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Abstract

Enkurin was identified initially in mouse sperm where it was suggested to act as an intracellular
adaptor protein linking membrane calcium influx to intracellular signaling pathways. In order to
examine the function of this protein, a targeted mutation was introduced into the mouse Enkurin
gene. Males that were homozygous for this mutated allele were subfertile. This was associated
with lower rates of sperm transport in the female reproductive tract, including reduced entry into
the oviduct and slower migration to the site of fertilization in the distal oviduct, and with poor
progressive motility in vitro. Flagella from wild-type animals exhibited symmetrical bending and
progressive motility in culture medium, and demembranated flagella exhibited the “curlicue”
response to Ca2+ in vitro. In contrast, flagella of mice homozygous for the mutated allele displayed
only asymmetric bending, nonprogressive motility, and a loss of Ca2+-responsiveness following
demembrantion. We propose that Enkurin is part of a flagellar Ca2+-sensor that regulates bending
and that the motility defects following mutation of the locus are the proximate cause of subfertility.

Summary Sentence

The protein Enkurin is essential for control of flagellar bending and for sperm transport through
the female reproductive tract.
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Introduction

Enkurin (Enkur) is a conserved protein of flagella and cilia. It was
first identified in mouse sperm in a yeast interaction screen using
testis transcripts [1], and subsequently detected in the sperm of pri-
mates (Macaca mulatta) [2], ascidians (Ciona intestinalis) [3], bi-
valves (Mytilus edulis) [4], gastropods (Haliotis rufescens) [5], and
insects (Drosophila melanogaster) [6]; in flagella of Chlamydomonas
reinhardtii [7–9]; and in eukaryote cilia, including those in some

mammals [10–13]. Additionally, ENKUR plays a role in determin-
ing left-right axes in vertebrates, with mutations linked to situs in-
vertus in human and mouse [12, 13]. Misregulation of Enkur expres-
sion or altered gene copy number is linked to several disease states
(the effects of varicocele on sperm [14], Sertoli-cell-only syndrome
[15], altered brain endothelial cell function during preeclampsia and
eclampsia [16], schizophrenia [17], acute myeloid leukemia [18]) and
to partial sterility in Crassostrea gigas, the Pacific oyster [19]. Finally,
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Enkur orthologs participate in the adaptive response of echinoderm
larva to ocean acidification [20], to seasonal variations in Dreissena
polymorpha, the zebra mussel [21], and to sexual reproduction in
the protist Eimeria tenella [22].

The domain organization of this protein suggested that it may
be an intracellular adapter. The N-terminus contains a proline-
rich region with predicted SH3 and WW domain ligand motifs,
including an SH3 ligand that binds the regulatory subunit of 1-
phosphatidylinositol-3-kinase in vitro. An IQ domain that binds
Ca2+/calmodulin but not apo-calmodulin in a cell-free system is
present in the central region of the protein. The C-terminal fragment
associates with TRPC ion channels in yeast interaction screens. It
also contains a predicted coiled-coil domain that may additionally
bind other proteins. Based on these sequence and functional features,
it was proposed that Enkur participates in the assembly of protein
modules during Ca2+-dependent signal transduction [1]. However,
there is no direct information on the cellular functions of Enkur. In
order to determine the physiological role of this protein we produced
a mouse bearing a targeted mutation of the Enkur locus. Here, we
report the reproductive phenotype of this genetic model.

Methods

Animals
All animal studies followed procedures approved by University of
Massachusetts Medical School Institutional Animal Care and Use
Committee and comply with Society for the Study of Reproduction
guidelines for the care and use of experimental animals. C57BL6
mice (Jackson Laboratory; Bar Harbor, ME) were maintained on 12
h light (0700–1900 h)/12 h dark (1900–0700 h) lighting cycle in the
University of Massachusetts Medical School vivarium. Age matched
mice used in this study were 6 weeks to 4 months old.

Media and chemicals
Reagents were obtained from the following: Roche (Indianapolis,
IN), Bovine Serum and cOmplete Protease Inhibitor Cocktail; EMD
Milliipore (Billrica, MA), FHM-HEPES buffered medium and KSO-
MAA medium for in vitro fertilization; and Sigma-Aldrich (St Louis,
MO), all other reagents.

Production and use of antibodies
GST-full length mouse Enkur was subcloned into pThioHis (His-
Patch ThioFusion expression system; Invitrogen, MA). Rabbit anti-
sera were generated against recombinant protein and affinity puri-
fied according to manufacturer’s protocols. Commercial antibodies
generated against Enkur were obtained from Enkurin polyclonal an-
tibody (Cat. # PA5-58028; ThermoFisher Scientific, Rockford, IL),
and Anti-C10orf63 antibody (Cat. # ab186433; Abcam, Cambridge,
MA) (Supplementary Table SI).

