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Abstract

The molecular processes that determine the outcome of influenza virus infection in humans are 

multifactorial and involve a complex interplay between host, viral, and bacterial factors1. 

However, it is generally accepted that a strong innate immune dysregulation known as ‘cytokine 

storm’ contributes to the pathology of infections with 1918 H1N1 pandemic or highly pathogenic 

avian influenza viruses (HPAIV) of the H5N1 subtype2–4. The RNA sensor Retinoic acid-

inducible gene I (RIG-I) plays an important role in sensing viral infection and initiating a 

signalling cascade that leads to interferon (IFN) expression5. Here we show that short aberrant 

RNAs (mini viral RNAs; mvRNAs), produced by the viral RNA polymerase during the replication 

of the viral RNA genome, bind and activate RIG-I, and lead to the expression of interferon-β. We 

find that erroneous polymerase activity, dysregulation of viral RNA replication, or the presence of 
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avian-specific amino acids underlie mvRNA generation and cytokine expression in mammalian 

cells. By deep-sequencing RNA samples from lungs of ferrets infected with influenza viruses we 

show that mvRNAs are generated during infection in vivo. We propose that mvRNAs act as main 

agonists of RIG-I during influenza virus infection.

The negative sense viral RNA (vRNA) genome segments of influenza A viruses, as well as 

the complementary RNA (cRNA) replicative intermediates, contain 5′ triphosphates and 

partially complementary 5′ and 3′ termini that serve as the viral promoter for replication 

and transcription of the viral RNA genome6. RIG-I has been shown to bind and be activated 

by the dsRNA structure formed by the termini of influenza virus RNAs7,8. However, it 

remains unclear how RIG-I gains access to this dsRNA structure. Both vRNA and cRNA are 

assembled into ribonucleoprotein complexes (vRNP and cRNP, respectively) in which the 

viral RNA polymerase, a complex of the viral proteins PB1, PB2 and PA, associates with the 

partially complementary termini, while the rest of the RNA is bound by oligomeric 

nucleoprotein (NP)6 (Fig. 1a). The tight binding of the 5′ and 3′ termini of vRNA and 

cRNA by the RNA polymerase9 is likely to preclude an interaction with RIG-I. Moreover, it 

has been demonstrated that IFN expression is triggered only in a fraction of influenza virus 

infected cells10,11, suggesting that influenza viruses efficiently hide their genome segments 

during infection by replicating them in the context of RNPs11. This led to the proposal that 

an aberrant RNA replication product might be binding to RIG-I and triggering IFN 

expression12. The influenza virus polymerase is known to generate defective interfering 

(DI) RNAs, which are ≥178 nt long subgenomic RNAs generated during high multiplicity 

infections13, and small viral RNAs (svRNAs), which are 22-27 nt long and correspond to 

the 5′ end of vRNA segments. However, svRNAs have been shown not to be involved in the 

induction of antiviral cellular defences14 and DI RNAs assemble into RNP structures (Fig. 

1a), as demonstrated for a 248 nt long DI RNA15, potentially precluding their interaction 

with RIG-I. Therefore, it remains unclear what kind of viral RNA species is recognised by 

RIG-I (Fig. 1a) and why different influenza virus strains trigger dramatically different levels 

of IFN expression2,3,16.

Engineered viral RNAs shorter than 149 nt but containing both the 5′ and 3′ termini of 

vRNAs can be transcribed and replicated by the viral polymerase in the absence of NP17, 

suggesting that they do not form canonical RNP structures. We call these short viral RNAs 

mvRNAs (Fig. 1a). To investigate which class of viral RNA is responsible for triggering IFN 

expression, we expressed a full-length segment 4 vRNA (1775 nt long) or its truncated 

versions, a 245 nt long DI RNA and 77 nt long mvRNA, in HEK 293T cells together with 

viral polymerase and NP and measured the activation of the IFN-β promoter (Fig. 1b). We 

found that the expression of mvRNAs induced significantly higher IFN expression than full-

length vRNA or DI RNA, comparable to the levels induced by transfection of 2 μg of 

poly(I:C), a known activator of IFN expression18. Similar results were obtained with 

segment 5 and 6 vRNAs and their truncated DI RNA and mvRNA versions (Fig. 1b). To 

determine the optimal mvRNA length that triggers IFN-β promoter activation, we expressed 

47 to 246 nt long vRNAs derived from segment 5 together with viral polymerase and NP and 

measured the activity of the IFN-β promoter. We found that the replication of 56 to 125 nt 
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long mvRNAs resulted in significantly higher IFN-β promoter activity than the replication of 

RNAs shorter than 56 nt or longer than 125 nt (Fig. 1c and Supplementary Fig. 1a,b).

To address whether these engineered short mvRNAs triggered IFN expression via RIG-I, we 

co-expressed viral RNAs with polymerase and NP in HEK 293T RIG-I knockout or control 

cells engineered to express luciferase in response to the activation of the IFN-β promoter. 

We found that 56 to 125-nt long mvRNAs induced only background levels of luciferase in 

RIG-I knockout cells, even though the expression of RIG-I or transfection of poly(I:C) 

resulted in significant activation of the IFN-β promoter (Fig. 1d and Supplementary Fig. 1c). 

By contrast, significant levels of luciferase activity were detected in wildtype cells (Fig. 1d). 

mvRNAs of 56 to 125 nt induced the strongest activation of the IFN-β promoter, in 

agreement with the data above (Fig. 1c,d and Supplementary Fig. 1c,d). To address whether 

mvRNAs trigger the activation of IFN-β expression through binding to RIG-I, we 

immunoprecipitated myc-RIG-I from cells expressing RNAs of 47 to 583 nt. We observed 

that mvRNAs of 56 to 125 nt were specifically enriched in RIG-I immunoprecipitates (Fig. 

