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I. Introduction

Since the start of the pandemic in the early 1980’s, HIV infection has been a major public 

health crisis across the world. Currently, around 37 million people are infected with HIV, 

with 1.8 million of them infected in 2016 alone. Although HIV-infection affects every region 

of the globe, the majority of infections are found in in sub-Saharan Africa and southeast 

Asia (UNAIDS 2017). Initially a terminal diagnosis, the advent of combinatorial 

antiretroviral therapy (cART or HAART) in 1996 dramatically improved the prognosis for 

HIV, enabling infection to be managed as a chronic condition rather than a terminal illness 

[1-3]. This therapeutic strategy treated patients with multiple (generally 3) antiretroviral 

drugs simultaneously, preventing escape mutations within the virus and thereby significantly 

improving the suppression of HIV replication. Successful cART has lengthened the lifespan 

and improved the quality of life for infected individuals. However, effects of cART have also 

created new health issues, as chronic infection and long-term exposure to antiretrovirals 

have created a suite of new metabolic, cardiovascular and neurologic disorders in infected 

individuals.

Even when HIV replication is fully suppressed with cART, around 50% of infected 

individuals still display a variety of neuropathological and neurocognitive sequelae known as 

NeuroHIV, or when referring specifically to the neurocognitive effects, as HIV-associated 

neurocognitive disorders (HAND) [1, 4]. While severe forms of neurocognitive impairment 

are rare in the cART era, the prevalence of HAND is increasing, and deficits in executive 

functioning, working memory, and psychomotor fluency are still frequently observed in HIV 

patients [2, 5, 6]. These can significantly impair therapeutic adherence [7] and accelerate the 

development of peripheral disease [8]. The development of these disorders is initiated by 

HIV infection of the central nervous system (CNS), which occurs in nearly all infected 

individuals shortly after initial infection [9, 10]. Within the CNS, the primary targets for 

HIV are myeloid lineage cells, such as microglia and perivascular macrophages. Infection of 

these cells is central to HIV neuropathogenesis, as infected myeloid cells generate new 

virions to further spread infection, and both infected and uninfected myeloid cells produce 

inflammatory mediators in response to infection [11-16]. The persistence of neurocognitive 
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impairment in virally suppressed individuals suggests subclinical alterations in 

neurotransmission, neuronal and immune function may underlie the earliest manifestations 

of NeuroHIV in the cART era [17-23].

Dysregulation of catecholaminergic neurotransmission, particularly the dopaminergic 

system, has long been correlated with the development of neuroinflammation and HAND. 

Studies specifically examining role of catecholamines in HIV pathogenesis, particularly 

focused on NeuroHIV, are relatively few. However, over the course of the epidemic, 

researchers found that infected individuals show a number of catecholaminergic changes. 

These include increased damage in dopaminergic regions of the CNS, altered autonomic 

nerve activity, changes in catecholamine metabolism, stress induced changes in infection and 

response to cART, and altered viral replication and dysregulated immune responses resulting 

from changes to catecholaminergic tone [19, 24-48]. Further, data show that catecholamines, 

particularly dopamine and norepinephrine, are important mediators for neuroimmune 

crosstalk [47, 49-53]. As the dysregulated immune response is central to the etiology of 

NeuroHIV, these data suggest that disruptions in catecholaminergic tone in response to HIV 

infection, drug abuse, stress or specific therapeutic drugs, could exacerbate HIV 

neuropathogenesis. The dearth of studies in this area, particularly those dissecting the 

mechanisms by which catecholamines mediate their effects on NeuroHIV, has hindered our 

ability to understand and effectively treat these components of HIV neuropathogenesis. 

Therefore, this review will discuss what is known about the role of catecholamines in the 

development of NeuroHIV. We briefly discuss the state of CNS infection in the cART era, 

touching on the specific effects in dopaminergic and adrenergic systems, and then discuss 

catecholamine biology and what is known about the catecholaminergic systems in immune 

cells. We will then focus on catecholaminergic modulation of HIV infection and 

neuroinflammatory processes, and how these effects might enhance the development of 

NeuroHIV. The neurologic complications of HIV are a growing problem within the infected 

population, making the development of new neuroprotective strategies a pressing medical 

need. This review will contribute to a better understanding of the bidirectional interactions 

between catecholamines and HIV infection of the CNS, leading to novel therapeutic targets 

for the treatment of NeuroHIV.