Sperm were recovered from caudae epididymides into PBS (pH
7.4). When required, heads and tails were separated by mild pro-
teolysis [23] and membrane integrity of isolated heads was con-
firmed by Coomassie blue staining [24]. Intact sperm or head and
tail fragments from >10-week-old males were washed by sedimen-
tation (700× g, 10 min, room temperature), pellets extracted with
RIPA buffer (30 min; 4◦C), and resedimented (16,000× g; 15 min;
4◦C). Sperm proteins in supernatant and insoluble fractions were
resolved by SDS-polyacrylamide gel electrophoresis, transferred to
Immobilon-P membranes, and probed with antibodies, as described
previously [1].

Construction of an Enkur gene disruption vector
The mouse Enkur gene consists of five exons on chromosome
2. Genomic bacterial artificial chromosomes were isolated from a
129S6/SvEvTac library using probes specific for mouse Enkur exons
1 and 3. The targeting vector, designed to remove a section of exon
2, consisted of a pKS(-) plasmid containing of a 5′ arm spanning
exon 2 and 3 kb of intron 1; a neomycin resistance gene; and a 3′

arm containing 4 kb of intron 2 (Supplementary Figure S1A). Splic-
ing of exon 1 to exon 3 rather than to the trap results in a reading
frame shift and would not produce functional protein.

Embryonic stem cells derived from 129/SvJ mice were trans-
fected with linearized DNA and targeted cells were isolated by
positive and negative selection with G418 and ganciclovir. Ho-
mologous recombination was confirmed by Southern blotting us-
ing a 5′ external probe that detects an 8 kb PstI fragment
in the wild-type allele and a 6.5-kb PstI fragment in the mu-
tant allele (Supplementary Figure S1B). This probe was generated
by the primer pair 5′-TGGACTATGATGCTATGCTC-3′ and 5′-
GCTGATAGACACAGCATGAC-3′. The mutated allele is referred
to as Enkurtm.

Targeted disruption of Enkur
Embryonic stem cell clones with an Enkurtm allele were injected into
C57BL/6J blastocysts in the University of Massachusetts Medical
School Transgenic Animal Modeling facility to generate chimeric
mice and chimeras were mated to C57BL/6J mice for germline trans-
mission. Mice were maintained on a mixed C56BL/6J-129 back-
ground.

PCR genotyping was carried out using genomic DNA
derived from tail biopsies with the following primers: a
primer homologous to a region upstream of the deleted re-
gion that hybridizes with both wild-type and mutant alleles
(5′-CCTGGAAAAGATCTCCTTTC-3′); a wild-type allele-specific
primer (5′-TATACTCACTGTTTAGAGC-3′); and a mutant allele-
specific primer (5′-GTGATATAAACTTGAGGCTG-3′). PCR was
performed with rTaq (Promega, Madison, WI) according to manu-
facturer’s instructions and confirmed by Northern hybridization, as
described [25], using testis total RNA (s10 μg) extracted from sex-
ually mature (>10 weeks old) males and a mouse Enkur full coding
region cDNA probe.

Fertility studies
Fertility was determined by cohousing sexually mature C56BL/6J
mice for 1–3 months and recording vaginal plugs, pregnancies,
and litter size. In vitro fertilization was performed using sperm
that were collected from caudae epididymides into FHM medium
and capacitated during incubation (1.5 h, 37◦C, 5% CO2 in
air). Ovulation was induced by sequential intraperitoneal injec-
tion of pregnant mare serum gonadotrophin (50 units) and, 46–
48 h later, of human chorionic gonadotrophin (50 units). Ovu-
lated oocyte/cumulus complexes were recovered from oviducts
12–14 h after the last injection, incubated with sperm (104–
106/ml; 2 h, 37◦C, 5% CO2 in air) in KSOMAA media, trans-
ferred to fresh media, and fertilization was assessed by cleavage
to 2-cell after an additional 24-h incubation (37◦C, 5% CO2 in
air).

Sperm motility assays
Sperm were collected from caudae epididymides of 12–16-week-
old mice into Whitten’s medium supplemented with NaHCO3
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(20 mM) and bovine serum albumin (1%, w/v), and incubated
(37◦C, air) for up to 1.5 h. This medium supports sperm capacitation
in vitro [26].