1e and Supplementary Fig. 1e). No mvRNAs were detected in the myc-EGF negative control 

immunoprecipitates (Fig. 1e). To test if mvRNAs also activate RIG-I, we incubated purified 

myc-RIG-I with an in vitro transcribed 76 nt mvRNA and measured 32Pi release. We found 

that a triphosphorylated 76 nt mvRNA induced higher levels of ATPase activity than a 

dephosphorylated 76 nt mvRNA, while no ATPase activity was observed when we incubated 

a RIG-I mutant with the triphosphorylated 76 nt mvRNA (Supplementary Fig. 1f,g). Overall, 

these results demonstrate that mvRNAs longer than 47 and shorter than 125 nt are bound by 

RIG-I, which results in RIG-I activation and the induction of IFN-β expression. This is in 

agreement with findings that reconstitution of full-length influenza virus vRNPs leads to 

only low levels of IFN expression unless the cells are pre-treated with IFN19 and the 

hypothesis that aberrant replication products trigger the IFN induction cascade12.

We next asked whether mvRNAs are made during influenza virus infection. We infected 

HEK 293T cells with influenza A/WSN/33 (H1N1) (abbreviated as WSN) and analysed 

viral RNAs by RT-PCR of segment 1, RT-PCR of all segments using universal primers, or 

deep-sequencing of the total small RNA fraction (RNAs 17 to 200 nt in length) 

(Supplementary Fig. 2a,b). We found only very low levels of mvRNAs and, consistently, 

observed no significant IFN expression (Fig. 2a,b). We hypothesised that mvRNAs are only 

generated as a consequence of dysregulated viral RNA replication. To test this, we 

overexpressed viral RNA polymerase prior to infection to generate an imbalance between 

polymerase and NP levels, which is known to induce innate immune signalling20. Under 

this condition we found significantly higher levels of mvRNAs and IFN expression, while 

simultaneous overexpression of NP and polymerase reduced mvRNA and IFN production 

(Fig. 2a). We verified the identity of mvRNAs using gel isolation and Sanger sequencing 

(Supplementary Fig. 2c) as well as deep sequencing (Fig. 2b). We found that the majority of 

mvRNAs were derived from the PB1-, HA-, NP- and NA-encoding vRNA segments (Fig. 

2c) and that mvRNAs had a size distribution with a peak around 55 to 64 nt (Fig. 2d and 

Supplementary Fig. 2d). In addition to mvRNAs, we also identified complementary mini 

viral RNAs (mcRNAs).
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Analysis of mvRNA sequences suggests that mvRNAs are generated via an intramolecular 

copy-choice mechanism that tolerates 3' mismatches or skipped bases (Fig. 2e,f). The 

generation of mvRNAs can be explained by the separation of the template and nascent 

product RNAs by backtracking21, followed by template translocation until base pairing 

between template and nascent product RNA is re-established (Fig. 2f,g). This process may 

be induced by an imbalance between viral polymerase and NP levels (Fig. 2a and 

Supplementary Fig. 3a).

In humans, infection with the 1918 H1N1 pandemic virus or H5N1 HPAIV lead to strong 

innate immune activation2,3,16. To address whether mvRNAs could contribute to this 

phenomenon, we investigated the replication of a 246 nt RNA by the polymerase of these 

viruses. We found that the polymerases of the highly virulent A/Brevig Mission/1/18 

(H1N1) (abbreviated as BM18) pandemic virus and the A/duck/Fujian/01/02 (H5N1) 

(abbreviated as FJ02) HPAIV generated higher levels of mvRNAs than the polymerases of 

WSN and A/Northern Territory/60/68 (H3N2) (abbreviated as NT60) viruses, even in the 

presence of high NP concentrations (Fig. 3a). No mvRNAs were observed in a control with 

an inactive WSN polymerase that had two point mutations in the polymerase active site 

(PB1a). We confirmed that the mvRNAs produced by the BM18 polymerase were similar to 

the WSN mvRNAs (Supplementary Fig. 3b). Isolation of total RNA from cells expressing 

polymerase of the BM18 or FJ02 virus and its subsequent transfection into HEK 293T cells 

resulted in significantly higher IFN-β promoter activity compared to when RNA from cells 

expressing WSN, NT60, or active site mutant WSN PB1a polymerase was transfected (Fig. 

3a).

The identification of mismatches during the generation of mvRNAs (see Fig. 2e) suggests 

that mvRNA production might be dependent on polymerase fidelity. To investigate this 

further, we introduced a V43I mutation, which has been shown to confer high-fidelity on an 

H5N1 influenza virus polymerase22, into the PB1 subunit of the BM18 polymerase 

(BM18hf). We found that mvRNA levels were significantly reduced in the presence of 

BM18hf, with a corresponding reduction in IFN-β promoter activity (Fig. 3a). Together, the 

observations in Fig. 2a, Fig. 3, and Supplementary Fig. 3a suggest that dysregulation of viral 

RNA replication, e.g. by limiting NP availability, and replication by HPAIV polymerases in 

mammalian cells generates mvRNAs by employing an error-prone copy-choice mechanism, 

such as proposed for recombination in positive-strand RNA viruses23.