II. HIV neuropathogenesis in the cART era

Prior to the widespread use of cART, HIV infection of the CNS commonly resulted in 

significant neuropathology including HIV encephalitis (HIVE), meningitis, microglial 

nodules, multinucleated giant cells, reactive gliosis, and neuronal injury and death [12, 34, 

54, 55]. Severe neurocognitive impairment was also common, with HIV-associated dementia 

(HAD) found in 15-20% of infected individuals. Significant neuropathology was often 

coincident with neurocognitive impairment in many infected individuals, but the relationship 

between neurological damage and cognitive impairment is not entirely causal. Studies 

demonstrated that HIVE did not explain all HIV-associated dementia, and the best correlate 

for the development of HIV-associated neuropathology was myeloid cell activation in the 

CNS [16, 34, 56]. With cART, HIVE and HAD are almost nonexistent, and severe forms of 

neurocognitive impairment are rare, but the prevalence of mild and asymptomatic forms of 

neurocognitive impairment have increased, and HAND is still found in 40 – 70% of HIV 
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infected individuals [1, 4, 57-59]. Despite suppression of HIV replication below the limit of 

detection, fully suppressed individuals still show signs of NeuroHIV, and data show no 

correlation between neuropathology, neurocognitive impairment, and CNS viral load [23, 

58-63]. This indicates that the development of HIV-associated neurological disease does not 

derive solely from damage associated with actively replicating virus [64-66].

NeuroHIV is initiated by HIV crossing the blood-brain barrier (BBB) to enter the CNS. This 

is thought to occur primarily via the transmigration of infected CD14+CD16+ monocytes 

[67], using the monocytes as “Trojan Horses” [68], although some studies suggest alternate 

routes of entry [69]. These mature CD14+CD16+ monocytes, are enriched in people with 

HIV and are more susceptible to HIV infection [67, 70]. The enrichment of this population 

is maintained in the presence of cART treatment [71], and is important to the development 

of HAND due to the disproportionate transmigration of CD14+CD16+ cells into the CNS 

[67, 72, 73]. Within the CNS, infected monocytes differentiate into perivascular 

macrophages and shed new virions, which infect additional macrophages and microglia. In 

addition to being the primary target for HIV infection in the brain [11-15], myeloid cells are 

the primary reservoir for HIV in this compartment [74, 75]. Astrocytes are infected at low 

levels [79, 80], and pericytes may also be infected [81], but the role of these cells in 

neuropathogenesis is unclear.

Although T-cells are the primary focus of HIV in the periphery, in the CNS the primary cells 

involved in neuropathogenesis are myeloid cells. This is because relatively few T-cells are 

present in the CNS, and these mostly surveil brain regions outside the parenchyma [76-78]. 

Increased T-cells, particularly CD8+ T-cells, are found in the brains of HIV-infected drug 

abusers and those with CNS-immune reconstitution inflammatory syndrome[47]. 

Polymorphonuclear neutrophils (PMNs) are the most abundant immune cells in the blood 

and can contribute to chronic immune activation during HIV infection [82]. However, PMNs 

do not seem to be infected by HIV [83] and their role in HIV-neuropathogenesis is not clear. 

Because the cells primarily targeted by HIV are T-cells and macrophages, these cells will be 

the focus of the remainder of this review.

In healthy individuals, CNS macrophages and microglia act as the primary immune response 

within the CNS, communicating with neurons by releasing a variety of cytokines and 

neurotrophic factors important to neuronal health and function [84-87]. Infection of these 

cells dysregulates production and release of inflammatory cytokines and neurotoxic viral 

proteins, activating neighboring uninfected cells and inducing further production of factors 

that perpetuate the neuroinflammatory environment. Infected or activated myeloid 

populations are thought to be primary drivers of neuroinflammation, and prior to cART, 

development of dementia correlated with myeloid cell activation [14, 15, 56]. Even with 

cART, immune activation is a critical component in the development of neurologic disease 

[88]. Infected brain tissue from cART-treated individuals shows upregulated CD68+ 

expression, as well as CD16 and CD163 positivity, indicative of significant macrophage and 

microglia accumulation and activation [66]. Soluble factors of monocyte activation, CD14 

and CD163, are increased in the plasma and cerebrospinal fluid (CSF) of HIV+ individuals 

with neurocognitive impairment [89-92]. Activated monocytes and macrophages produce a 

number of inflammatory factors including cytokines (IL-6, IL-1β, TNF-α, interferons), 
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chemokines (CCL2, CXCL8, CXCL9, CXCL10), hydrolytic enzymes (matrix-

metalloproteinases), and oxidative mediators (nitric oxide) [93, 94]. Production of these and 

other inflammatory and cytotoxic factors is thought to be central to the neuropathology of 

HIV infection in cART treated individuals [1, 14, 16, 34, 95].