Three approaches were used to study sperm motility. Flagellar
waveform analysis was carried out in custom-built chambers con-
structed by placing a thin plastic film (Saran Wrap S.C. Johnson and
Co., Racine WI) with a hand-cut channel between a 45 × 50 mm
and a 22 × 22 mm cover slip. Sperm were loaded into the channel.
Images of loosely tethered sperm pivoting about a single point of
attachment of head to coverslip were produced by passing illumina-
tion through the differential interference optics (UPlanApo 20X, NA
0.7) of an Olympus IX71 inverted microscope to a charge-coupled
device (TM-6740 CL; Pulnix America, Sunnyvale, CA). Images were
captured at 200 Hz under instruction of Video Savant software (IO
Industries, London, ON, Canada), converted to TIFF format, and
analyzed with Volocity 3D (PerkinElmer, Waltham MA) and Im-
ageJ (National Institutes of Health, Bethesda MD) [27]. For each
beat cycle, we quantified length of the first flagellar bend as the lin-
ear distance from the point where the flagellum-head junction to the
first inflection point (see Figure 4c) [28]. We also noted the direction
of flagella bends in relation to the orientation of the hook of the
mouse sperm head.

Second, sperm movement characteristics were evaluated with
Computer Assisted Sperm Analysis (CASA) using a ∼100 μm deep
chamber prepared with a 2X-CEL insert (Hamilton-Thorne Inc.,
Beverly, MA) mounted on microscope slides and overlaid with a #1
coverslip. Sperm (2–5 × 105/ml) were added to a prewarmed cham-
ber (37◦C) and motility recorded at 30-min intervals in an IVOS
Analyzer (Version 12, Hamilton-Thorne Inc., Beverley MA), with at
least 10 fields recorded per sample.

Finally, flagellar responses to Ca2+ were assessed following Tri-
ton X-100 extraction, as described by Lindeman and colleagues [29,
30]. The initial 20 μm of flagellum from the head-tail junction was
determined using Velocity 3D software and flagellar curvature was
defined by the length of a straight line from that point to the head-tail
junction.

Analysis of sperm transport in the female reproductive
tract
Estrus and ovulation were synchronized in C57Bl6/J females as de-
scribed [31] and single males were housed with single females for
2 h. Mated females were euthanized and oviducts excised. Sperm
entry into the oviduct was determined by dissociating oviducts with
collagenase (10 mg/ml in PBS) and by counting sperm by light mi-
croscopy. Sperm associated with the cumulus/oocyte complex was
determined by isolating those complexes from excised oviducts, by
dissociating cumulus masses with hyaluronidase (1 mg/ml in PBS),
and by counting total sperm and egg.

Electron microscopy
Cauda epididymal sperm were washed by sedimentation (700× g, 10
min). Pellets were embedded in 3% agarose, fixed (2.5% gluteralde-
hyde, 0.1% cacodylate buffer, 1% tannic acid) overnight, washed in
5% sucrose/0.1M cacodylate buffer (pH 7.4), dehydrated by sequen-
tial washes with increasing ethanol concentration, and embedded
in Poly/Bed 812 epoxy (Polysciences, Fort Washington PA). Thin
sections (80 μm) were cut on a Reichert ultramicrotome, stained
with uranyl acetate and lead citrate, and examined using Philips
CM10 and CM12 transmission electron microscopes in the Core

Figure 1. Enkurtm/tm mice have decreased male fertility. (A) Northern blots
reveal an Enkur RNA in testis of wild-type mice (+/+) that cannot be detected
in mice that are homozygous for the mutated Enkur allele (tm/tm). Lower
panel: β-actin loading control. (B) Immunoblot of sperm proteins. A ∼35 kDa
band is present in the insoluble fraction (pel) of extracts of wild-type sperm
(+/+) but is absent in sperm from mice that are homozygous for the mutant
Enkur allele (tm/tm). (C) Size of litters sired by Enkur+/+ (+/+) and Enkurtm/tm

(tm/tm) males during mating with Enkur+/+ females. Average litter size is
indicated (grey horizontal line) and data points represent individual litters.
Total number of mating trials is shown above the scatter graph.

Electron Microscopy Facility at University of Massachusetts Medical
School.

Mass spectrometry
Mass spectrometry of sperm proteins was performed as described
[32]. Detailed methods are provided in Supplementary Online Infor-
mation.

Statistical analysis
All values are means ± SD of at least three independent experiments.
Statistical analyses were performed using Student’s t-test (SigmaStat
3.0; Systat Software, San Jose, CA).