We next asked whether a particular BM18 polymerase subunit is the determinant of mvRNA 

production and replaced individual polymerase subunits of the BM18 polymerase with 

subunits of the WSN polymerase in the 246 nt RNA replication assay. We found that 

particularly replacement of the BM18 PB2 subunit with the WSN PB2 subunit eliminated 

the generation of mvRNAs (Supplementary Fig. 4a). Interestingly, the BM18 influenza PB2 

subunit has been linked to the enhancement of both the kinetics and the magnitude of the 

host response to viral infection, leading to the induction of strong inflammatory responses in 

the lungs of infected mice24. To identify PB2 amino acids involved in mvRNA formation, 

we aligned the BM18, WSN, NT60 and FJ02 PB2 sequences and found four amino acids 

that distinguish the BM18 and FJ02 polymerases from the WSN and NT60 polymerases: 9 

(D→N), 64 (M→T), 81 (T→M), and 661 (A→T) (Supplementary Fig. 4a). Each of these 
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amino acids has been implicated in avian to mammalian host adaptation25 and, interestingly, 

all three N-terminal PB2 adaptive amino acids map to the template exit channel of the RNA 

polymerase (Fig. 3b)6. We generated single mutations N9D, T64M, M81T, and double 

mutations N9D+T64M and N9D+M81T in the PB2 subunit of the WSN polymerase and 

found that mutants N9D and M81T and the double mutants N9D+T64M and N9D+M81T 

significantly increased mvRNA formation (Fig. 3c) and IFN-β promoter activity (Fig. 3c,d). 

However, the levels of mvRNAs generated by these mutants did not reach the levels 

generated by the BM18 polymerase indicating that further amino acids contribute to 

mvRNA production. In line with our observations, WSN viruses that contain a PB2 N9D 

substitution or other PB2 mutations near the template exit channel have been reported to 

induce higher IFN-β expression than wild-type WSN26,27.

To address whether mvRNAs form during infection of mammalian cells, we infected A549 

cells with WSN, the highly pathogenic avian strain A/Vietnam/1203/04 (H5N1) (abbreviated 

as VN04), and the VN04 virus with the PB1 V43I high-fidelity mutation (abbreviated as 

VN04hf). Infections with VN04 resulted in high levels of mvRNAs, while WSN infections 

produced only very low levels (Fig. 4a). Infections with VN04hf resulted in significantly 

reduced mvRNA levels compared to the wild-type VN04 virus. These results demonstrate 

that mvRNAs are formed during influenza virus infection of lung epithelial cells and that 

polymerase fidelity is an important determinant of mvRNA formation (Fig. 4a).

To investigate whether there is a link between mvRNA production and virus-induced innate 

immune responses we performed RNAseq of cells infected with VN04 and VN04hf viruses 

and examined which genes were differentially expressed in response to mvRNA levels. 

Despite significantly different mvRNA levels produced by VN04 and VN04hf, viral mRNA 

levels were similar (Supplementary Data 1), in agreement with previous findings that the 

V43I mutation has only a marginal effect on virus replication22. Gene Ontology (GO) 

analysis (Fig. 4b) showed that basic cellular functions were significantly compromised in 

VN04 infection relative to VN04hf, consistent with a greater level of cell death, which is 

known to exacerbate inflammation28. In addition, we observed that genes associated with 

innate immune responses showed a significant increase in expression in response to higher 

mvRNA levels (Fig. 4b). Overall, these observations are indicative of a link between 

erroneous polymerase activity, mvRNA synthesis, and innate immune activation and the 

induction of cell death. Furthermore, as VN04 exhibited a 10-fold higher lethality compared 

to V04hf in mice22, our data also suggest a link between mvRNA levels and virulence.

To address whether mvRNAs are produced in infection of animal models, we analysed RNA 

samples from ferret lungs one and three days after infection with highly pathogenic avian A/

Indonesia/5/2005 (H5N1) (abbreviated as IN05), 2009 swine-origin pandemic A/

Netherlands/602/2009 (H1N1) (abbreviated as NL09) or the BM18 pandemic virus29,30. 

mvRNAs were present in all infected lung samples one day after infection, with mvRNA 

levels particularly high in the BM18 infected ferret lungs (Fig. 4c, Supplementary Fig. 5). 

GO analysis on the ferret lung samples taken one and three days post infection, showed an 

up-regulation of apoptosis and innate immune responses as function of mvRNA level, 

independently of viral titre or the day post infection (Fig. 4d).
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In summary, we identify mvRNAs, a class of influenza virus RNAs, that act as the main 

agonists of the pathogen recognition receptor RIG-I during influenza virus infection (Fig. 

4e). mvRNAs are produced as a result of aberrant replication of the viral RNA genome by 

the viral RNA polymerase. Polymerase fidelity and host-specific amino acids are 

determinants of the ability of the viral polymerase to produce mvRNAs, which are distinct 

from DI RNAs and full length viral RNA segments in that they can be efficiently replicated 

in the absence of NP and do not form canonical RNPs17. These features of mvRNAs are 

likely to be critical for their preferential recognition by RIG-I over DI RNAs and full-length 

RNA segments. We further demonstrate that mvRNA production is linked to increased 

cytokine expression and cell death. Our observations thus strongly suggest that mvRNAs are 

a contributing factor to influenza virus virulence. We speculate that production of high levels 

of mvRNAs by the polymerases of the 1918 pandemic and highly pathogenic avian 

influenza viruses and the resulting increased innate immune activation contribute to the 

cytokine storm phenomenon underlying the high virulence of these viral strains. The effects 

of mvRNAs are likely modulated by viral factors, such as the immunomodulatory NS1 and 

PB1-F2 proteins12 (Fig. 4e). Further studies are required to assess mvRNA levels generated 

by various influenza virus strains, including seasonal strains, and their effect on virulence.

