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Abstract

Omics technologies have made it easier and cheaper to evaluate thousands of biological molecules 

at once. These advances have led to novel therapies approved for use in the clinic, elucidated the 

mechanisms behind disease-associated mutations, led to increased accuracy in disease subtyping 

and personalized medicine, and revealed novel uses and treatment regimes for existing drugs 

through drug repurposing and pharmacology studies. In this review, we summarize some of these 

milestones and discuss the potential of integrative analyses that combine multiple data types for 

further advances.

Introduction

The “omics revolution” that has been sweeping biological research since the advent of 

genomic sequencing has generated an incredible amount of data, and given birth to 

technologies that make it ever easier and cheaper to measure biological molecules en masse. 

The task of translating those data into actionable therapeutic knowledge, however, remains 

an area of active research. We briefly review omics data and technologies, discuss the types 

of questions translational researchers might ask using omics datasets, and highlight 

important translational advances and accomplishments from the last few years.

The vast promise of omics technologies

“Omics” assays are those that attempt to interrogate an entire layer of molecular activity in a 

cell or sample. The omics revolution was set off by genomic arrays, which contained 

hundreds of probes for selected variants in predetermined regions of the genome. Now, 

omics technologies have expanded to include more unrestricted approaches, such as assays 

based on next-generation sequencing and mass spectrometry. There are customized assays 

for each layer of molecular activity, from genomes to metabolomes. A scientist can choose 

to measure genomics (e.g. whole genome or whole exome sequencing), transcriptomics (e.g. 

RNA-seq), epigenomics (e.g. bisulfide sequencing, ChIP-seq for histone modifications, 

ATAC-Seq for open chromatin), the three-dimensional arrangement of the genome (e.g. Hi-

C or ChIA-PET), proteomics or phosphoproteomics, and metabolomics (most commonly by 
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mass spectrometry). Each layer’s assay comes with its own technical requirements and 

caveats, but each can give rich, detailed information about the choreography of molecules in 

a sample.

Increasingly, researchers are recognizing the value of skillful integration of multiple layers 

of omics data, termed multi-omic studies. Modeling and discovering the interplay between 

different omic layers can lead to important functional and clinical discoveries [1,2]. A recent 

example of multi-omic studies successfully leading to translational impact comes from the 

study of IDH mutations in cancer. A 2008 genomics study found common mutations in the 

IDH1 gene in glioblastoma that were associated with increased survival [3], and subsequent 

studies found this mutation in other cancers as well [4]. However, it wasn’t until combined 

genomic and epigenomic studies that the full implications of this mutation were discovered. 

The mutation in IDH1 and a similar mutation in the IDH2 gene produce altered forms of the 

encoded enzymes with a gain of function that leads to metabolic, epigenetic, and 

transcriptomic changes that block differentiation of cancerous cells [5*,6]. Last year, less 

than 10 years after the studies that identified the mutations, a drug that targets mutated IDH2 

was approved for the treatment of acute myeloid leukemia [7,8], and new drugs targeting 

these enzymes are being developed for other indications.

What types of clinical insights can omics data provide?

There are several distinct types of questions one could ask with omics data that would be 

useful for translational research. Here, we split them into five categories and give recent 

examples of each.

Disease-altered molecules, therapeutic targets, and biomarkers

A straightforward result of omics studies is a list of molecules that are altered in a disease, 

or correlated with disease severity. While omics approaches are sometimes derided as 

“hypothesis free science,” in reality these lists of molecules are the necessary step of 

observation from which hypotheses can be generated systematically. The lists of molecules 

point to pathways that could contain new therapeutic targets, biomarkers, or lead to 

functional insights into the disease.

Prioritizing these often very long lists of altered molecules is critical. It may seem natural to 

focus on molecules that are supported by interesting functions known in the literature. 

However, such an approach ends up reinforcing prior beliefs at the expense of novel 

discovery. Alternative approaches include focusing on the network or pathways that are 

enriched in the observed molecules [9].