Results

Enkur is required for efficient male reproduction
The mouse Enkur gene was mutated by replacing part of exon 2
so as to produce a downstream reading frame shift (Supplementary
Figure S1). Targeted disruption was confirmed by the absence of
transcript in testis of Enkurtm/tm mice (Figure 1A). A ∼35 kDa pro-
tein is present in the insoluble fraction of an extract from Enkur+/+

sperm and identified as Enkur based on the following: (a) its labeling
with an antibody against full length recombinant mouse Enkur (Fig-
ure 1B), (b) the presence of an Enkur-specific phospho-peptide, Tp-
MGPAK (residues 48–53, accession NP 082004.1), as demonstrated
by mass spectrometry; and (c) in the failure to detect this band in
immunoblots of Enkurtm/tm sperm (Figure 1B). Enkur migrates more
slowly than anticipated based on a deduced molecular weight of
29.6 kDa, possibly due to the known effects of coiled-coil domains,
of acidic residues, and of phosphorylation on protein migration in
SDS gels [33–36]. A second immunoreactive band of ∼28 kDa is
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present in the soluble fraction and is retained following disruption
of the Enkur locus (Figure 1B), but Enkur peptides were not de-
tected in this region of the electrophoretogram. Several commercial
antibodies also labeled both the ∼35 kDa band that contains Enkur
sequences and the apparently nonspecific ∼28 kDa band. The pres-
ence of this nonspecific immunoreactive band precludes localization
of Enkur.

Enkurtm/tm mice were indistinguishable from Enkur+/+ litter-
mates in body weight (Supplementary Figure S2A), lifespan, appear-
ance, and apparent behavior (data not shown). There was no evi-
dent reproductive phenotype of Enkur mutation in females, where
litter rates and litter sizes were equal to that of wild-type control
females. In males there was no effect on testis weight; on the num-
bers of sperm recovered from caudae epididymides (Supplementary
Figure S2B and C); on sperm morphology, including flagellum length
(Enkur+/+, 84.2 ± 1.5 μm; Enkurtm/tm, 84.3 + 2.3 μm) and gross
axonemal morphology (Supplementary Figure S3A and B); or on
male mating behavior as assessed by the frequency of copulatory
plugs (data not shown). However, as shown in Figure 1C, Enkurtm/tm

males exhibited severe subfertility; Enkur+/+ males produced litters
in 100% (36/36) of matings, with an average litter size of 6.8 ± 1.6
pups/litter, but the litter rate of Enkurtm/tm males was reduced to
20% (13/64 matings) and litter size to 16% (1.1 ± 3.6 pups/litter;
P < 0.01) of those in wild-type controls. This reduction in average
litter size was not due to a small number of males with mutant Enkur
alleles that had fertility similar to that of wild-type males. Rather,
all Enkurtm/tm males sired litters at very low frequency.

Enkur is required for efficient sperm transport in the
female reproductive tract and fertilization
The persistent ability of Enkurtm/tm males to sire litters, even at a
low frequency, suggested that sperm from these animals can reach
the oviduct ampulla and fertilize oocytes. To test this, we examined
the behavior of sperm within the female reproductive tract follow-
ing mating. Sperm from both Enkur+/+ and Enkurtm/tm males were
observed within the oviduct lumen 2 h after mating. However, fewer
sperm from Enkurtm/tm mice were able to enter the oviduct (n = 4
independent experiments; P < 0.01; Figure 2A).

In addition, fertilization in vitro by sperm from Enkurtm/tm males
was reduced relative to those from wild-type animals by ∼85% (104

sperm/ml; n = 4 independent experiments; P < 0.01; Figure 2B).
This relative advantage of wild-type sperm in fertility in vitro was
also observed at higher sperm concentrations although genotype-
dependent differences were no longer significant, likely reflecting
saturation of fertilization as a function of sperm doses [37]. These
data show that the fertility defect associated with the loss of Enkur
function reflects both a failure of sperm transport in the female
reproductive tract and also a decreased efficiency of fertilization by
those sperm.

Sperm swimming paths are dependent on Enkur
function
Sperm from Enkurtm/tm mice have a defect in flagellar motility. The
first hint came during collection of sperm. Sperm from wild-type
animals were extruded from epididymides into culture medium as
dense threads that quickly dispersed to produce a uniform suspen-
sion, while those from Enkurtm/tm males failed to disperse. As the
∼35 kDa sperm protein, shown previously to contain an Enkur-
specific sequence by mass spectrometry (Figure 1B), is present in tail

Figure 2. Enkur is critical for sperm transport in the female reproductive tract
and fertilization in vitro. Data represents the mean ± SD. (A) Numbers of
Enkur+/+ (+/+) and Enkurtm/tm (tm/tm) sperm found in the excised oviducts
following natural mating (n = 5 independent experiments). (B) Fertilization
of Enkur+/+ oocytes (% of total oocytes) in vitro by Enkur+/+ (+/+) or by
Enkurtm/tm (tm/tm). Data represents mean ± SD (n = 6 independent experi-
ments). (A, B) Horizontal line above bars represents statistical differences by
two tailed t-test.

