)
tendons (Supplemental Table 2).

Regarding differences in tissue material properties between the genotypes, significantly
(p<0.05) increased maximum stress was noted for 8 week HAS3deficient tendons
(Has3KO) (Figure 5C), which was consistent with a significant increase in QLV coefficient
B (Figure 5B). Interestingly, at 12 weeks of age, only HAS1-deficient tendons (Has1KO and
Has1/3KO) showed significant differences in maximum stress relative to WT mice (Figure
5C). With respect to age-related differences in material properties, there was a general
increase in maximum stress and elastic modulus with age for all genotypes, as expected with
growth (Supplemental Table 3).

Discussion

In the current study we examined whether HAS expression and subsequent HA and CS/DS
concentrations contribute to variations in morphological and biomechanical properties of un-
injured tendons from WT and HAS-deficient mice at 4, 8 and 12 weeks of age.
Unexpectedly, HAS-deficient mice did not display any significant differences in tendon HA
contents or HAS expression compared to WT mice, at any age. Since HAS2 appears to be
the predominant isoform for synthesis of high molecular weight HA in connective tissues
(44), its low expression in all genotypes (WT and HAS-deficient) combined with no
detectable change in the total HA concentration or stainable HA of the tendon, is consistent
with the findings on post-translational control of HAS2 via protein glycosylation (45) and
UDP precursor supply (46). Therefore, to further our understanding of HA regulation in
tendon cell proliferation, differentiation, and ECM organization, site-specific metabolism of
HAS2 within pericellular or interfibrillar tissue domains (45, 47-49), and the role of HAS1
and HAS3 (50), should be explored. Specifically, as no murine reactive antibodies to the
HAS proteins exist, and knockout of the HAS2 gene is lethal (33), the use of an inducible
HAS?2 mutant in tissue specific promoter mouse lines (51, 52) would be of interest to
delineate the age-specific role of HAS2 in tendon.

While few differences were noted structurally in the Achilles tendon for each of the three
age groups and four genotypes examined, HAS1 -deficiency (in the single or Has1/3 double
KO) impeded the post-natal formation of the retrocalcaneal bursa. This bursa lies directly
adjacent to the distal region of the Achilles, and has been implicated in the sliding motion of
the retromalleolar fat pad to achieve optimal insertion of the Achilles tendon into the
calcaneus during ankle flexion and extension (53). The synovial fluid of the retrocalcaneal
bursa is rich in HA (3), which is evident in all HAS1-containing mice used in the current
study. Additionally, HA from the retrocalcaneal bursa formed a distinct surface layer on the
cartilage and peritenon surfaces. Conversely, localization of HA in the joint of the HAS1-
deficient mice revealed the presence of HA-rich cell aggregates in the bursal space and a
lack of surface lining associated HA, which supports a role for HAS1 in cellular activities
downstream of HA synthesis, including cell survival and receptor mediated HA clearance.
Although HAS1 and HAS1/3-deficiency blocked bursal formation, it did not consistently
affect the biomechanical properties of the Achilles tendon. However, it should be noted that
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the biomechanical testing in the current study was conducted on the tendon-calcaneus
complex only, without the presence of the retrocalcaneal bursa. Thus, future studies should
focus on functional characteristics of the entire limb using parameters such as gait analysis
and weight bearing. Additionally, as retrocalcaneal bursa formation occurs /n-utero
(approximately 9.5 weeks in humans) (54), future studies aimed at discerning whether Hasz
deletion impedes initial formation of the bursa and/or impacts maturation during postnatal
usage of the hind limbs, are warranted. In this manner, as the initial formation of the bursa
has been postulated to facilitate fibrocartilage differentiation (54), studies focused on the
development of a functional Achilles enthesis with knockout of HasZ would provide novel
information, given that no morphological differences were identified in the Achilles tendon
itself for the current study.

It was reported that HAS1-deficient mice exhibit defective reparative responses in dermal
wound-healing (55) and posttraumatic cartilage regeneration (21). In the current study, the
deletion of HasZ alone reduced the expression of Co/3a1 relative to WT particularly at 12
weeks, supporting the presence of un-organized tissue at maturation. In this regard, it may be
significant that picrosirius red stained polarized light images exhibited areas of apparent
disorganized collagen fibers in tendon regions of HAS1-deficient (Has1KO) mice during
periods of rapid tissue remodeling, such as during growth (4 weeks old). However, these
alterations in collagen organization and content did not consistently manifest as changes in
biomechanical properties.