Functional insights

Omics data can also help researchers come to a better understanding of the mechanism of 

disease. In the case of genome-wide association studies (GWAS), for example, mechanistic 

insights are often vital once genomic variants have been statistically associated with a 

disease. For example, GWAS have found strong association of mutations in the region of the 

gene FTO with obesity [10,11]. A recent study used further omics data to show that a causal 

variant in this region leads to derepression of important bioenergetic genes [12**]. This 
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work represents an exciting move towards understanding the mechanism behind heritable 

obesity.

Most GWAS findings, however, tend to be common genomic variants with very small effects 

on the probability of disease. A recent model proposed by Boyle et. al. suggests that variants 

in almost any gene expressed in disease-relevant cells may contribute to disease, and that 

these small effects add up to account for most of the heritability of diseases [13]. This 

hypothesis, which they call the omnigenic model, could be true because of the highly 

interconnected nature of genes and other molecules in the cell; expression changes of nearly 

any set of genes can work through these interactions to affect important disease pathways. 

Their findings emphasize the need for detailed integrative models to uncover functional 

insights in cases where the mechanisms of disease-driving variants or pathways are not 

obvious.

Disease classification and prediction

Omics data can lead to further subdivision beyond a binary classification of healthy vs. 

diseased that can prove to be hugely beneficial in the clinic. Such approaches can lead to 

better treatment for patients based on the actual biology of their specific disease, by placing 

patients within subtypes or along a spectrum of their disease. Pirhaji et al. recently showed 

that even relatively crude ordinal classification of disease severity can be used effectively to 

find disease-related pathways [14*]. Finding the best methods for subtyping [15] and for 

improving results by integrating different kinds of molecular data [16] are extremely active 

areas of research.

The subtyping of breast cancer has been especially well-studied [17]. Classical subtypes rely 

on gene expression of specific markers, and those subtypes are associated with different 

treatments and prognoses. A recent study by Vazquez et. al. directly showed the advantage 

of adding multi-omics information into models predicting the progression of breast cancer 

[18**].

Personalized medicine

Although related to subtyping and disease classification, the exciting potential of omics 

studies to contribute to personalized and precision medicine deserves special attention. The 

increasing availability of omics technologies in the clinic could lead to decisions and 

treatments being tailored to an individual patient [19,20].

In 2012, a model for this approach was put forward in the form of an “integrative Personal 

Omics Profile (iPOP)”, where researchers performed multiple omics analysis on the blood of 

a healthy individual over several months [21]. One of the important results of this study was 

the high level of variability in molecular activity such as mRNA and miRNA expression for 

the same person over time. Further studies in a large number and of diverse subjects would 

be needed to determine the level of “background” variability expected in healthy and 

diseased individuals before monitoring like this could be widely implemented.

Personalized medicine is also a promising application for analysis of the gut microbiome. 

Sequencing genomic material from intestinal bacteria leads to estimations of which species 
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colonize the gut and their abundance. The microbiome in the gut of each person is distinct, 

and has important implications for their health [22*]. The vast potential that microbiomes 

could contribute to personalized medicine is reviewed in [23].

Drug repurposing & pharmacology

Along with identifying new therapeutic targets and disease phenotypes – which could lead to 

novel drugs – omics studies promise to help identify new uses for existing drugs. Such 

repurposing of approved drugs could save years and tens or hundreds of millions of dollars 

into research. Omics studies have the potential to discover new purposes for drugs in an 

unbiased manner, without prior hypotheses about which drugs and diseases might go 

together [24].

One popular approach to unbiased drug repurposing involves comparing transcriptomic 

profiles of cell lines treated with a library of approved drugs to the transcriptomic profile 

from disease samples. In particular, the goal is to find drugs that raise the expression of 

genes that have lowered expression in the disease, and vice versa. The Connectivity Map 

(CMAP) provides a public repository of such gene expression data for this purpose [25,26]. 

In one such study, researchers found such a transcriptomic connection between small cell 

lung cancer and tricyclic antidepressants [27,28*]. Identifying connections between 

approved or investigational drugs and new diseases could have tremendous impact. 

