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Abstract

Metal-catalyzed reductive coupling has emerged as an alternative to the use of stoichiometric 

organometallic reagents in an increasingly diverse range of carbonyl and imine additions. In this 

monograph, the use of diene, allene and enyne pronucleophiles in intermolecular carbonyl and 

imine reductive couplings are surveyed along with related hydrogen auto-transfer processes.

Graphical Abstract

1. Introduction and Historical Perspective on Carbonyl Addition

Following Frankland’s preparation of diethylzinc in 18491–3 were the first reports of the 

addition of premetalated C-nucleophiles to carbonyl compounds. For example, in 1858, 

Frankland’s protégé James Wanklyn described the addition of ethylsodium to carbon dioxide 

to form propionic acid assisted by sodium triethylzincate, NaZn(C2H5)3.4,5 Literature from 

this time period include references to the reaction of transient organometallics with carbonyl 

compounds, however, it was not until the systematic studies of Butlerov6,7 (and his “Kazan 

school” progeny)8,9 and Grignard10,11 that the addition of premetalated C-nucleophiles to 

carbonyl compounds took root as a major method for chemical synthesis. Subsequent 

milestones in organometallic and carbonyl addition chemistry include the generation of 

organolithium reagents12,13 and, therefrom, cuprates,14 the advent of palladium-mediated C-

C coupling.15,16 Finally, in 1986 Noyori reported the first highly enantioselective catalytic 

method for carbonyl addition17 – a progenitor to the numerous methods now available for 
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the catalytic enantioselective addition of non-stabilized carbanions and their equivalents to 

carbonyl compounds and imines (Figure 1).18–24

While carbonyl addition mediated by premetalated reagents continues to play an important 

role in chemical synthesis,25 the requisite organometallic reagents are hazardous, frequently 

require cryogenic conditions and generate stoichiometric quantities of metallic byproducts, 

which complicates large-volume applications. Metal-catalyzed reductive couplings of π-

unsaturated reagents with carbonyl compounds provides a more ideal alternative to the use 

of stoichiometric organometallic reagents. Fischer-Tropsch type reactions (1922)26,27 and 

alkene hydroformylation (1938)28 may be considered the prototypical metal-catalyzed 

reductive C-C couplings. However, even with the advent of heterogeneous25 and 

homogenous hydrogenation,30 catalytic reductive couplings beyond carbon monoxide did 

not appear until much later and hydrogen-mediated reductive couplings were not 

systematically studied until the work of Krische.31–33 The discovery that nickel salts 

catalyze chromium(II)mediated couplings of organic halides to carbonyl compounds (the 

Nozaki-Hiyama-Kishi reaction)34–37 advanced the concept of metal-catalyzed reductive 

carbonyl addition, as well as the quest for more benign, less mass-intensive terminal 

reductants. Metal-catalyzed reductive coupling gradually emerged as a discrete field of 

inquiry.31–33,37–48

The arc of science traced from these early advances in organometallic chemistry to the 

current state-of-the-art in carbonyl addition chemistry defines a progression from (a) 

classical reactions of premetalated C-nucleophiles (with or without a metal catalyst)18–23 to 

(b) metal-catalyzed reductive couplings of π-unsaturated reactants (with metallic or non-

metallic terminal reductants)38–48 and, finally, (c) carbonyl additions that proceed through 

alcohol-mediated hydrogen auto-transfer (Figure 1).24,43–48 The selective pressure of 

efficiency has guided this evolution: many reactions that traditionally exploit premetalated 

reagents can now be conducted catalytically in the absence of stoichiometric metals or 

byproducts with high levels of stereocontrol. Additionally, many transformations that have 

no counterpart in classical carbonyl or imine addition chemistry have been discovered.

In this review, intermolecular metal-catalyzed reductive couplings of 1,3-dienes, allenes or 

1,3-enynes with carbonyl compounds and imines are surveyed. Discussion is restricted to 

processes that result in both C-H and C-C bond formation, ideally in (formal) additions of 

H2 across the π-unsaturated pronucleophile and C=X (X = O, NR) π-bond. Related 

reductive cyclizations,39 multi-component reductive couplings (alkylative/arylative,49–51 

borylative52–58 or, more generally, bismetalative59–61) and reductive couplings to carbon 

dioxide62–67 are not covered and the reader is referred to the review literature and selected 

examples. Processes wherein the π-unsaturated pronucleophile is stoichiometrically reduced 

to a discrete nucleophilic species (for example, through hydrometalation) to which the 

carbonyl or imine partner is subsequently exposed, are not covered.68–70
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2. Diene-C=X (X = O, NR) Reductive Coupling

2.1. Nickel

Following Mori and Sato’s seminal report in 1994 on the nickel-catalyzed reductive 

cyclization of dienyl aldehydes mediated by silane,71 related intermolecular diene-aldehyde 

reductive couplings were developed by Tamaru and Kimura in 1998 using triethylborane as 

terminal reductant.72 As illustrated in homoallylations of benzaldehyde, feedstock dienes 

such as isoprene and myrcene engage in C-C coupling with exceptional levels of regio- and 

1,3-anti-diastereoselectivity at ambient temperature. The same year, an intermolecular 

silane-mediated variant of this process was reported by Mori and Sato using terminal dienes.
73 While uniformly high levels of regioselectivity were accompanied by complete olefin 

(E:Z)-stereocontrol in additions to aryl aldehydes, related couplings of aliphatic aldehydes 

displayed incomplete levels of alkene stereoselectivity. Mori and Sato later showed that in 

reductive couplings of aldehydes with trialkylsilyl substituted dienes, Ph3P-modified nickel 

catalysts enable (E)selective allylation (not shown) whereas NHC-modified nickel catalysts 

enable (Z)-selective allylation.74 Further studies by Tamaru and Kimura revealed that diene-

aldehyde reductive couplings mediated by diethylzinc are particularly effective for couplings 

of aliphatic aldehydes and ketones, although erosion of regioselectivity is observed in the 

latter case.75 Using the Ni(acac)2/Et3B catalyst system, lactols and aqueous glutardialdehyde 

undergo highly diastereoselective homoallylation illustrating compatibility with hydroxyl 

functional groups (Scheme 1).76 Diisobutylaluminum acetylacetonate is also a viable 

reductant in couplings of dienes bearing terminal aryl substituents, however, mixtures of 

linear and branched regioisomers are observed (not shown).77 Using the Ni(acac)2/Et3B 

catalyst system, cyclohexadiene-aldehyde reductive coupling is possible but roughly 

equimolar diastereomeric mixtures are observed (not shown).78

A general mechanism for Ni(acac)2/Et3B-catalyzed diene-aldehyde reductive coupling that 

accounts for the observed regio- and 1,3-anti-diastereoselectivity has been proposed 

(Scheme 2).79 Coordination of diene and aldehyde by nickel generates a nucleophilic π-

complex, which upon triethylborane assisted oxidative coupling delivers the indicated π-

allyl-oxanickelacycle. Computational studies on related nickel(0)-catalyzed alkyne-aldehyde 

reductive couplings mediated by triethylborane suggest the LUMOlowering effect evident 

upon the binding of triethylborane to the aldehyde accelerates oxidative coupling.80 As 

illustrated in elegant work by Ogoshi,81 reversible diene-aldehyde oxidative coupling is 

observed in stoichiometric reactions with nickel(0) to provide isolable π-

allylalkoxynickel(II) complexes that have been characterized by single crystal X-ray 

diffraction analysis. Ethyl transfer to the nickel(II) center followed by β-hydride elimination 

provides a π-allylnickel hydride, which upon reductive elimination delivers the product of 

reductive coupling and returns nickel(II) to its zero-valent form.