Notably, tendon CS/DS content was statistically reduced from 4 to 12 weeks of age, but only
with HAS3-deficiency and borderline significant reduction was reached with HAS1& HAS3
deficiency. However, no significant differences were noted between WT and HAS-deficient
genotypes between 8 and 12 week old time-points. In this context, the potential
contributions of GAGs to tendon viscoelasticity have been studied using transgenic mice and
GAG digestion protocols (56, 57). The dynamic modulus of Achilles tendons from skeletally
mature Bgri'~ and Dcr'~ mice was reduced relative to WT, and the mutant tendons
exhibited greater viscous behavior under dynamic loading (58). Whether these changes were
the result of protein or GAG deficiencies was not determined. In the current study, reduced
Dcn, and Fmod expression in HAS1-deficient (Has1KO) tendons, and reduced Bgn
expression in both HAS1-deficient and HAS3-deficient (Has3KO) mice at 4 weeks of age,
suggests a role for HAS(s) in tendon SLRP function during tendon growth, but probably not
in maturation, as the expression patterns normalized to WT levels over time. The QLV
modeling analyses in the current study revealed that there were no differences between the
genotypes except for parameter B, reflective of the non-linear elastic tendon behavior under
low strain.

In summary, the data presented here suggest that HA metabolism does not significantly
influence the ECM structure of the tendon body, as determined by the current
methodologies, but is required for maintenance of the synovial bursa. Thus, this work is
relevant to the increasing realization (59, 60) that insertional Achilles tendinopathies
(considered as a major subtype of Achilles disease (61) are associated with impingement of
the tendon/bursa on the calcaneus, thus impairing fluid flow from the retrocalcaneal area to
the tendon body and the surrounding peritenon (62). Indeed, the possible development of a
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genetic model of retrocalcaneal bursal pathology in the Has1KO mouse could set a
framework for studies incorporating this important component of Achilles disease.
Therefore, continued studies are warranted to examine the metabolism of HA in normal
maintenance of the bursa, and alterations in these pathways in the development and healing
of tendon injuries and tendinopathies
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Bgn Biglycan Gene

Cs Chondroitin sulfate

CS/DS Chondroitin/dermatan sulfate
Collal Collagen Type | alphal gene
Col3al Collagen Type Il alphal gene
CSA Cross-Sectional Area

Dcn Decorin gene

DS Dermatan Sulfate

ECM Extracellular Matrix

Fmod Fibromodulin gene

GAG Glycosaminoglycan

HA Hyaluronan

HABPs Hyaluronan Binding Proteins
Hasl Hyaluronan Synthase 1 gene
Has2 Hyaluronan Synthase 2 gene
Has3 Hyaluronan Synthase 3 gene
HAS Hyaluronan Synthase
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QLV Quasi-Linear Viscoelastic

PSR Picrosirius Red

SafO SafraninO

SLRPs Small Leucine Rich Proteoglycans
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Figure 1:

(A) SafraninO and hyaluronan binding protein (HABP) staining of the tendon body from all
four genotypes at 4, 8, and 12 weeks of age. (B) HA contents (determined through FACE) in
Achilles tendons from all four genotypes and all three ages. Number of tendon pools assayed
for HA contents are provided in Table 1. Data points represent individual tendons, with box/
whiskers denoting average +/- STD; p-values between age-matched genotypes listed for 4
and 12 weeks only; no significance detected between genotyped matched 4, or 12 week olds.

J Orthop Res. Author manuscript; available in PMC 2019 October 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Sikes et al. Page 16

4 weeks
Safo

O
X
~
o
©
L§

Has3KO

Has1/3KO

Figure2:
SafraninO (SafO) and hyaluronan binding (HABP) protein staining of the Achilles-

calcaneus insertion from all four genotypes at 4, 8, and 12 weeks of age. Black arrows
denote absence of the synovial bursa adjacent to the Achilles tendon.
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Figure 3:
Representative polarized light microscopy images of picrosirius red-stained Achilles tendon

sections from all four genotypes at 4 and 12 weeks of age. White arrows denote areas of un-
organized collagen, while black arrows denote densely packed fibers.
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12 weeks
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Figure 4:

CS/DS contents (determined through FACE) in Achilles tendons from all four genotypes and
all three ages. Number of tendon pools assayed for CS/DS contents can be seen in Tablel.
Data points represent individual tendon pools, with box/whiskers denoting average +/- STD;
p-values between age-matched genotypes listed for 4 and 12 weeks only; no significance
detected between genotyped matched 4 or 12 week olds except for Has3KO (12 week

relative to 4 week; p=0.034, marked with matching letters).
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Geometric Properties
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Geometric, stress relaxation, and material properties of Achilles tendons from all four
genotypes at 4, 8, and 12 weeks of age. Data points represent individual tendons, with box/
whiskers denoting average +/— STD. p-values between age-matched genotypes listed. Only
parameters with significant differences between genotypes at each age are shown (*p<0.05).
All parameters measured during testing are provided inSupplemental Table 2 and 3 for stress
relaxation, and geometric/material properties, respectively.
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