Methods

Ethics and biosafety

All work with highly pathogenic H5N1 viruses in A549 cells was conducted in the Biosafety 

Level-3 laboratory at the LKS Faculty of Medicine, The University of Hong Kong, under 

guidelines and ethics approved by the Committee on the Use of Live Animals in Teaching 

and Research (CULATR). Ferret experiments with IN05 and NL09 were described 

previously29 and conducted in the Biosafety Level-3 laboratory of the Erasmus Medical 

Centre in compliance with European guidelines (EU directive on animal testing 86/609/

EEC) and Dutch legislation (Experiments on Animals Act, 1997), after approval by the 

independent animal experimentation ethical review committee of the Netherlands Vaccine 

Institute (permit number 200900201). Ferret experiments with BM18 were described 

previously30 and approved by Institutional Animal Care and Use Committee of Rocky 

Mountain Laboratories, National Institutes of Health, and conducted in an Association for 

Assessment and Accreditation of Laboratory Animal Care international-accredited facility 

according to the guidelines and basic principles in the United States Public Health Service 

Policy on Humane Care and Use of Laboratory Animals, and the Guide for the Care and Use 

of Laboratory Animals. Sample inactivation and shipment was performed according to 

standard operating procedures for the removal of specimens from high containment and 

approved by the Institutional Biosafety Committee.

Plasmids

Plasmids expressing the three polymerase subunits and NP of influenza A/WSN/33 

(H1N1)31, A/Northern Territory/60/68 (H3N2)32, A/duck/Fujian/01/02 (H5N1)32 (all 

pcDNA3-based), and A/Brevig Mission/1/18 (H1N1)33 (pCAGGS-based) have been 

described. A PB2 E627K mutation was introduced into the A/duck/Fujian/01/02 (H5N1) 

PB2 subunit to enable the FJ02 polymerase to efficiently replicate vRNA in mammalian 
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cells. Plasmids expressing mutant PB1a (D445A/D446A)34, and mutant PB2 (N9D)26, of 

influenza A/WSN/33 (H1N1) virus have been described previously. Full-length or internally 

truncated vRNAs were expressed from plasmids under the control of cellular RNA 

polymerase I promoter35. Luciferase reporter plasmid under the control of the IFN-β 
promoter (pIFΔ(-116)lucter), the β-galactosidase reporter plasmid (pJatLacZ) under the 

control of a constitutive promoter (β-gal), pcDNA-Myc-RIG-I expressing myc-tagged RIG-

I, and pcDNA-myc-proEGF have been described previously36,37. To construct plasmids 

expressing mutant PB1, PB2 proteins and myc-RIG-I (myc-RIG-I mut; which contains the 

mutations K851A, K858A and K861A), the plasmids expressing wild-type proteins were 

subjected to site-directed mutagenesis using the primers listed in Supplementary Table 1.

Cells and antibodies

Human embryonic kidney HEK 293T cells were originally sourced from the ATCC, stored 

in the Dunn School cell bank at the University of Oxford, and mycoplasma tested, but not 

authenticated prior to our experiments. A549 cells were originally sourced from the ATCC 

and cultured at the University of Hong Kong. Cells were cultured in DMEM (Sigma-

Aldrich) and 10% FCS. Western blots were performed using NP antibody GTX125989 

(GeneTex), Myc antibody GTX115046 (GeneTex), RIG-I antibody GTX85488 (GeneTex), 

and PB2 antibody GTX125926 (GeneTex). Wild-type and RIG-I knockout HEK 293T cells 

expressing luciferase in response to the activation of the IFN-β promoter were described 

previously38.

Statistical testing

In all figures, error bars indicate standard deviation with sample sizes as indicated in figures 

or figure legends. Evaluation of the statistical significance between group means was 

performed across all experiments according to the following criteria: (i) in the case where a 

comparison of a single variable was made between only two groups, an unpaired t-test was 

used; (ii) in the case of comparisons between three of more groups of measurements derived 

from a single independent variable (e.g. IFN-β induction as a function of RNA length), one-

way ANOVA was used and P-values were corrected for multiple comparisons using either 

Dunnett’s test (when a single group was taken as a reference/control to which all other 

groups were compared) or the Bonferroni method (when specific pairs of groups were 

compared to one another); (iii) in the case of comparisons between three of more groups of 

measurements derived from two independent variables (e.g. IFN-β induction as a function of 

RNA length and RIG-I expression), two-way ANOVA was used and P-values were corrected 

for multiple testing using the Bonferroni method; (iv) in the case of comparisons between 

three of more groups of log-distributed data (e.g. viral titres), measured values were first 

log10 transformed and then compared using one-way ANOVA, with P-values corrected for 

multiple comparisons by controlling the false discovery rate (FDR) to be <0.05 using the 

two-stage step-up method of Benjamini, Kreiger, and Yekutieli. For the evaluation of the 

statistical significance of the relationship between two measured values (e.g. fold increase in 

IFN-β induction vs. mvRNA level), linear regression analysis was used, with the P-value 

indicating the probability of the null hypothesis (no linear relationship), and the goodness of 

fit reported as r2. Statistical testing related to differential gene expression analysis is detailed 
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below, and was performed in R; all other statistical tests were performed using GraphPad 

Prism.

RNP reconstitution assays and quantitative RNA analysis

RNP reconstitution assays were carried out in 24-well plates out as described 

previously34,39. Briefly, 0.25 μg of the plasmids pcDNA3-NP, pcDNA3-PB2, pcDNA3-

PB1, pcDNA3-PA, and a pPOLI plasmid encoding full-length or truncated vRNA templates 

(for list of vRNA templates used see Supplementary Table 2) were transfected into HEK 

293T cells using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

instructions. Twenty-four hours post transfection, RNA was extracted using TRI Reagent 

(Sigma-Aldrich) and dissolved in RNase free water. For quantitative primer extensions, 

reverse transcription was carried out using SuperScript III reverse transcriptase (Thermo 

Fisher Scientific) with 32P-labelled oligonucleotides complementary to vRNA-derived RNA 

species and ribosomal 5S rRNA (for primers see Supplementary Table 3). cDNA synthesis 

was stopped with 10 μl loading dye (90% formamide, 10 mM EDTA, xylene cyanole, 

bromophenol blue) and 32P-labelled cDNAs generated with primer NP- were resolved by 

12% denaturing PAGE (19:1 acrylamide/bis-acrylamide, 1x TBE buffer, 7 M urea). 32P-

labelled cDNAs generated with primer NP-2 were resolved by 20% denaturing PAGE. The 

radiolabelled signals were imaged using phosphorimaging on a FLA-5000 scanner (Fuji), 

and analysed using AIDA (RayTek) and Prism 7 (GraphPad). In all experiments, the 

apparent RNA levels were background corrected using the PB1 active site mutant (PB1a) 

signal and normalised to the 5S rRNA control. Statistical analysis of data from at least three 

independent experiments was carried out using ANOVA.