The development of general methods for enantioselective nickel(0)-catalyzed diene-

aldehyde reductive coupling remains a largely unresolved challenge. In 2007, Zhou reported 

the anti-diastereo- and enantioselective reductive coupling of 1,4-diphenylbutadiene with 

aromatic aldehydes mediated by diethylzinc using a nickel catalyst modified by a 

monodentate spiro-phosphoramidite, ligand-II.82 The same year, Sato reported a silane-
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mediated diene-aldehyde reductive coupling using the C2-symmetric ligand-III.83 While this 

process delivers (Z)-homoallylic silyl ethers with excellent control of olefin geometry and 

diastereoselectivity, high levels of enantioselectivity were again only evident in reactions of 

1,4-diphenylbutadiene (Scheme 3).

The requirement of reductants that are pyrophoric (Et2Zn and Et3B) or those that are costly 

and mass-intensive (R3SiH) represents a major limitation associated with the methods 

described above. In a significant departure from prior art, Krische and Breit reported the 

reductive coupling of 2-substituted dienes wherein formaldehyde serves as both electrophile 

and reductant (Scheme 4).84 In these processes, the transient π-allylalkoxynickel(II) 

complex inserts formaldehyde and undergoes β-hydride elimination to deliver coupling 

products as the formate esters, which are cleaved in the course of isolation. Depending on 

the diene 2-substituent, a preference for C-C bond formation at either the C1 or C4 position 

is observed. For dienes incorporating alkyl or aryl groups at the 2-substituent, 

dieneformaldehyde oxidative coupling at C1 is kinetically preferred. For corresponding 

silicon- and tinsubstituted dienes, hyperconjugation between the C–Si or C–Sn σ-bond and 

the σ* orbital of the newly formed C-C bond renders oxidative coupling at C1 reversible, 

enabling oxidative coupling at C4 which is thermodynamically preferred. Reversibility in 

diene-carbonyl oxidative coupling and the kinetic vs thermodynamic preference for C1 vs 

C4 oxidative coupling, respectively, has been demonstrated in mechanistic studies by 

Ogoshi.81

In 2004, Tamaru and Kimura reported the first nickel(0)-catalyzed reductive coupling of 

dienes and imines.85 This process conveniently generates the imine in situ from the aldehyde 

and p-anisidine with subsequent introduction of the nickel acetylacetonate, diene and 

diethylzinc. Coupling occurs predominantly at the diene C1 position to provide the products 

with good to complete levels of 1,3-syndiastereoselectivity. Using triethylborane as terminal 

reductant, the authors later extended this process to encompass imines derived from lactols.
86 As reported by Singh in 2015, exposure of p-anisidine to aryl aldehydes bearing ortho-

carboxy substituents enables tandem nickel(0)-catalyzed diene-imine reductive coupling-

lactam formation to form isoindolinones and isoquinolinones (Scheme 5).87 For related 

3component couplings of dienes, imines and organozinc reagents, the reader is referred to 

the review literature.50

2.2. Ruthenium

The first ruthenium(II)-catalyzed diene-carbonyl reductive coupling was reported in 2008 by 

Krische (Scheme 6).88 Using 2-propanol or formic acid as reductants, butadiene, isoprene or 

2,3dimethylbutadiene react with aldehydes to form branched products of C-C coupling as 

single regioisomers. Unlike the nickel(0)-based catalysts systems, which operate through 

pathways involving diene-carbonyl oxidative coupling, the present ruthenium(II)-catalyzed 

processes involve diene hydrometalation to provide nucleophilic allylruthenium(II) 

intermediates. Related stoichiometric reactions of HClRu(CO)(PPh3)3 with 1,3-dienes to 

form well defined π-allylruthenium complexes have been documented.89 Carbonyl addition 

occurs by way of the primary σ-allyl haptomer through the indicated closed six-centered 

transition state. Under these conditions, primary alcohols transfer hydrogen to dienes to 
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form aldehyde-allylruthenium pairs that combine to form homoallylic alcohols. The reaction 

of isoprene with d2-benzyl alcohol results in deuterium transfer to the allylic methyl (32% 
2H) and allylic methine (14% 2H), corroborating reversible hydrometalation of the less 

substituted olefin with incomplete regiocontrol. The reaction products resist further 

dehydrogenation by coordination of the homoallylic olefin to the ruthenium center.90

Relative and absolute stereocontrol is enforced using chiral ruthenium(II) complexes 

modified by (R)-DM-SEGPHOS in combination with 2-trialkylsilyl-butadienes (Scheme 7).
91 Hydrometalation of 2trialkylsilyl-substituted dienes delivers crotylmetal species that exist 

predominantly as single geometrical isomers due to allylic strain.92,93 Stereospecific 

carbonyl addition provides the branched products of reductive coupling with high levels of 

syn-diastereo- and enantioselectivity. Carbonyl addition can be conducted from the aldehyde 

oxidation level using 2-propanol as terminal reductant or from the alcohol oxidation level 

via hydrogen auto-transfer. A significant extension in scope was made in 2017 by Brimble, 

who reports the crotylation of chiral alcohols to form polyketide stereotriads, which avoids 

the use of configurationally labile chiral α-stereogenic aldehydes.94

The ability to exploit butadiene itself, an abundant petrochemical feedstock, in regio- and 

stereocontrolled diene-carbonyl reductive coupling would represent a powerful alternative to 

stoichiometric reactions of chiral crotylmetal reagents.95 Using a ruthenium catalyst 

modified by a chiral phosphate counterion derived from H8-BINOL, direct anti-diastereo- 

and enantioselective hydrohydroxyalkylations of butadiene can be achieved from the alcohol 

or aldehyde oxidation level (Scheme 8).96 In the latter case, 1,4-butanediol is used as 

terminal reductant.97 Notably, the chiral counterion is the sole chiral inducing element. 

Corresponding syn-diastereo- and enantioselective butadiene-mediated carbonyl crotylations 

take advantage of match-mismatch effects between the indicated TADDOL-derived 

phosphate counterion and the chiral ligand, (S)-SEGPHOS.98 In both processes, butadiene 

hydroruthenation from the s-cis conformer delivers the (Z)-σ-crotylruthenium haptomer. For 

the more Lewis basic TADDOL-phosphate counterion, formation of a contact ion-pair with 

the ruthenium(II) center preserves kinetic (Z)-selectivity and stereospecific carbonyl 

addition provides the product of syn-crotylation. For the less Lewis basic BINOL-phosphate 

counterion, open coordination sites on ruthenium enable isomerization of the initially 

formed (Z)-σ-crotylruthenium haptomer to the thermodynamically preferred (E)-σ-

crotylruthenium haptomer, which, in turn, provides the product of anti-crotylation. 