Figure 3. Kinematic effects of Enkur on sperm motility. (A) Immunoblot of
isolated sperm heads and tails probed with anti-Enkur antibody. Enkur is de-
tected only in the tail fraction. (B) Representative CASA traces of Enkur+/+ and
Enkurtm/tm sperm following swim out from cauda epididymis. Genotype is in-
dicated above the panels: Ba, Enkur+/+; Bb, Enkurtm/tm. Blue traces represent
cases where sperm were tracked continuously during the 20-s acquisition
period. This population was used for kinematic analysis. Other colors rep-
resent cells that were not tracked continuously throughout the acquisition
window and were not analyzed further. (C) Kinematic properties of Enkur+/+

(five independent experiments, 673 total sperm) and Enkurtm/tm sperm (four
independent experiments, 357 total sperm). Fraction of sperm that exhibited
hyperactivation-like motility was calculated as described [42]. Data represent
means ± SD (horizontal line above bars represents statistical differences by
two tailed t-test). (Please see the online version for the color figure).
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fractions but not in isolated heads (Figure 3A), we next examined
the motility of sperm from Enkur mutants.

Motility behavior of freely swimming populations was evaluated
using a computer-assisted motion tracking system. After release from
the cauda epididymis into culture medium Enkur+/+ sperm swam
along approximately linear paths (Figure 3Ba, blue traces represent
tracks of sperm monitored continuously during a 20-s acquisition).
In contrast, sperm from animals homozygous for a mutant Enkur
allele swam in a nonprogressive tumbling or circular pattern (Fig-
ure 3Bb). Kinematic analysis of sperm movement revealed no differ-
ence in the fraction of sperm exhibiting active motility. Figure 3C
shows that sperm from both genotypes has similar velocity of motion
along a curvilinear path (VCL) and that lateral head displacement
(AHL) was indistinguishable. However, we observed a difference in
progressive motility (LIN, an assessment of linearity of cell motion;
Enkur+/+—673 sperm, five animals; Enkurtm/tm—357 sperm, four
animals; Figure 3C).

The motility trajectories and kinematic parameters of Enkurtm/tm

are suggestive of sperm hyperactivation. In wild-type sperm pro-
gressive motility is observed soon after release from the male repro-
ductive tract and is characterized by a low amplitude, symmetric
flagellar waveform and a relatively linear swimming path in aque-
ous media. Hyperactivation is a second mode of flagellar waveform
in which higher amplitude and asymmetric bends produce a less
progressive type of cell movement. This second flagellar mode is
associated with capacitation, a functional reprogramming of sperm
that occurs within the female reproductive tract or in an appropri-
ate environment in vitro and that is essential for sperm transport
through the female reproductive tract and for fertilization [38–41].
One set of kinematic parameters associated with mouse sperm hy-
peractivatation include LIN ≤ 38, VCL ≥ 180, and AHL ≥ 9.5
[42]. That set of thresholds, taken alone, suggest that 18 ± 11% of
Enkur+/+ sperm had kinematic properties consistent with hyperacti-
vation immediately after release from the male; the population as a
whole only develop that second motility pattern with prolonged in-
cubation under capacitating conditions. In contrast, those threshold
kinematic parameters suggest that 59 ± 10% of Enkurtm/tm sperm
exhibit swimming properties of hyperactivation swimming at this
early time point (P < 0.001). In order to explore the potential rela-
tionship between Enkur function and hyperactivation, we examined
flagellar bending patterns directly.

Enkur is critical for normal flagellar motility
Attachment of sperm heads to a glass surface permitted the unen-
cumbered flagellum to be followed through several beat cycles. We
additionally determined the wave amplitude and orientation of the
primary flagellar bend. Bend orientation is characterized as pro-hook
when in the same direction as the concave face of the sperm head
and anti-hook bend when away from the concave face [43].

Wild-type sperm produced a flagellar wave in which the pri-
mary bend had a low amplitude (12 ± 6.5 μm from the midline)
that alternated between pro-hook and anti-hook orientations. This
waveform was initiated at the head-flagellum junction and propa-
gated to the distal flagellar tip (Figure 4Aa1-j1, +/+ uncap rows;
Figure 4B, +/+uncap panel; Figure 4C, +/+0 min; Supplementary
Movie SM1, right panel). Since curvature of swimming paths in-
creases with flagellar waveform asymmetry [44, 45] these symmet-
rical waveforms of Enkur+/+ sperm immobilized by the head soon
after release from the epididymis are consistent with the linear tra-
jectories and kinematic parameters of freely swimming populations

Figure 4. Effects of Enkur genotype on flagellar bending. Flagellar motility
of uncapacitated cauda epididymal sperm from Enkur+/+ (+/+, uncap) and
Enkurtm/tm (tm/tm, uncap) mice were examined and compared with Enkur+/+

following incubation under capacitating conditions in vitro (+/+, cap). (A) A
representative montage of flagellar bends (+/+uncap, a1-j1; tm/tm uncap,
a2-j2; +/+ cap, a3-j3) with about 33 ms elapsed between frames. (B) Traces
obtained from montage shown in Panel A. Large circles mark the point where
the flagellum contacts the base of the head. (C) Primary bend amplitudes of
cauda epididymal sperm from Enkur+/+ (+/+) and Enkurtm/tm (tm/tm) mice at
the beginning of incubation under capacitating conditions and after 90-min
incubation. Data represent means ± SD (horizontal line above bars represents
statistical differences by two tailed t-test).