RNP reconstitution assays and qualitative RNA analysis

For segment-specific qualitative RNA analysis by RT-PCR, RNA was treated with DNase 

(Promega) for 10 min according to the manufacturer’s instructions and reverse transcribed 

using SuperScript III and the PB2 primers listed in Supplementary Table 3. cDNA was 

amplified using Q5 polymerase (NEB) and the primers listed in Supplementary Table 3. 

PCR products were analysed on 1.5% agarose gels in 0.5x Tris-acetate-EDTA (TAE) buffer. 

For qualitative RT-PCR using universal primers, DNase treated RNA was reverse transcribed 

using the Lv3aa and Lv3ga primers listed in Supplementary Table 3 and Superscript III at 37 

ºC for 30 min. Second strands synthesis was performed with primer Lv5 and Q5 polymerase 

(NEB) at 47 ºC for 10 min, followed by a further extension at 72 ºC for 3 min. The primer 

excess in the reactions was removed by incubating the second strand reaction with 1 U of 

exonuclease VII (NEB) at 37 degrees Celsius for 1 h. Following inactivation of the 

exonuclease at 95 ºC for 10 min, the DNA was amplified using Q5 polymerase, and primers 

P5 and i7 for 25 cycles. PCR products were analysed by 6% PAGE.

Luciferase-based interferon expression assays

For luciferase assays, RNP reconstitutions were performed in wild-type HEK 293T cells or 

HEK 293T cells engineered to express luciferase from the IFN-β promoter. RNP 

reconstitutions were performed in a 24-well format by transfecting 0.25 μg of the plasmids 

pcDNA3-NP, pcDNA3-PB2, pcDNA3-PB1, pcDNA3-PA, a pPOLI plasmid encoding full-

length or truncated vRNA templates using lipofectamine2000 (Invitrogen). For RNP 
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reconstitutions in wild-type HEK 293T cells, 100 ng of pIFΔ(-116)lucter and pJatLacZ were 

co-transfected with the polymerase expressing plasmids. Twenty-four hours post 

transfection, cells were harvested in PBS and resuspended in Reporter Lysis buffer 

(Promega). Luciferase activity was measured using a Luciferase Assay System (Promega) 

and a GloMax (Promega), and normalised using the β-galactosidase signal measured using 

ortho-Nitrophenyl-β-galactoside (ONPG) and a GloMax. The background was subtracted 

using signals obtained from cells transfected with an empty pcDNA3. Luciferase levels were 

corrected for viral RNA levels obtained with primer extensions and a 32P-labelled NP-2 

primer (Supplementary Table 3). For total RNA transfections, 100 ng of total RNA was 

transfected with 100 ng of pIFΔ(-116)lucter and pJatLacZ using Lipofectamine2000. 

Analysis of luciferase expression was performed as described above. Statistical analysis was 

carried out using ANOVA.

Immunoprecipitations

For myc-RIG-I immunoprecipitations, 10 cm dishes with HEK 293T cell were transfected 

with 3 μg pcDNA3-NP, pcDNA3-PB2, pcDNA3-PB1, pcDNA3-PA, pcDNA-myc-RIG-I or 

pcDNA-myc-EGF, and a pPOLI plasmid encoding either a full-length or truncated vRNA 

template using Lipofectamine 2000. Twenty-four hours post transfection, the cells were 

harvested in cold PBS and lysed in 600 μl Tris lysis buffer (50 mM Tris-HCl, pH 8.0; 5% 

glycerol; 0.5% Igepal; 200 mM NaCl; 1 mM EDTA; 1 mM DTT; and 1x EDTA-free 

protease inhibitor (Roche)) on ice for 1 h. The lysates were cleared at 10,000 g for 5 min. 

Six μg of anti-myc antibody (Sigma-Aldrich) was added to 0.5 ml of cleared lysate and 

mixed at 4 ºC for 1.5 h. The lystate-antibody mix was bound to Dynabeads (Novex) at 4 ºC 

for 1.5 h, washed 3 times with IgG wash buffer (10 mM Tris-HCl pH 8.0; 150 mM NaCl; 

0.1% Igepal; 1 mM PMSF; 1 mM EDTA), and finally analysed for bound RNA and protein. 

Statistical analysis of data from three independent experiments was carried out using 

ANOVA.