Computational studies suggest the transition state for aldehyde addition from the (Z)-

σcrotylruthenium haptomer is facilitated by formation of a formyl hydrogen bond between 

the aldehyde C-H and phosphate oxo-moiety.99

For 2-substituted dienes, the divergent behavior of neutral vs cationic ruthenium(II) catalysts 

manifests as regioisomeric carbonyl addition pathways. 2-Propanol-mediated reductive 

couplings of 2substituted dienes with paraformaldehyde illustrate this effect (Scheme 9).
84,100–102 Whereas neutral ruthenium catalysts promote coupling at C3,83 ruthenium 

catalysts with greater cationic character promote coupling at C2.101 However, upon use of 

higher carbonyl partners, such as acetaldehyde (from ethanol), an erosion in C2-

regioselectivity is observed.102 As corroborated by deuterium labelling studies (not shown), 

the collective data suggest the following mechanistic interpretation. Diene hydroruthenation 
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at the less substituted olefin to form π-allyl A is kinetically preferred. For neutral ruthenium 

catalysts, this kinetic preference is preserved and C3 adducts are formed. In contrast, vacant 

coordination sites of cationic ruthenium complexes enable reversible diene 

hydroruthenation, allowing equilibration between π-allyl A and π-allyl B.103 A Curtin-

Hammett scenario becomes operative. For small aldehydes (R1 = H), the transition state en 
route to C2-adducts is lower in energy. For larger aldehydes (R1 = Me), formation of a more 

congested quaternary carbon stereocenter elevates the energetic barrier to carbonyl addition, 

eroding C2-regioselectivity.

Ruthenium(0) complexes derived from Ru3(CO)12 and tricyclohexylphosphine catalyze the 

reductive coupling of dienes with α-ketoesters from the α-hydroxy ester oxidation level via 
hydrogen auto-transfer (Scheme 10).104 Butadiene, isoprene and myrcene deliver products 

of carbinol C-H (Z)-butenylation, prenylation and geranylation, respectively, as single 

regioisomers. A discrete mononuclear ruthenium(0) catalyst105 initiates the catalytic cycle 

by diene-carbonyl oxidative coupling.106,107 Transfer hydrogenolytic cleavage of the 

resulting oxaruthenacycle occurs through protonation at oxygen mediated by the α-hydroxy 

ester reactant followed by β-hydride elimination and C-H reductive elimination. This 

interpretation of the mechanism was corroborated by deuterium labelling studies. Upon use 

of deuterated rac-ethyl mandelate, the n-prenylated adduct incorporating deuterium 

exclusively at the cis-methyl group (2H 50%) was obtained. Under nearly identical 

conditions, related diene reductive couplings to isatins were achieved from the 3-hydroxy-2-

oxindole oxidation level via hydrogen auto-transfer.108

Heteroaromatic ketones with vicinal dicarbonyl character undergo ruthenium(0)-catalyzed 

diene-carbonyl reductive coupling mediated by 2-propanol (Scheme 11).109 Alternatively, 

diene-carbonyl reductive coupling can be conducted from the secondary alcohol oxidation 

level via hydrogen autotransfer. The putative oxaruthenacycle intermediate was isolated and 

characterized by single crystal Xray diffraction. Remarkably, experiments involving diene 

exchange demonstrate reversible metallacycle formation.

As illustrated in formic acid-mediated reductive diene-dione [4+2] cycloadditions, 

πallylruthenium intermediates obtained upon diene-carbonyl oxidative coupling can be 

captured through intramolecular addition to the carbonyl moiety of a vicinal dione precursor 

(Scheme 12).110–113 Cycloaddition is possible from dione, ketol (not shown) or diol 

oxidation levels. Given the greater tractability and abundance of 1,2-diols, a focus was 

placed on diene-dione [4+2] cycloadditions via hydrogen auto-transfer. Acyclic dienes react 

with cyclic or acyclic diols to form [4+2] cycloadducts bearing bridgehead diols with 

complete syn-diastereoselectivity. Similarly, in reactions of cyclohexadiene, cyclic or acyclic 

diols provide syn-configured cycloadducts with complete levels of exoselectivity.112

Using ruthenium(II) catalysts, 2-propanol-mediated reductive coupling of butadiene with the 

trimeric imine, dihydropyrrole, provides the branched product of addition in a completely 

regio- and anti-diastereoselective manner (Scheme 13).114 In related reactions of 4-

aminobutanol, hydrogen transfer from the primary alcohol triggers cyclocondensation to 

form the imine, dihydropyrrole. The resulting allylruthenium-imine pair undergoes 

stereospecific addition through a closed transition structure to deliver the branched adducts 
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with good to complete levels of anti-diastereoselectivity. Pyrrole itself can serve dually as 

reductant and imine proelectrophile to deliver identical products of addition. Other imines 

participate in ruthenium(II)-catalyzed diene reductive coupling mediated by 2propanol. For 

example, 1,3,5-tris(4-methoxyphenyl)-hexahydro-1,3,5-triazine, which undergoes thermal 

cycloreversion to generate formaldimines in situ, provides products of 

hydroaminomethylation as single regioisomers.115 Additionally, iminoacetates engage in 

regioselective 2-propanol-mediated reductive coupling with dienes, albeit with modest levels 

of anti-diastereoselectivity.116

A single report of ruthenium(0)-catalyzed diene-imine reductive coupling via hydrogen 

autotransfer appears in the literature.117 Using a ruthenium(0) catalyst derived from 

Ru3(CO)12 and triphos [PhP(CH2CH2PPh2)2], isoprene reacts with aryl substituted 

hydantoins to give products of n-prenylation as single regioisomers (Scheme 14). In this 

process, hydantoin dehydrogenation is followed by dieneimine oxidative coupling to furnish 

a transient aza-ruthenacycle. Transfer hydrogenolysis of the azaruthenacycle mediated by 

the hydantoin releases the product and regenerates the requisite imine to close the catalytic 

cycle.

2.3. Rhodium

Only two reports on rhodium catalyzed diene-carbonyl reductive coupling appear in the 

literature. In 2003, Krische described a reductive coupling of cyclohexadiene with α-

ketoaldehydes mediated by hydrogen (Scheme 15).118 In 2009, Kimura described a 

triethylborane-mediated dienealdehyde reductive coupling, which displayed good levels of 

regio- and syn-diastereoselectivity.119

2.4. Iridium

Under the conditions of iridium catalyzed transfer hydrogenation, 2-propanol-mediated 

reductive coupling of 1,3-cyclohexadiene with aryl aldehydes provide products of carbonyl 

cyclohexenylation in good yield with complete levels of diastereocontrol (Scheme 16).120 

Under nearly identical conditions, but in the absence of 2-propanol, 1,3-cyclohexadiene 

reductively couples to primary benzylic alcohols via hydrogen auto-transfer to furnish 

identical products with comparable levels of selectivity. In each case, small quantities of the 

regioisomeric γ,δ-unsaturated alcohols could be detected.