(Figure 3B and C). In contrast, Enkurtm/tm sperm displayed a wave-
form in which the primary bend had a larger amplitude than wild-
type sperm (23 + 8.7 μm; Figure 4C, Enkurtm/tm 0 min; P < 0.001
compared to Enkur+/+) and was markedly asymmetric, consisting
exclusively of repetitive pro-hook bends that initiated at the head-
flagellum junction (Figure 4Aa2-j2, tm/tm uncap rows; Figure 4B,
tm/tm uncap panel; Supplementary Movie SM1, left panel). This
asymmetric waveform is consistent with the tumbling, circular swim-
ming paths observed earlier (Figure 3Bb).

Deep, asymmetric flagellar bends in aqueous media are generally
a characteristic of sperm hyperactivation [38–40]. Mouse sperm re-
quire about 1 h to transition to a capacitated state in vitro and in vivo
[46, 47]. We therefore examined the time-dependent development of
asymmetric flagellar bending. Figure 4C shows that wild-type sperm
display shallow primary bends immediately after release from caudae
epididymides and develop a deeper primary bend during a 90-min
incubation under capacitating conditions. In contrast, Enkurtm/tm

sperm emerge from the epididymis exhibiting the deep primary bend
and this does not change during a capacitating incubation.

However, two observations suggest that the altered bending pat-
terns in Enkurtm/tm sperm are not due to a premature hyperacti-
vation. First, a side-by-side comparison shows that flagellar bends
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of Enkurtm/tm sperm are not similar to those of wild-type sperm
that had been capacitated in vitro and that were in a hyperacti-
vated mode. Wild-type sperm have a flexible midpiece and are able
to propogate bends to the distal flagellum (Figure 4Aa3-j3, +/+
cap rows; Figure 4B, +/+ cap panel), whereas in mutant sperm the
midpiece is markedly stiffer and waves show limited propagation
(Figure 4Aa2-j2, tm/tm uncap row; Figure 4B, tm/tm uncap panel).
Midpiece stiffness may be a general feature of sperm flagella with a
defect in Ca2+ signaling as it is seen here with the mutation of Enkur,
a Ca2+/calmodulin binding protein [1], as well as in sperm genetic
models that lack functional CatSper ion channels due to mutation of
Catsperz [48], or that lack functional calcineurin following mutation
of genes for either catalytic (Ppp3cc−/−) or regulatory (Ppp3r2−/−)
subunits [49]. Second, hyperactivation is associated with sperm ca-
pacitation [50]. To address the possibility that disruption of the
Enkur locus resulted in accelerated capacitation we examined the
time-dependent enhancement of the phosphotyrosine content of a
cluster of sperm proteins during incubation under capacitating con-
ditions [51]. The presence of functional Enkur protein had no effect
on the development of a phosphoprotein fingerprint during this time
period (Supplementary Figure S4). These data suggest that the motil-
ity pattern of Enkurtm/tm sperm immediately upon release from the
epididymis was not due to premature capacitation or a premature
hyperaction, but rather a specific effect on flagellar bending.

Role of calcium in Enkur phenotype
Disruption of the Enkur locus produces sperm with flagellar bend-
ing that is markedly asymmetric. Bending asymmetry is regulated
by intracellular Ca2+ levels [45, 52–55]. The regulatory mechanisms
are associated with the flagellum and can be probed following de-
membranation of sperm with nonionic detergents and reactivation
by addition of Mg-ATP [56, 57].

As shown in Figure 5, when mouse sperm plasma membranes are
extracted with Triton X-100 and Mg-ATP is added flagella adopt an
extended form. The presence of 1 mM Ca2+ drives the flagella of
>90% of Enkur+/+ sperm into a highly curved, anti-hook coil (that
is, curving opposite the concave face of the sperm head), as described
previously by Lindemann and colleagues [30]. In contrast, <15%
of Enkurtm/tm sperm exhibited a Ca2+-dependent coiled structure
(Figure 5).