ATPase assay

For wild-type and mutant myc-RIG-I purification, HEK 293T cell were transfected with 5 

μg pcDNA-myc-RIG-I or pcRNA-myc-RIG-I mut using Lipofectamine 2000. Twenty-four 

hours post transfection, the cells were harvested in cold PBS and lysed in lysis buffer (50 

mM Hepes, pH 8.0; 5% glycerol; 0.5% Igepal; 200 mM NaCl; 2 mM MgCl2; 10 mM CaCl2; 

1 mM DTT; 1 U/ml Micrococcal Nuclease (Thermo Scientific); and 1x EDTA-free protease 

inhibitor) on ice for 1 h. Three μg of anti-myc antibody was next added per 0.5 ml of cleared 

lysate and mixed at 4 ºC for 1.5 h. The lystate-antibody mix was bound to Protein G Mag 

Sepharose Xtra beads (GE Healthcare) at 4 ºC for 1.5 h, washed 6 times with 20 column 

volumes of RIG-I wash buffer (50 mM Hepes, pH 8.0; 200 mM NaCl; 0.1% Igepal; 5% 

glycerol; 1 mM PMSF; 2 mM MgCl2) at 4 ºC for 10 min, and finally myc-RIG-I was eluted 

from beads in 1 column volume wash buffer containing 0.5 mg/ml c-myc peptide (Pierce) 

for 15 min at 4 ºC. Activity assays were performed in 50 mM Hepes pH 8.0, 150 mM NaCl, 

2 mM MgCl2, 5 mM DTT, and 0.1 μM [γ-32P]ATP. [γ-32P]ATP and 32Pi were resolved 

using PEI-cellulose TLC plates (Sigma-Aldrich) in 0.4 M KH2PO4 pH 3.4.
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Cell and animal infections

HEK 293T cells were infected with influenza A/WSN/33 (H1N1) virus, free of DI RNAs, at 

a multiplicity of infection (MOI) of 5. RNA was extracted 5 h post infection and analysed 

using deep sequencing or qualitative RT-PCR. 6-wells containing A549 cells were infected 

with A/WSN/33 (H1N1), A/Vietnam/1203/04 (H5N1), or A/Vietnam/1203/04 (H5N1) with 

the V43I mutation with an MOI of 5. RNA was extracted 8 hours post infection and 

analysed using deep sequencing or qualitative RT-PCR. Ferret (Mustela putorius furo) lung 

tissue was obtained from male ferrets infected with A/Indonesia/5/2005 (H5N1) or A/

Netherlands/602/2009 (H1N1)29, or female ferrets infected with A/Brevig Mission/1/1918 

(H1N1)30. Ferrets were randomly assigned to groups of four before inoculation. A single 

ferret (lung titre = 7.6×101 log10TCID50/g) was excluded from analysis on the basis of its 

apparent lack of infection. Ferret RNA was isolated from lung tissue samples using Trizol 

(Invitrogen) and analysed using qualitative RT-PCRs and next generation mvRNA 

sequencing with universal primers and quantitative mRNA sequencing.

Sequence alignment and structural modelling

PB2 amino acid sequences from influenza A viruses A/WSN/33 (H1N1), A/Brevig Mission/

1/18 (H1N1), A/Northern Territory/60/68 (H3N2), and A/duck/Fujian/01/02 (H5N1) were 

aligned using Muscle 3.0 and visualised using ESPript40. The bat influenza A virus 

polymerase structure (PDB 4WSB) was visualised in Pymol 1.6.

Next generation sequencing of mvRNAs using adapters

Total cell RNA from transfected or infected cells was isolated using Tri Reagent (Sigma) or 

Trizol (Invitrogen) according to the manufacturer’s instructions and fractionated into small 

(17-200 nt) and large (>200 nt) RNA fractions using an RNA Clean and Concentrator kit 

(Zymo Research). Next, the small RNA fraction was denatured at 70 ºC for 2 min and 

subsequently treated with 2 U of XRN-1 in NEB buffer 2 at 37 ºC for 15 min to deplete 

miRNAs. Next, XRN-1 was inactivated by adding 10 mM EDTA and incubating the reaction 

at 70 ºC for 10 min. Viral triphosphorylated RNAs were converted to monophosphorylated 

RNAs by adding 5 U of RNA 5' Pyrophosphohydrolase (RppH) and 10 mM MgCl2 and 

incubating the reactions at 37 ºC for 15 min. RNA was purified using an RNA Clean and 

Concentrator kit and libraries for deep sequencing were prepared using the NEBNext Small 

RNA Library Prep Kit according to the manufacturer's instructions. To ensure accurate 

quantitation after PCR amplification, the concentration of each library was measured by 

qPCR on a StepOnePlus instrument (ABI) and the number of PCR cycles used to 

subsequently amplify the remaining library material was calibrated so as to ensure the PCR 

was in the early stage of exponential amplification and to not over-cycle the PCR reactions. 

Amplified sequencing libraries were purified on a 6% Novex TBE PAGE according to the 

manufacturer’s instructions to remove primer-dimers. Paired-end sequencing (2x75bp) on an 

Illumina HiSeq 4000 was carried out by the Oxford Genomics Centre, Wellcome Trust 

Centre for Human Genetics (Oxford, UK). It is important to note that the existence of 

mvRNAs has likely been overlooked till now, because i) RNA isolation protocols vary in 

their capacity to recover small RNAs, ii) RT-PCR products from mvRNAs form a diffuse 

fast-migrating band on standard agarose gels that may be mistaken for primer-dimers, iii) 
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conventional RNA deep sequencing protocols discard short library fragments, and iv) 

standard ligation-based deep sequencing protocols do not detect viral transcripts with a 5′-

triphosphate group.

Next generation sequencing of mvRNAs using universal primers

To spike viral RNA for quantitative sequencing, 0.2 μl of 100 pM spike RNA 

(Supplementary Table 2) was added to 40 ng of the small RNA fraction (see above). The 

RNA mixture was next converted into cDNA using primers Lv3aa, Lv3ga and Lc3 and 

Superscript III (Invitrogen) at 37 ºC for 30 min. Second strand synthesis was performed 

using Q5 polymerase (NEB) and primers Lv5, Lc3a, and Lc3g at 47 ºC for 10 min, followed 

by a further extension at 72 ºC for 3 min. The excess of barcoded primers was removed by 

incubating the second strand reaction with 1 U of exonuclease VII (NEB) at 37 ºC for 1 h. 