Cyclometalated π-allyliridium C,O-benzoates catalyze butadiene-aldehyde reductive 

coupling mediated by 1,4-butanediol97 to furnish products of carbonyl crotylation.121 

Although enantioselective variants of this process were disclosed, diastereomeric mixtures 

were obtained (not shown). Under identical conditions, but in the absence of 1,4-butanediol, 

butadiene reductively couples to primary benzylic alcohols via hydrogen auto-transfer to 

furnish identical products with similar levels of selectivity.

Using an iridium catalyst modified by (R)-PhanePhos, 2-substituted dienes engage in 

reductive couplings to formaldehyde via methanol-mediated hydrogen auto-transfer 

(Scheme 18).122 Notably, this process enables enantioselective formation of acyclic 

quaternary carbon stereocenters in the absence of stoichiometric byproducts.123 Whereas the 

indicated reactions of formaldehyde display complete C2-regioselectivity, reactions of 
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higher aldehydes display complete C3-regioselectivity (not shown). The origins of 

regiodivergence were explored using deuterium labelling studies, which corroborate a 

CurtinHammett scenario wherein methanol dehydrogenation triggers rapid, reversible diene 

hydrometalation en route to regioisomeric allyliridium-carbonyl pairs. The energetic barrier 

to formaldehyde addition is lowest from the terminally disubstituted σ-allyliridium isomer. 

For higher aldehydes, the transition state energy for carbonyl addition at C2 increases due to 

greater steric congestion in formation of a quaternary carbon center. Hence, the 1,2-

disubstituted allyliridium isomers become kinetically more reactive.

2.5. Titanium

A single study of titanium catalyzed diene-carbonyl reductive coupling was disclosed in 

2005 by Moïse and Le Gendre (Scheme 19).124 Using substoichiometric quantities of 

titanocene dichloride in combination with poly(methylhydrosiloxane) (PMHS) as terminal 

reductant, diene-aldehyde reductive coupling occurred with complete regioselectivity and 

modest levels of anti-diastereoselectivity. Entry into the catalytic cycle occurs through the 

reaction of titanocene dichloride with n-BuLi in the presence of PMHS to form a titanium 

hydride. Diene hydrometalation generates a nucleophilic allyltitanium(IV) species, which 

engages in aldehyde addition. σ-Bond metathesis of the resulting titanium alkoxide with 

PMHS delivers the crotylation product and regenerates the titanium hydride to close the 

catalytic cycle.

2.6. Copper

While the use of diene pronucleophiles in copper-catalyzed carbonyl reductive coupling is 

unknown, Malcolmson and co-workers recently demonstrated the viability of structurally 

related 2-azadienes (Scheme 20).125 Specifically, using a chiral copper catalyzed modified 

by (S,S)-Ph-BPE and silane as terminal reductant, 2-azadienes reacts with aryl ketones to 

generate 1,2-amino alcohols in a highly regio- and enantioselectives fashion. Entry into the 

catalytic cycle involves the conversion of Cu(OAc)2 to a copper(I) hydride. Hydrocupration 

of 2-azadiene delivers a nucleophilic azaallylcopper(I) species that undergoes ketone 

addition to form a copper(I) alkoxide, which upon σ-bond metathesis with the silane 

regenerates the copper hydride to close the catalytic cycle. Further imine reduction and 

cleavage of the silyl ether gives the benzhydryl-protected anti-1,2-amino alcohol products. 

More recently, the same authors successfully developed related 2-azadiene-imine reductive 

couplings to form differentially protected vicinal diamines with excellent control of 

diastereo- and enantioselectivity.126

3. Allene-C=X (X = O, NR) Reductive Coupling

3.1. Nickel

Nickel(0) complexes modified by carbene ligand-IV were reported by Jamison to catalyze 

the silane-mediated reductive coupling of chiral nonracemic 1,3-disubstituted allenes with 

aldehydes (Scheme 21).127–129 The reaction mechanism is initiated by stereospecific allene-

aldehyde oxidative coupling to form an oxanickelacycle. σ-Bond metathesis with silane 

forms an 1,3-anti-π-allylnickel hydride, which upon regio- and stereoselective C-H 

reductive elimination delivers the product of carbonyl reductive coupling with excellent 
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levels of axial-to-central chirality transfer and alkene (Z)stereoselectivity. In each case, small 

quantities of the isomeric homoallylic alcohols were formed.

3.2. Ruthenium

Phosphine-modified ruthenium(II) complexes bearing carbonyl ligands catalyze the 2-

propanol-mediated reductive coupling of allenes to paraformaldehyde and higher aldehydes 

(Scheme 22).130 The mechanism involves allene hydrometalation to form a nucleophilic 

allylruthenium species that undergoes aldehyde addition through a closed 6-centered 

transition structure. In reactions of monosubstituted allenes, an appropriately defined allene 

substituent can enforce intervention of geometrically defined allylruthenium intermediates. 

For example, in 2-propanol-mediated reductive coupling of allenamides, stereospecific 

carbonyl addition occurs by way of the (E)-σ-allylruthenium haptomer to form vicinal anti-
aminoalcohols as single diastereomers.131 Primary alcohols can serve dually as reductant 

and aldehyde pronucleophile in reductive couplings with allenamides under the conditions of 

hydrogen auto-transfer.132 Comparable levels of selectivity are observed from the aldehyde 

or alcohol oxidation level. In contrast, using 1,1-disubstituted allenes, high levels of 

antidiastereoselectivity are only evident in reactions conducted from the alcohol oxidation 

level.133 Furthermore, diastereoselectivities are highly concentration dependent and at lower 

concentrations higher diastereoselectivities are observed. A Curtin-Hammett scenario 

appears to be operative. As carbonyl addition is hindered sterically due to the formation of a 

quaternary carbon stereocenter, it is turn-over limiting. The transition state energy for 

carbonyl addition from the (E)-σ-allylruthenium haptomer, which leads to the anti-
diastereomer, is lower than that from the corresponding (Z)-isomer, which provides the syn-

diastereomer. At lower concentrations, equilibration of the transient (E)- and (Z)σ-

allylruthenium isomers is fast with respective to carbonyl addition, allowing the (E)-isomer 

to be replenished.

The formation of highly congested CF3-bearing quaternary carbon stereocenters is achieved 

upon ruthenium(II) catalyzed reductive coupling of CF3-allenes with paraformaldehyde 

mediated by 2propanol (Scheme 23).134 Formate esters, which are cleaved upon isolation, 

appear as minor reaction products, suggesting paraformaldehyde contributes to some extent 

as a terminal reductant. Under similar conditions, allene-aldehyde reductive coupling can be 

achieved using fluorinated alcohols as reductants and proelectrophiles.135 This capability is 

significant as the corresponding fluorinated aldehydes are highly intractable and, in many 

cases, are not commercially available. As dehydrogenation of fluorinated alcohols is 

significantly more endothermic than the corresponding aliphatic alcohols,136,137 reactions of 

monofluoro-, difluoro- and trifluoroethanol become increasingly inefficient.