Discussion

Here, we report that Enkur is required for efficient male fertility.
Sperm from animals that are homozygous for a mutated Enkur al-
lele show an abnormal motility, emerging from the cauda epididymis
with a nonprogressive motility and a highly asymmetric flagellar
bending pattern that does not propagate to the distal flagellum effi-
ciently. This pattern is unaltered during prolonged incubation in a
capacitating medium. Progressive motility is required for sperm en-
try into the oviduct [58–60] and so the nonprogressive movement of
Enkurtm/tm sperm is likely to be the proximate cause of the observed
poor transport through the female reproductive tract and of male
subfertility.

Sperm from wild-type animals exhibit a very different pattern.
Flagella are inert while sperm are stored within caudae epididymides
and are first activated in the ejaculate and within proximal regions
of the female reproductive tract to produce a relatively symmetrical
beat pattern and linear progressive motility. A second flagellar bend-
ing pattern, or hyperactivation, appears only after capacitation and

Figure 5. The response of Triton X-100 extracted sperm to Ca2+. (A) Repre-
sentative fields of Enkur+/+ (left panel) and Enkurtm/tm sperm (right panel)
following addition of 1 mM CaCl2. Flagella of Enkur+/+ sperm adopt a highly
coiled anti-hook form while those of Enkurtm/tm exhibit little or no curvature.
(B) Curvature is expressed as the straight line distance between the head-
flagellum junction and a point on the flagellum 20 μm from the head junction.
Flagella of both genotypes were relatively straight in the absence of added
Ca2+ medium. Following addition of 1 mM Ca2+ flagella of Enkur+/+ sperm
become coiled, but there is no observed effect on the flagella of Enkurtm/tm

sperm. Data represents mean ± SD of five animals for each genotype (>20
sperm were assessed for each animal; horizontal line above bars represents
statistical differences by two tailed t-test).

is observed only in the oviduct [60]. It is characterized by deep bends
and an asymmetric waveform. Development of the hyperactivated
mode of bending must be precisely regulated if sperm are to navigate
the female reproductive tract, contact eggs and fertilize. Moreover,
some forms of mammalian sperm guidance require transitions be-
tween symmetric and asymmetric waveforms after capacitation [61,
62].

Transitions between symmetric and asymmetric modes in cilia
and in flagella are regulated by intracellular Ca2+ (Ca2+

i) activity, as
well as by other signaling pathways [55, 63, 64]. In the specific case
of mammalian sperm evidence supporting an essential role of flag-
ellar Ca2+

i is based on transient treatment with Ca2+ transporting
ionophores [65, 66] as well as on the manipulation of cytoplasmic
Ca2+ clearance pathways [67] and influx channels [68, 69]. At least
some of the machinery that control Ca2+-dependent responses is as-
sociated directly with the mammalian sperm axoneme and associated
structures, as shown by studies with demembranated sperm models
[57, 70].

Flagellar Ca2+ regulation has been studied extensively in Chlamy-
domonas reinhardtii, Ciona intestinalis, and in a number of sea
urchins taxa. In those models several Ca2+-binding proteins have
been localized to specific regions of the axoneme and proposed as
candidate sensors for the control of flagellar function [55, 71–77].
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In contrast, relatively little is known about protein mediators of Ca2+

response elements of mammalian sperm flagella. Candidates include
CABYR, a Ca2+ binding protein associated with the fibrous sheath
that exhibits increased phosphotyrosine content at the time that hy-
peractivated motility develops [78]; and calmodulin-dependent pro-
tein phosphatase and kinase activities that are associated with the
flagellum and linked to Ca2+ regulation [79, 80].

We show here that Enkur has some of the anticipated properties
of a Ca2+ sensor that participates in the regulation of mammalian
flagellar bending. Firstly, it is tightly associated with the flagellum.
Initial studies, using an antibody directed against a synthetic pep-
tide, indicated that this protein was both in the principal piece of
the flagellum and in the acrosomal region of the head in mouse
sperm [1]. Here, employing a different antibody (raised against a re-
combinant, full-length protein), direct proteomic identification and
a genetic model that lacks transcript and protein, we confirm the
presence of Enkur only in the flagellum. Secondly, disruption of the
Enkur locus results in a loss of symmetrical bending such that almost
all sperm exhibit asymmetrical bending and nonprogressive swim-
ming after release from the cauda epidydidmis (Figure 4). Bending
asymmetry in cilia and flagella is controlled in some way by local
Ca2+ activities [45, 53, 55] and so the phenotypic effects of Enkur
mutation support its proposed role as a Ca2+ sensor. Thirdly, Enkur
is a Ca2+/calmodulin binding protein [1] and flagella lacking this
protein exhibit a loss of Ca2+ responsiveness (Figure 5). Calmodulin
has been implicated in the Ca2+ response of mammalian flagella [81,
82] but the specific targets have not been identified. Taken together,
these observations suggest that Enkur can function as a Ca2+ sensor
in the mouse sperm flagellum. Speculatively, the particular function
may involve suppression of asymmetric waves, possibly by dysregu-
lation of dynein switching [83, 84]. Future studies will address such
a mechanism as well as the role of this protein in ciliary function.