The exonuclease was inactivated at 95 ºC for 10 min. Next, the DNA was amplified using 

Q5 polymerase, primer P5 and i7 index primers (Lexogen), and subsequently sequenced on 

a NextSeq 500 sequencer (Illumina).

Preparation of reference genome files for deep sequencing of mvRNAs

Prior to mapping, a reference genome file was prepared from relevant viral reference 

sequences in Genbank (see above). For the analysis of sequencing libraries prepared using 

universal influenza virus primers, the 5′ and 3′ viral promoter sequences of each segment 

were modified to match the degenerate universal primer sequences used in sample 

preparation (see Supplementary Table 3), and the sequences of the spiked-in mvRNA 

quantitation standards (see Supplementary Table 2) were appended to the reference genome. 

For WSN, VN04, and VN04hf viruses, deep-sequencing data of mRNA generated in A549 

cell infections (above) was exploited to generate updated reference genome files: the 

mpileup and consensus commands in the bcftools software package41 were used following 

mapping of non-host mRNA reads to the relevant viral reference genome using STAR 
aligner42.

Data processing pipeline for deep sequencing of mvRNAs using universal influenza virus 
primers

Raw sequencing reads were first trimmed to remove sequencing adaptor sequences and 

reads with quality scores less than 20 using the cutadapt software package43 and the 8-nt 

unique molecular identifier (UMI) at the start of each read were removed from the sequence 

and appended to the read ID line of the FASTQ file using the extract command from the 

umi_tools software package44. Sequencing reads were then mapped end-to-end to the 

appropriate viral reference genome using the STAR aligner42, and permitting sequencing 

reads to have long internal deletions (i.e. an mvRNA, interpreted as splicing by STAR) with 

at least 16 nt anchored on either side of the deletion (--outSJfilterOverhangMin 16 16 16 
16). The default settings of STAR were modified so that no alignment scoring penalty was 

given for an internal deletion and no preference was given to internal deletions that 

overlapped particular sequence motifs (--scoreGapNoncan 0 --scoreGapGCAG 0 --
scoreGapATAC 0), and to ensure accurate quantitation, only the top-scoring alignment was 

included in the outputted BAM file (--outSAMmultNmax 1), which was sorted and indexed 

using samtools45. An aligned read was counted as an mvRNAs if it was anchored to the 
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viral reference genome at the 5′ end in vRNA sense and contained an internal deletion 

(called as a splice junction by STAR), and the total numbers of mvRNAs and spiked-in 

quantitation standards were tallied using the idxstats command of samtools. mvRNA levels 

relative to the quantitation were then reported as number of reads per million mapped (RPM) 

quantitation standard. To validate the qPCR protocol used to prevent over-cycling of 

sequencing libraries, the quantitation was then repeated following removal of PCR 

duplicates, exploiting the UMI appended to each read, using the umi_tools dedup command, 

and counting the various mvRNA species as unique using the --spliced-is-unique option. The 

identities of the individual mvRNAs were then extracted from the SJ.out.tab file generated 

by STAR.

Data processing pipeline for deep sequencing of mvRNAs using adapter ligation

Raw sequencing reads were first trimmed using the cutadapt software package43 to remove 

RNA adapters, sequencing adapters, and reads with quality scores less than 20. Since 

adapter ligation captures both host-derived and virus-derived small RNA species, reads were 

first mapped end-to-end to the DASHR database of human small RNAs46 using the STAR 
aligner42, with spliced alignments disabled (--alignIntronMax 1). Non-human reads were 

outputted using the --outReadsUnmapped Fastx option, were then mapped to the appropriate 

viral reference genome to find mvRNAs as described above, and quantitated relative to the 

total number of viral reads (RPM viral) or host reads (RPM host).

Quantitative mRNA sequencing and differential gene expression analysis

Libraries for gene expression analysis were prepared using a QuantSeq 3' mRNA-Seq 

Library Prep Kit FWD for Illumina (Lexogen) according to the manufacturer’s instructions 

and sequenced on a NextSeq 500 sequencer. mRNA reads were aligned to the reference 

genome (CRCh38, GRCm38, or MusPutFur1.0) using the STAR read aligner42, exploiting 

the built-in trimming functions to remove the first 12 bases corresponding the Lexogen 

random primer (--clip5pNbases 12) and any contaminating poly(A) tails in the sequencing 

reads (--clip3pAdapterSeq AAAAAAAAAAAAAAAAAA), as well as requiring a 

minimum match to the reference genome of 40 bp (--outFilterMatchNmin 40). Gene counts 

were generated using reference genome annotations (Gencode v26 for CRCh38, and 

Ensembl 90 for MusPutFur1.0) using the STAR command --quantMode GeneCounts. 

Differential gene expression analysis was then carried out using the DEseq2 package in R47 

to identify genes that were up- or down-regulated as a function of mvRNA levels, 

independently of viral load or titre. Specifically, the likelihood ratio test (LRT) was used to 

compare a full model (in which gene expression varies as a function of both viral load or 

titre, and mvRNA levels) to a reduced model (in which changes in gene expression are fully 

explained by viral load or titre alone) using analysis of deviance (ANODEV) to generate a 

P-value for the log-fold-change of each gene, which were adjusted for multiple testing by 

controlling the false discovery rate (FDR) using Independent Hypothesis Testing48 and 

reported as q-values. mvRNA levels were determined by deep sequencing using universal 

influenza virus primers, as detailed above. Viral load or titre was determined by segment 6 

qRT-PCR or by using previously published values29,30. Subsequent enrichment analysis of 