The ability to exploit alkynes as latent allenes138 has expanded the scope of ruthenium 

catalyzed allene-aldehyde reductive coupling (Scheme 24).139–141 Using a cationic 

ruthenium catalyst generated upon the acid-base reaction of H2Ru(CO)(PPh3)3 and 2,4,6-(2-

Pr)3PhSO3H, two discrete catalytic processes are enacted: (a) alkyne-to-allene isomerization 

and (b) allene-carbonyl reductive coupling via hydrogen auto-transfer. The cationic 

ruthenium(II) exists in equilibrium with a zero-valent ruthenium that promotes allene-

aldehyde oxidative coupling. The resulting oxaruthenacycle ultimately provides the (Z)-
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homoallylic alcohol.139 The introduction of iodide and ligand-V (Josiphos SL-J009–1) 

enables suppression of oxidative coupling pathways. With these subtle changes, alkyne-to-

allene isomerization pathways persist, however, the allene undergoes hydrometalation to 

form a nucleophilic allylruthenium species. Carbonyl addition by way of a closed transition 

structure provides the branched homoallylic alcohols with exceptional levels of anti-
diastereo- and enantioselectivity.140 The ruthenium(II) complex derived from HClRu(CO)

(PPh3)3 and dippf, bis(diisopropylphosphino)ferrocene, catalyzes conversion of acetylenic 

pyrroles to allenes, which participate in allene-aldehyde reductive coupling via hydrogen 

auto-transfer.141 The products, protected vicinal aminoalcohols, are generated with complete 

regio- and anti-diastereoselectivity.

Only one study on ruthenium catalyzed allene-imine reductive coupling appears in the 

literature. Using a ruthenium(II) catalyzed modified by the chelating phosphine ligand 

1,2bis(dicyclohexylphosphino)ethane (dCype), 1,1-disubstituted allenes and formaldimines 

engage in 2propanol-mediated reductive coupling to form homoallylic amines with complete 

branched regioselectivity (Scheme 25).142 The formaldimines are generated in situ through 

cycloreversion of PMPprotected hexahydro-1,3,5-triazines. This process represents a method 

for the hydroaminomethylation of π-unsaturated reactants beyond classical 

hydroformylation/reductive amination.

3.3. Iridium

In 2007, Krische reported the first allene-aldehyde reductive coupling catalyzed by iridium 

(Scheme 26).143 Specifically, hydrogenation of dimethyl allene in the presence of activated 

aldehydes provided the products of carbonyl tert-prenylation with complete branched 

regioselectivity. Under an atmosphere of deuterium, deuterium is incorporated exclusively at 

the interior vinylic position (80% 2H). This result is consistent with a catalytic mechanism 

involving allene-aldehyde oxidative coupling, however, hydrometalative pathways involving 

allyliridium species cannot be excluded on the basis of this data alone. Shortly thereafter, 

related allene-aldehyde reductive couplings mediated by 2-propanol and hydrogen auto-

transfer were demonstrated.144 Using d8-isopropanol as reductant, the indicated product of 

tert-prenylation incorporates deuterium predominantly at the internal vinylic position (85% 
2H). A similar pattern of deuterium incorporation is observed in hydrogen auto-transfer 

reactions of d2benzyl alcohol, corroborating its dual role as reductant and carbonyl 

proelectrophile.

The cyclometalated π-allyliridium C,O-benzoate complex modified by (S)-SEGPHOS 

catalyzes the regio- and enantioselective reductive coupling of dimethylallene with 

aldehydes mediated by 2-propanol (Scheme 27).145,146 Aliphatic, α,β-unsaturated and 

aromatic aldehydes are converted to the products of carbonyl tert-prenylation with uniformly 

high levels of selectivity. Under the conditions of hydrogen auto-transfer, primary alcohols 

are converted to an identical set of products with similar levels of selectivity. This process 

represents a departure from the longstanding use of stoichiometric organometallic reagents 

in enantioselective carbonyl tert-prenylation.147

The cyclometalated π-allyliridium C,O-benzoate complex modified by DPPF catalyzes 

allene- formaldehyde reductive coupling via methanol-mediated hydrogen autotransfer 
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(Scheme 28).148 This process enables direct, byproduct-free coupling of methanol, an 

abundant feedstock (35 million metric tons per year), to form highly congested quaternary 

carbon stereocenters. Using an iridium catalyst modified by (R)-PhanePhos, CF3-allenes 

react with methanol to form homoallylic alcohols with CF3-bearing quaternary carbon 

stereocenters with high levels of regio- and enantioselectivity.149 Such congested acyclic 

quaternary carbon stereocenters are exceptionally difficult to prepare in enantiomerically 

enriched form, with existing protocols for their construction largely restricted to conjugate 

additions to β,β-disubstituted CF3-enones and nitroolefins.123

3.4. Palladium

In 2000, a palladium(0) catalyzed allene-aldehyde reductive coupling mediated by tin(II) 

chloride was reported by Cheng (Scheme 29).150 Using dimethylallene, products of tert-
prenylation were formed with complete regioselectivity. Additionally, monosubstituted 

allenes provided branched adducts with complete anti-diastereoselectivity. The authors 

propose the reaction proceeds through palladium catalyzed allene hydrostannylation to 

furnish an allylstannane that undergoes spontaneous aldehyde addition through a six-

member chair-like transition state.

In 2015, a palladium(0)-catalyzed allene-anhydride reductive coupling mediated by silane 

was reported by Tsuiji and Fujihara (Scheme 30).151 The catalytic cycle is initiated by 

anhydride oxidation addition to form an acylpalladium(II) species, which upon allene 

carbopalladation forms a πallylpalladium intermediate. Silane-mediated hydride transfer to 

palladium followed by C-H reductive elimination delivers the reductive coupling product 

and returns palladium to its zero-valent form. The reaction products form as single 

regioisomers, albeit with incomplete control of alkene geometry. This method provides an 

alternative to the use of aldehydes as acyl donors in allene hydroacylation.152

3.5. Copper

In 2018, Buchwald reported an enantioselective copper(I)-catalyzed allene-ketone reductive 

coupling mediated by silane (Scheme 31).153 Using a copper complex modified by ligand-

VI, a wide range of methyl ketones were converted to the tertiary homoallylic alcohols with 

moderate to good levels of anti-diastereo- and enantioselectivity. The highest 

stereoselectivities were observed for allenes bearing branched alkyl substituents. The 

catalytic mechanism is postulated to involve allene hydrocupration to form a nucleophilic 

allylcopper(I) species. Ketone addition generates a copper(I) alkoxide, which upon σbond 

metathesis with silane delivers the homoallylic silyl ether (hydrolyzed upon isolation) and 

copper(I) hydride to close the catalytic cycle.