The behavior of sperm that lack Enkur immediately following
recovery from the male is similar in some regard to the flagellar
bending and swimming trajectories of capacitated sperm. Enkurtm/tm

sperm exhibit repetitive pro-hook bends in vitro immediately after
release from the cauda epidydidmis at a time when wild-type sperm
show symmetric bends (Figure 4). This bias is identical to that dis-
played by (wild type) mouse sperm after capacitation in vitro [40,
85]. However, it is now understood that the pro- vs. anti-hook ori-
entation exhibited by sperm following capacitation in the oviduct
may differ from that during capacitation in vitro [86]. Moreover,
Enkurtm/tm sperm lack other indicators of capacitation such as the
enhanced protein tyrosine phosphorylation. Finally, a detailed com-
parison of bending in these mutant sperm with that in wild-type,
hyperactivated sperm show that disruption of the Enkur locus does
not produce premature hyperactivation. We reject the simple hy-
pothesis that mutation of Enkur is sufficient to promote hyperacti-
vation. Instead, it is likely that this protein acts in the sculpting of
flagellar bend. Whether this sculpting contributes, with other fac-
tors, to the development of hyperactivation is the subject of ongoing
investigation.

Our studies demonstrate an essential role of Enkur in the function
of mouse sperm flagella. Enkurtm/tm mice appear generally to be
healthy other than the subfertility of males. The protein is also a
component of cilia [10–13], but its role there is not yet understood.
It is possible that redundant mechanisms preserve the regulation
of ciliary bending following disruption of the Enkur locus or, that
ciliary functions tolerate loss of asymmetric bending. Alternatively,
Enkur may provide one more example of a case in which mutations
of flagellar/ciliary genes preferentially affect the function of only one

of these organelles [87, 88]. Future studies will examine the role of
Enkur in cilia directly.

In conclusion, we report that Enkur is required for efficient male
fertility in the mouse. More specifically, sperm lacking this protein
are compromised in their ability to enter the oviduct, to progress to
the site of fertilization, or to fertilize oocytes in vitro. It is essential
for the control of flagellar bending patterns in sperm and may play
a role in the Ca2+-dependent production of asymmetric bending.

Supplementary data

Supplementary data are available at BIOLRE online.

Supplementary Figure S1. Generation of Enkur-knockout mice. (A)
A schematic diagram of the normal Enkur allele and the targeted al-
lele. The targeting vector was constructed that replaced part of exon
2 with a neomycin-resistant gene. (B) Confirmation of homologous
recombination using Southern blotting (Enkur+/+, +/+; Enkur+/tm,
+/tm; Enkurtm/tm, tm/tm).
Supplementary Figure S2. General characteristics of Enkur+/+ and
Enkurtm/tm male mice. No significant differences were observed be-
tween genotypes with regard to (A) body weight, (B) testis weight,
or (C) sperm released from the caudae epididymides. Data represent
the mean + SD (n = 26 Enkur+/+, 21 Enkur-/- males).
Supplementary Figure S3. Flagella parameters of Enkur+/+ and
Enkurtm/tm sperm. (A) Flagellar lengths did not differ significantly
between these genotypes. Data represent the mean + SD of obser-
vations on flagella from five different males of each genotype (total
flagella measured: Enkur+/+, n = 34; Enkurtm/tm, n = 41). (B) Repre-
sentative transmission electron micrographs showing cross sections
through the sperm principal pieces of Enkur+/+ and Enkurtm/tm mice.
No gross morphological differences were apparent.
Supplementary Figure S4. Sperm tyrosine phosphorylation during in-
cubation in vitro under capacitating conditions. Cauda epididymal
sperm from Enkur+/+ (+/+) and Enkurtm/tm (tm/tm) were incubated
under capacitating conditions for up to 120 min and extracts were
probed with an anti-phosphotyrosine antibody. No differences were
observed between genotypes were observed. The figure is represen-
tative of four independent experiments.
Supplementary Movie SM1. Propagation of flagellar bends in sperm
from Enkur+/+ and Enkur-/- mice. Sperm heads were immobi-
lized on glass slides in order to capture flagellar bending. Left
panel: Enkurtm/tm sperm; right panel: Enkur+/+ sperm. Images were
recorded at 200 frames/s and displayed at 30 frames/s. See Figure 4
(main text) for an analysis of bending pattern.
Supplementary Table SI. Antibody resources.
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