Gene Ontology terms specifically affected by mvRNA levels was carried out using 

Parametric Analysis of Gene Set Enrichment49 via the GAGE package in R, with data from 
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the above genome annotations, accessed via the biomaRt package50. Significance of 

enrichment for GO terms was calculated using a one-sample z-test49 in GAGE, and P-values 

were adjusted for multiple testing using the Benjamini-Hochberg method and were reported 

as q-values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. mvRNAs of influenza A virus are bound by RIG-I and induce IFN expression.
(a) Models of the influenza virus ribonucleoprotein (vRNP) complex and potential activators 

of RIG-I. (b) Analysis of IFN-β promoter activity induced by the replication of segment 4, 5 

or 6 vRNAs, DI RNAs or mvRNAs or by the transfection of poly(I:C). PB2, NP and tubulin 

expression was analysed by western blot. P-values were determined using a two-sided 

unpaired t-test. (c) IFN-β promoter activity induced by the replication of engineered, 

segment 5-based, short RNAs in HEK 293T cells. P-values were determined using ANOVA 

with multiple testing compared to the 246 mvRNA. (d) IFN-β promoter activity induced by 

the replication of engineered, segment 5-based, short RNAs in wild-type (RIG-I +/+) or 

HEK 293 RIG-I knockout (RIG-I -/-) cells. P-values were determined as in c. (e) Binding of 

segment 5-based RNAs to myc-tagged RIG-I or mouse EGF control protein (myc-ctrl). P-

values were determined using ANOVA with multiple testing compared to the myc-ctrl with 

246 mvRNA. All graphs show standard deviation and mean of data from three (n=3) 

biologically independent experiments.
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Figure 2. Dysregulation of RNA replication in cells infected with WSN results in the generation 
of mvRNAs.
(a) Analysis of IFN-β promoter activity (graph) and steady state vRNA and mvRNA levels 

(top gel) in WSN infections following overexpression of viral polymerase or viral 

polymerase and NP. mvRNAs were also amplified with universal primers containing 

adapters for sequencing (mvRNAs+adapt) and analysed by PAGE (second gel). NP, PB1 and 

tubulin expression was analysed by western blot. P-values were determined using ANOVA 

compared to lane 2. (b) Quantitation of mvRNAs using deep sequencing, expressed as reads 

per million (RPM). P-value was determined using a two-sided unpaired t-test. (c) mvRNA 

distribution per genome segment. (d) Size distribution of mvRNAs. (e) mvRNA distribution 

per type of intramolecular copy-choice mechanism. (f) Example of mvRNA formation 

through an intramolecular copy-choice mechanism involving a 3′ mismatch. (g) Model of 

mvRNA formation by the polymerase (model adapted from6). All graphs show standard 

deviation and mean of data from two (n=2) (b-d) or three (n=3) (a,e) biologically 

independent experiments.
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Figure 3. The PB2 polymerase subunit of highly virulent influenza A viruses promotes mvRNA 
synthesis.
(a) Analysis of mvRNA levels using primer extension (top gel) or RT-PCR (second gel) 

during the replication of a segment 5-based 246 nt RNA template by the WSN, BM18, NT60 

and FJ02 polymerases, and IFN-β promoter activity induced by the transfection of total 

RNA isolated from these cells into reporter HEK 293T cells expressing luciferase. NP and 

PB1 expression was assessed by western blot. n=3 biologically independent experiments. P-

values were determined using ANOVA with adjustments for multiple corrections compared 
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to WSN. (b) Location of PB2 amino acid residues 9, 64 and 81 in the bat influenza A virus 

polymerase structure (PDB 4WSB). (c) Analysis of the effect of PB2 mutations on mvRNA 

formation using RT-PCR (top gel) and IFN-β promoter activity induced after transfection of 

total RNA isolated from these cells into luciferase reporter HEK 293T cells. PB2, NP and 

tubulin expression was analysed by western blot. P-values were determined using ANOVA 

with adjustments for multiple corrections compared to WSN. n=4 biologically independent 

experiments for all WSN mutants in top graph. n=3 biologically independent experiments 

for BM18 in top graph and all samples in bottom graph. (d) IFN-β promoter activity as 

function of PB2 mutation and mvRNA formation. Each data point was generated using the 

biologically independent experiments presented in c. P-values were determined using linear 

regression. All graphs show standard deviation and mean.
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Figure 4. Levels of mvRNAs produced during infection correlate with innate immune responses.
(a) Analysis of mvRNAs in A549 cells infected with WSN, VN04, VN04hf using deep 

sequencing or PAGE. mvRNAs were amplified using universal primers containing adapters 

for sequencing (mvRNAs+adapt). mvRNA counts were normalised to mvRNA and mcRNA 

internal standards. NP vRNA and actin mRNA levels were analysed by RT-PCR. P-values 

were determined using ANOVA with adjustments for multiple corrections compared to the 

mock. (b) Analysis of mRNAseq of infected A549 cells showing GO terms down-regulated 

(left) and GO terms up-regulated (right) in VN04 infection as compared to VN04hf in 

response to mvRNA levels. P-values were determined using a one-sample z-test (see 

Methods). Data are from n=4 biologically independent experiments (a,b). (c) Analysis of 

mvRNAs in lungs of ferrets one day after infection with IN05, NL09 or BM18 using deep 

sequencing or PAGE. NP vRNA and actin mRNA levels were analysed by RT-PCR. P-values 

were determined as in a. (d) Analysis of tissue mRNAseq showing GO terms enriched as 

function of mvRNA levels in lungs of ferrets infected with IN05, NL09 and BM18 influenza 

viruses. Data are from n=4 biologically independent experiments with separate mock 

samples for BM18, and IN05 and NL09 (c,d). One BM18 ferret was excluded from the 

analysis. P-values were determined as in b. (e) Model for the expression of cytokines in 

influenza virus infected cells. In a and c graphs show standard deviation and mean.
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