In an earlier report (2016) by the same author, closely related conditions for copper-

catalyzed allene-imine reductive coupling were described (Scheme 32).154 Remarkably, 

regiodivergent reductive coupling to form either branched or linear adducts was observed in 

response to the choice of nitrogen protecting group. The origins of this regiodivergence were 

probed using DFT calculations. Irreversible allene hydrocupration provides a primary σ-

allylcopper intermediate. For the phosphinoyl imine, the phosphinoyl oxygen binds to the 

copper center in the transition state and allyl transfer provides the linear product. In contrast, 
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for N-benzyl imines, the nitrogen atom coordinates the copper center causing imine addition 

to occur with allylic inversion to furnish the branched product.

4. Enyne-C=X (X = O, NR) Reductive Coupling

4.1. Nickel

In 2004, Jamison reported an intermolecular nickel(0)-catalyzed enyne-aldehyde reductive 

coupling mediated by triethylborane (Scheme 33).155 High levels of regioselectivity in favor 

of C-C coupling at the acetylenic terminus of the enyne were accompanied by complete 

control of alkene geometry. Subsequent attempts to develop enantioselective variants of this 

process proved challenging. Using the monodentate P-chiral ferrocenyl phosphine ligand-

VII, moderate levels of asymmetric induction were observed.156 Remarkably, under closely 

related reductive coupling conditions using the P-chiral ligand-VIII, unactivated ketones 

were competent electrophilic partners.157 Again, high levels of regioselectivity in favor of 

coupling at the acetylenic terminus were accompanied by complete control of alkene 

geometry and moderate enantioselectivities.

Computational studies by Houk158 and experimental studies by Montgomery,159 who 

observed a ligand-dependent inversion of regioselectivity, illuminate the origins of 

regioselectivity in enynealdehyde reductive coupling (Scheme 34). The collective data are 

consistent with the following interpretation. An oxidative coupling mechanism is operative 

in which an electronic bias for coupling at the acetylenic terminus is observed.160 For the 

large ligand-IX, this intrinsic bias is accentuated due to increased steric interactions between 

the ligand and the substituent at the acetylenic terminus. Hence, the substituent at the 

acetylenic terminus prefers to be placed distal to the metal center in the oxanickelacycle. 

Upon use of the smaller ligand-I, steric repulsion between the aldehyde and acetylenic 

substituents is greater than steric repulsion between the ligand and acetylenic substituent, 

which results in an inversion in regioselectivity.

4.2. Rhodium

Highly enantioselective and byproduct-free enyne-carbonyl reductive coupling is achieved 

under the conditions of catalytic hydrogenation using chiral rhodium complexes modified by 

ligand-X or ligandXI (Scheme 35).161–163 Activated carbonyl compounds, such as 

glyoxalates161 and pyruvates,162 are required. The resulting dienyl alcohols form as single 

regioisomers with excellent levels of enantiomeric enrichment and, remarkably, conventional 

hydrogenation of the diene-containing products is not observed. This result can be explained 

as follows. The enyne reactant is a stronger π-acid than the diene product. Hence, once the 

carbonyl electrophile is fully consumed, excess enyne preferentially binds rhodium(I), 

retarding the rate of product hydrogenation. Beyond vicinal dicarbonyl electrophiles, certain 

heterocyclic aromatic aldehydes and ketones undergo reductive coupling with enyne 

pronucleophiles under hydrogenation conditions.163 Again, the resulting heteroaryl 

substituted secondary and tertiary dienyl alcohols are generated as single regioisomers in 

highly enantiomerically enriched form (Scheme 35).
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A mechanism for hydrogen-mediated enyne-carbonyl reductive coupling has been proposed 

and is supported by computational studies (Scheme 36).164,165 The catalytic cycle is 

initiated by alkyne-C=O oxidative coupling. Direct hydrogenolysis of the 

oxarhodacyclopentene by σ-bond metathesis with hydrogen through the 4-centered 

transition structure A is slow compared to metallacycle protonolysis by the carboxylic acid 

cocatalyst through the 6-centered transition structure B. The resulting rhodium carboxylate 

engages hydrogen in σ-bond metathesis through the 6-centered transition structure C to form 

an alkenylrhodium hydride, which upon C-H reductive elimination releases product and 

rhodium(I). Cationic rhodium complexes are essential, as these square planar non-contact 

ion pairs offer an additional coordination site, enabling simultaneous binding of enyne and 

carbonyl reactants. Additionally, unlike neutral rhodium complexes, the cationic complexes 

are slow to engage in hydrogen oxidative addition.166 These two factors act in concert to 

promote alkyne-C=O oxidative coupling pathways.

Rhodium catalyzed hydrogenation of 1,3-enynes in the presence of ethyl (N-

tertbutanesulfinyl)iminoacetate results in reductive coupling to furnish diene-containing α-

amino acid esters (Scheme 37).167 Coupling occurs in a completely regioselective manner at 

the acetylenic terminus of the enyne. Additionally, the nitrogen-bearing stereogenic center of 

the product is formed as a single diastereomer. Under an atmosphere of elemental deuterium, 

reductive coupling occurs with incorporation of a single deuterium atom at the former 2-

position of the enyne, which is consistent with a mechanism involving enyne-imine 

oxidative coupling followed by hydrogenolytic cleavage of the resulting metallacycle.

4.3. Ruthenium

The first enyne-mediated carbonyl propargylations were reported by Krische in 2008, who 

used a ruthenium(II) complex modified by dppf [bis(diphenylphosphino)ferrocene] to 

catalyze 2-propanolmediated enyne-aldehyde reductive coupling (Scheme 38).168 In these 

reactions, enyne hydrometalation delivers a nucleophilic allenylruthenium species that 

undergoes aldehyde addition. The stoichiometric reaction of HClRu(CO)(PPh3)3 with 

enynes to form σ-allenylruthenium complexes, which were characterized by single crystal 

X-ray diffraction, has been reported.169 Under these conditions, primary alcohols react with 

enynes to form products of carbonyl propargylation via hydrogen auto-transfer. The pattern 

of deuterium incorporation in isotopic labelling studies using α,α-d2-benzyl alcohol 

corroborate reversible and non-regioselective enyne hydroruthenation in advance of carbonyl 

addition. Deuterium is completely retained at the carbinol methine, suggesting the product is 

kinetically inert with respect to dehydrogenation due to internal alkyne coordination to 

ruthenium. It was later found that good to complete levels of anti-diastereoselectivity could 

be achieved in 2-propanol-mediated enyne-aldehyde reductive couplings using the indicated 

2-propoxy-substituted enyne.170 Finally, (R)-BINAP-modified ruthenium complexes were 

shown to catalyze highly enantioselective 2-propanol-mediated enynealdehyde reductive 

couplings.171 Secondary homopropargyl alcohols bearing gem-dimethyl groups were 

obtained with uniformly high levels of enantioselectivity. Under these conditions, reductive 

coupling also could be achieved via hydrogen auto-transfer from aliphatic, allylic and 

benzylic alcohols. These processes represent an alternative to the use of preformed 

allenylmetal reagents in enantioselective carbonyl propargylation.172
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4.4. Iridium

The sole examples of iridium catalyzed enyne-carbonyl reductive coupling were reported by 

Krische in 2012 (Scheme 39).173 Using an iridium(I) catalyst in combination with 

commercially available SEGPHOS or DM-SEGPHOS ligands, aldehydes are subject to 

highly anti-diastereo- and enantioselective formic acid mediated propargylation. These 

transformations proceed via enyne hydrometalation to form an allenyl-iridium(I) species, 

which engages the aldehyde in addition through a closed six-centered transition state. 