However, there are significant commercial barriers to repurposing, which may determine 

whether or not this approach is ever broadly adopted.

Finally, omics data can help us to further understand existing or developing drugs by 

providing insights into pharmacology [29], or to track pharmacodynamics in real time [30]. 

In this way, data like these can help researchers develop better drugs and treatment regimes 

for patients.

Public databases and comparative studies

One of the great advantages of omics data is that they can remain easily accessible for 

further analysis long after the initial study is finished. Many of the examples above 

reanalyzed data that were made public as part of large collaborative efforts. These projects 

invested the necessary resources to make sure that the experiments were well-documented 

through extensive metadata, thus ensuring that future users would be able to interpret them 

[26,31–37].

Putting omics data in public databases allows for many sets of eyes on the same dataset, 

maximizing the useful findings that might be wrung from the data. It also allows for meta-

analyses where interesting data can be directly compared between studies. These 

comparative studies require careful work and expertise to contend with batch effects and 

variable data collection methods, but they can be powerful ways to determine if findings are 

consistent across a field [38]. Of course, they can also highlight reproducibility problems 

across omics studies [39].
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Another exciting avenue involves comparing data across different models of the same 

disease. Studies like these can be used to validate new model systems, find pathways 

common across several models of disease, or identify pathways that are only altered in one 

model system, which may not translate to humans. For example, comparison of the 

transcriptome [40] and epigenome [41] between mouse models and human tissue in 

Alzheimer’s disease showed several disease-related pathways are conserved between the 

two, such as immune response alterations, while pathways such as glial-neuron interactions 

may only be altered in human disease. These studies can help us understand the strengths 

and weaknesses of preclinical models, and, in particular, whether findings in these models 

are likely to translate to humans.

Tools for integrative multi-omics studies

One simple, but powerful tool for multi-omics studies is correlation analysis. Identifying a 

correlation between distinct types molecules can be an effective way to generate new 

hypotheses – as in the finding of a mutation that correlates with a specific epigenetic state 

[5]. As multi-omic studies get more complicated, however, more sophisticated tools that 

integrate multi-omic studies are increasingly important. There are several distinct types of 

methods proposed for mathematical integration of omics data [42].

One promising type of methods used to integrate omics layers is based on networks and 

pathways [43]. Databases of known biological pathways and gene ontologies are important 

resources for the community, and can be used to map omics hits to known functions [44–

49]. However, such approaches are inherently limited by the incomplete knowledge of 

molecular pathways.

A new class of tools is emerging that do not rely on previously known functional pathways, 

and instead infer networks and connections among the data. Tools like these may use 

different types of networks as their underlying model [50]. They can focus on how networks 

may differ between states, such as disease and control [51]. Tools like Omics Integrator 

[52,53**] and PIUMet [54*] are recent examples of methodological advances that meet 

these challenges. In both cases, the underlying networks and input datatype(s) are flexible in 

order to suit diverse experimental situations, methods to determine the robustness and 

specificity of the network results are included, and user interfaces have been built so that 

computational biology expertise is not needed in order to run the tools.

A vision for the future

It is likely the most important contributions of multi-omic methods still lie in the future. At 

least two important advances are needed before these approaches routinely contribute to the 

discovery of disease mechanisms. First, most omic studies, especially in the clinic, are 

currently carried out on bulk tissue. However, most disease processes represent a complex 

interplay of different cell types and tissues. Recent advances in single-cell/nucleus omics 

assays have demonstrated the extremely diverse patterns of molecular activity present in 

healthy tissue, tumors, and other samples [55]. These assays so far have primarily measured 

gene expression in single cells, but recently tools are emerging to perform genomic, 
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epigenomic, and small proteomic screens as well [55]. Advances in these types of omic data 

collection, coupled with temporal and spatial information, may someday provide the 

necessary data to understand the contributions of the complex, dynamic interactions of cell 

types to disease.