Enyne-mediated propargylation from the alcohol oxidation level via hydrogen autotransfer 

displayed higher levels of anti-diastereo- and enantioselectivity. Deuterium labelling studies 

corroborate reversible, non-regioselective enyne hydrometalation in advance of carbonyl 

addition. Complete retention of deuterium at the carbonyl methine suggests the reaction 

products are inert with respect to dehydrogenation.

4.5. Copper

Recently, the first copper-catalyzed enyne-carbonyl reductive couplings were reported by 

Buchwald (Scheme 40).174 Using a copper complex modified by the chiral bidentate 

phosphine ligand (S,S)-Ph-BPE and (MeO)2MeSiH as terminal reductant, diverse ketones 

were converted to tertiary homopropagyl alcohols with good levels of syn-diastereo- and 

enantioselectivity. Aryl-methyl ketones underwent propargylation with highest levels of 

stereocontrol. Notably, the reaction could be run efficiently on 50 mmol scale with catalyst 

loadings as low as 0.2 mol%. A catalytic mechanism involving enyne hydrocupration to 

generate an allenylcopper(I) nucleophile is postulated. Ketone addition then generates a 

copper(I) alkoxide, which upon σ-bond metathesis regenerates the copper(I) hydride to close 

the catalytic cycle.

5. Applications in Natural Product Synthesis

Although enantioselective carbonyl reductive couplings have only recently been developed, 

applications in natural product total synthesis have begun to emerge. Krische and coworkers 

prepared bryostatin 7175 and related seco-B-ring analogues (not shown)176,177 using enyne-

carbonyl178 and allenecarbonyl179 reductive couplings (Scheme 41). To construct the 

bryostatin C-ring, a rhodium-catalyzed hydrogen-mediated enyne-α-ketoaldehyde reductive 

coupling forms the C20-C21 bond with control of the C20 carbinol stereochemistry and the 

C21 alkene geometry. The neopentyl carbinol motif of the bryostatin A-ring is generated 

through iridium-catalyzed reductive coupling of dimethyl allene with the indicated aldehyde 

using 2-propanol as terminal reductant. Using these hydrogenative and 

transferhydrogenative methods, the total synthesis of bryostatin 7 was achieved in fewer 

steps than any prior synthesis of a bryostatin family member.

The triene-containing C17-benzene ansamycins, trienomycins A and F,180 and 

6deoxyerythronolide B181 were prepared by Krische and coworkers via ruthenium-catalyzed 

syndiastereo- and enantioselective diene-carbonyl reductive coupling mediated by hydrogen 

auto-transfer (Scheme 42). For trienomycins A and F, a ruthenium catalyst modified by DM-

SEGPHOS is used to react the indicated trisubstituted (Z)-allylic alcohol with a 2-

trialkylsilyl substituted diene to form the product of carbonyl syn-crotylation. The ability to 
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conduct carbonyl crotylation from the alcohol oxidative level avoids the use of the (Z)-enal, 

which is prone to geometrical isomerization. For the synthesis of deoxyerythronolide B, a 

ruthenium catalyst modified by SEGPHOS and a chiral phosphate counterion (previously 

indicated in Scheme 8) enabled direct use of butadiene itself as a crotyl donor.

Menche and coworkers prepared the C8-C22 substructure of the actin-binding macrodiolide 

rhizopodin using an enantioselective iridium-catalyzed dimethyl allene-aldehyde reductive 

coupling under the conditions of alcohol-mediated hydrogen auto-transfer (Scheme 43).
182,183 The reaction, which forms the C16-carbinol stereocenter, was conducted on multi-

gram scale to furnish the product of tertprenylation in 98% yield. Chromatographic 

purification of the cyclometalated π-allyliridium catalyst (depicted in Scheme 41) led to an 

improvement in enantiomeric excess from 82% to 90% ee.183

6. Conclusion and Outlook

Carbonyl and imine addition mediated by premetalated reagents has played a central role in 

chemical synthesis since the inception of Organic Chemistry as a field. However, the 

requisite organometallic reagents often pose issues of safety, selectivity, cost and waste. 

Metal catalyzed reductive coupling has emerged as an alternative to stoichiometric 

organometallic reagents in classical carbonyl and imine additions, but many important 

challenges remain. For example, many reductive couplings require pyrophoric (Et3B) or 

expensive/mass-intensive (R3SiH) terminal reductants. It would be preferable to exploit safe, 

inexpensive terminal reductants with low molecular weights, such as 2-propanol or H2. 

Perhaps most ideal are reductive couplings mediated by hydrogen auto-transfer, which 

altogether preclude the use of an exogenous terminal reductant (Scheme 44). Another major 

challenge involves the development of catalysts for the reductive coupling of ethylene and 

α-olefins,48 which are abundant feedstocks with production volumes exceeded only by 

alkanes. Late transition metals will likely be the key to unlock these unmet challenges, as 

their low oxaphilicity enables chemoselective reduction of π-unsaturated pronucleophiles in 

the presence of carbonyl and imine electrophiles. It is the authors’ hope that the collective 

efforts presented in this monograph will encourage future research toward catalytic carbonyl 

additions beyond stoichiometric metals.
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Figure 1. 
Selected milestones in organometallic and carbonyl addition chemistry.
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Scheme 1. 
Nickel(0)-catalyzed diene-aldehyde reductive coupling

Holmes et al. Page 28

Chem Rev. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Catalytic mechanism for nickel(0)-catalyzed diene-aldehyde reductive coupling
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Scheme 3. 
Enantioselective nickel(0)-catalyzed diene-aldehyde reductive couplings
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Scheme 4. 
Formaldehyde as electrophile and reductant in nickel(0)-catalyzed reductive couplings to 

2substituted dienes
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Scheme 5. 
Nickel(0)-catalyzed diene-imine reductive couplings

Holmes et al. Page 32

Chem Rev. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 6. 
Ruthenium(II)-catalyzed diene-aldehyde reductive couplings mediated by 2-propanol, 

formic acid or hydrogen auto-transfer
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Scheme 7. 
syn-Diastereo- and enantioselective ruthenium(II)-catalyzed reductive coupling of aldehydes 

with 2-trialkylsilyl substituted dienes mediated by 2-propanol or hydrogen auto-transfer
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Scheme 8. 
Divergent diastereoselectivity in asymmetric ruthenium(II)-catalyzed butadiene-aldehyde 

reductive couplings
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Scheme 9. 
Divergent regioselectivity in ruthenium(II)-catalyzed diene-carbonyl reductive couplings
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Scheme 10. 
Ruthenium(0)-catalyzed diene-ketone reductive coupling via hydrogen auto-transfer

Holmes et al. Page 37

Chem Rev. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 11. 
Reversible oxidative coupling pathways in ruthenium(0)-catalyzed diene-ketone reductive 

coupling
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Scheme 12. 
Ruthenium(0)-catalyzed diene-dione reductive coupling resulting in [4+2] cycloaddition
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Scheme 13. 
Ruthenium(II)-catalyzed diene-imine reductive coupling mediated by 2-propanol or 

hydrogen auto-transfer
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Scheme 14. 
Ruthenium(0)-catalyzed diene-imine reductive coupling via hydrogen auto-transfer
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Scheme 15. 
Rhodium(I)-catalyzed diene-carbonyl reductive couplings mediated by hydrogen and 

triethylborane
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Scheme 16. 
Iridium(I)-catalyzed cyclohexadiene-aldehyde reductive coupling mediated by 2-propanol or 

hydrogen auto-transfer
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Scheme 17. 
Iridium(I)-catalyzed butadiene-aldehyde reductive coupling mediated by 1,4-butanediol or 

hydrogen auto-transfer
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Scheme 18. 
Iridium(I)-catalyzed reductive coupling of 2-substituted dienes with methanol via hydrogen 

auto-transfer
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Scheme 19. 
Titanium catalyzed diene-aldehyde reductive coupling mediated by silane
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Scheme 20. 
Copper-catalyzed reductive coupling of 2-azadienes with aryl ketones and imines mediated 

by silane
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Scheme 21. 
Nickel(0)-catalyzed reductive coupling of chiral nonracemic allenes and aldehydes mediated 

by triethylsilane
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Scheme 22. 
Ruthenium(II)-catalyzed allene-aldehyde reductive coupling mediated by 2-propanol or 

hydrogen auto-transfer
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Scheme 23. 
Use of CF3-allenes and fluorinated alcohols in ruthenium(II)-catalyzed allene-aldehyde 

reductive coupling mediated by 2-propanol or hydrogen auto-transfer
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Scheme 24. 
Alkynes as latent allenes in ruthenium(0) and ruthenium(II) catalyzed allene-aldehyde 

reductive couplings via hydrogen auto-transfer
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Scheme 25. 
Ruthenium(II)-catalyzed allene-imine reductive coupling mediated by 2-propanol
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Scheme 26. 
Iridium(I)-catalyzed allene-aldehyde reductive coupling mediated by hydrogen, 2propanol or 

hydrogen auto-transfer
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Scheme 27. 
Enantioselective carbonyl tert-prenylation via iridium(I)-catalyzed dimethylallenealdehyde 

reductive coupling mediated by 2-propanol or hydrogen auto-transfer
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Scheme 28. 
Iridium(I)-catalyzed reductive coupling of 1,1disubstituted allenes via methanol-mediated 

hydrogen auto-transfer
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Scheme 29: 
Palladium catalyzed allene-aldehyde reductive coupling mediated by stannous chloride
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Scheme 30. 
Palladium(0)-catalyzed allene-anhydride reductive coupling mediated by silane
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Scheme 31. 
Copper(I)-catalyzed allene-ketone reductive coupling mediated by silane
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Scheme 32. 
Regiodivergent copper(I)-catalyzed allene-imine reductive coupling mediated by silane
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Scheme 33. 
Nickel(0)-catalyzed enyne-aldehyde reductive coupling mediated by triethylborane
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Scheme 34. 
Ligand-dependent inversion of regioselectivity in nickel(0)-catalyzed enyne-aldehyde 

reductive coupling mediated by silane
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Scheme 35. 
Enantioselective rhodium(I)-catalyzed enyne-aldehyde and enyne-ketone reductive coupling 

mediated by hydrogen
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Scheme 36. 
Catalytic mechanism for rhodium(I)-catalyzed enyne-carbonyl reductive coupling mediated 

by hydrogen
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Scheme 37. 
Asymmetric rhodium(I)-catalyzed enyne-imine reductive coupling mediated by hydrogen
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Scheme 38. 
Ruthenium(II)-catalyzed enyne-aldehyde reductive coupling mediated by 2-propanol and 

hydrogen auto-transfer
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Scheme 39. 
anti-Diastereoselective iridium(I)-catalyzed enyne-aldehyde reductive coupling mediated by 

formic acid or hydrogen auto-transfer
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Scheme 40. 
Diastereoselective copper(I)-catalyzed enyne-ketone reductive coupling mediated by silane
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Scheme 41. 
Total synthesis of bryostatin 7 via asymmetric rhodium- and iridium-catalyzed 

hydrogenative and transfer-hydrogenative reductive couplings, respectively
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Scheme 42. 
Total syntheses of trienomycins A and F and 6-deoxyerythronolide B via 
rutheniumcatalyzed syn-diastereo- and enantioselective diene-carbonyl reductive coupling 

mediated by hydrogen auto-transfer
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Scheme 43. 
Syntheses of the C8-C22 substructure of rhizopodin via enantioselective iridium-catalyzed 

allene-aldehyde reductive coupling via hydrogen auto-transfer
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Scheme 44. 
Catalytic reductive coupling for carbonyl addition

Holmes et al. Page 71

Chem Rev. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction and Historical Perspective on Carbonyl Addition
	Diene-C=X (X = O, NR) Reductive Coupling
	Nickel
	Ruthenium
	Rhodium
	Iridium
	Titanium
	Copper

	Allene-C=X (X = O, NR) Reductive Coupling
	Nickel
	Ruthenium
	Iridium
	Palladium
	Copper

	Enyne-C=X (X = O, NR) Reductive Coupling
	Nickel
	Rhodium
	Ruthenium
	Iridium
	Copper

	Applications in Natural Product Synthesis
	Conclusion and Outlook
	References
	Figure 1.
	Scheme 1.
	Scheme 2.
	Scheme 3.
	Scheme 4.
	Scheme 5.
	Scheme 6.
	Scheme 7.
	Scheme 8.
	Scheme 9.
	Scheme 10.
	Scheme 11.
	Scheme 12.
	Scheme 13.
	Scheme 14.
	Scheme 15.
	Scheme 16.
	Scheme 17.
	Scheme 18.
	Scheme 19.
	Scheme 20.
	Scheme 21.
	Scheme 22.
	Scheme 23.
	Scheme 24.
	Scheme 25.
	Scheme 26.
	Scheme 27.
	Scheme 28.
	Scheme 29:
	Scheme 30.
	Scheme 31.
	Scheme 32.
	Scheme 33.
	Scheme 34.
	Scheme 35.
	Scheme 36.
	Scheme 37.
	Scheme 38.
	Scheme 39.
	Scheme 40.
	Scheme 41.
	Scheme 42.
	Scheme 43.
	Scheme 44.