However, dramatic advances in measurement technology alone will not suffice. It will be 

essential to develop better methods for distinguishing correlated events from causal 

behavior. Current computational methods for causal modeling do not scale to the omics 

level, as they require vast quantities of data from large numbers of samples [56, 57]. Some 

types of data are more amenable to causal modeling, especially interventional experiments. 

In these experiments one systematically inactivates (or activates) each molecule of interest 

and monitors the effect on all other molecules. Obviously, it would be prohibitively 

expensive to carry out interventional experiments on a genome/proteome-wide scale. There 

are also critical practical considerations of choosing an experimental model in which to 

conduct such experiments, which cannot be conducted on biopsy or post-mortem samples.

The future for causal modeling almost certainly lies at the interface of computation and 

experiment. Computational methods, including some of the solutions we have described 

here, such as network optimization techniques, can shrink the scale of the problem. Once a 

focused list of genes/proteins have been identified, interventional experiments can be 

conducted on tens or hundreds of molecules rather than tens of thousands. But these 

experiments will necessarily be conducted in a model of the disease that can never fully 

capture the full complexity of the problem. Model organisms, immortalized cell lines, 

induced pluripotent stem cell (iPSC)-based approaches, and even 3D models of specific 

organs are being utilized to great advantage, but all involve tradeoffs [58]. The challenge 

will be to develop computational methods that translate findings across these models [59], 

and perhaps can ultimately discover from the data what aspects of the model are relevant to 

the human disease.

Conclusions & challenges

Despite its many promises and applications, research that leverages omics data faces 

important open challenges. Among them is the task of accurate quantification and inter-lab 

reproducibility of high-throughput assays. Careful experimental design and transparent 

releases of data, meta-data, and computer code used for analysis should improve 

reproducibility [60]. Some fields, such as gene expression analysis, have very well-

established and frequently used databases for sharing results. However, the situation is much 

less developed for other areas, such as metabolomics. Attention should also be paid to 

extraneous sources of variability that may have been ignored previously, such as the 

handling of tissue prior to data procurement [61].

As the mechanisms for accurately comparing datasets advance, the next big challenge will 

be to carry out such studies on clinical samples. Such studies need extra care to ensure that 

patient privacy is respected. Yet the success of The Cancer Genome Atlas, among others, 

proves that these problems can be overcome. So far, most studies have focused on collecting 

genomic, and to some extent transcriptional data. However, as other omic methods become 
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more common, it is likely that more comprehensive studies will follow. These future studies 

may also be able to include richer data from patients’ electronic medical records, and 

perhaps even from wearable devices.

Beyond any technical challenges there is also an urgent need to make sure such studies 

provide benefit to all. The generation of omics data and its analysis take considerable 

resources, and those resources will increase immensely in personalized medicine paradigms. 

If these expensive approaches result, as hoped, in major advances in health care, the gaps in 

public health outcomes between first and third world countries will only increase [56]. As 

we develop and improve methods for translational omics research, we should also pay 

attention to economic issues and look for opportunities to bring the promise of omics data to 

less advantaged regions.

Finally, there is a need for smart, flexible, and easy to use methods for integrative omics data 

analyses to continue to be improved and developed. As biologists become more comfortable 

and knowledgeable about the methods and caveats associated with omics data, specialized 

tools for these professionals will be needed. Even tools that are currently created with non-

programmers in mind, such as Omics Integrator and PIUMet, require some knowledge of 

how their respective parameters affect their results, and how their results should be 

interpreted. In addition, tools that can discover and implicate causal relationships between 

molecules and pathways would be a great boon to network-based tools. However, omics data 

is already making its mark on translational research, and ongoing work to improve its 

reproducibility, accessibility, and ease of use will continue to unlock its potential.
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Highlights

• Omics technologies allow evaluation of entire layers of molecular activity at 

once

• Omics data can be used to answer a variety of questions in translational 

research

• Integrating multiple layers of omics data leads to novel, important results

• Tools for pathway-based and comparative studies will advance the field
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Figure 1. 
Omics data measure entire layers of molecular activity. A few of the technologies are shown 

in the center. Integrating and analyzing these data can serve several important purposes for 

translational research.
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