Overall, while cART has significantly prolonged life and ameliorated HIV-associated 

disease, HIV infection of the CNS still induces a number of cognitive, behavioral and motor 

symptoms, along with substantial neuropathology. Data show that the inflammatory 

processes driving neurological disease persist in the individuals using fully suppressive 

cART [66, 88, 95-98], indicating that these processes are mediated by interactions distinct 

from viral replication. Over time, the damage from this chronic inflammation accumulates, 

interfering with neurotransmission and dysregulating neuroimmune communication. Many 

of these issues overlap with neurological issues associated with aging, and the synergy 

between these problems is growing [58] as the age of the HIV-infected population increases. 

Further, the ability to suppress but not eliminate HIV has resulted in an increased focus on 

the insults initiated by chronic infection and neuroinflammation, and the resultant changes in 

neurotransmission and CNS homeostasis.

IIa. The CNS viral reservoir

Reservoirs, are cell populations or anatomical sites that enable HIV to avoid the immune 

response, and are the primary impediment to eradication of HIV within an infected 

individual [99]. The importance of reservoirs is shown by the fact that HIV viremia recurs 

rapidly following interruption of suppressive cART [100, 101], and HAND occurs even in 

individuals on uninterrupted, suppressive cART therapy [2, 59, 61]. This suggests the CNS 

reservoir established prior to cART treatment may play an important role and is supported 

by studies identifying the lowest measured CD4 cell count, CD4 nadir, as one of the best 

predictors of neurocognitive impairment [102, 103]. As CD4 nadir generally corresponds to 

a period of unchecked viral replication, during which CNS invasion and establishment of the 

viral reservoir occur, the importance of CD4 nadir could indicate that some portion of CNS 

viral insults may be permanent. This is further supported by studies demonstrating lower 

CD4 nadir is associated with greater long-term decreases in subcortical gray matter and total 

white matter volume [104-107]. Although the most commonly studied reservoirs are long-

lived CD4+ memory T-cells, many studies show that the CNS, which is an immune 

privileged site, is also often considered to be a reservoir [99, 108]. Post-mortem brain tissue 

from pre-symptomatic HIV-infected individuals showed HIV-1 gag DNA in parenchymal 

macrophages and microglia despite the absence of HIV p24 expression [109]. Another study 

found the amount of HIV DNA in peripheral blood mononuclear cells (PBMC) correlates 

with the severity of HAND [110], and the follow-up showed patients with HAND 

maintained high levels of HIV DNA in activated monocytes throughout a five-year course of 

cART [111]. While these and other studies do not clarify whether the CNS reservoir is latent 

or active [75], there is substantial evidence showing that the CNS reservoir exists in long 

term infected perivascular macrophages and microglia [99, 108, 112], which can support 

HIV-infection for long periods without cytotoxic effects [113-115].
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IIb. Dopamine in HIV Neuropathogenesis

The involvement of the dopaminergic system in HIV neuropathogenesis has been 

hypothesized since very early in the epidemic. In the pre-cART era, elevated neuropathology 

was found in dopaminergic brain areas including the caudate and putamen, the substantia 

nigra and the prefrontal cortex (PFC) [12, 24-26, 30, 56, 58, 116-118]. In brain tissue from 

HIV-infected individuals, dopamine-rich brain regions such as the basal ganglia show the 

greatest degree of HIV-associated neuroinflammation [18, 95]. These regions also showed 

increased numbers of infected cells, and greater amounts of viral RNA [12, 28, 117, 118]. 

These effects were corroborated in simian immunodeficiency virus (SIV) infected macaques 

treated with L-DOPA and Selegiline to increase CNS dopamine levels. The increased 

dopamine in these animals significantly increased CNS viral load and exacerbated 

neuropathology [31, 32]. HIV infection and exposure to viral proteins also interferes with 

dopamine transporter expression and function [38, 119, 120], and dopaminergic neurons are 

particularly vulnerable to HIV-induced neurotoxicity [35, 121, 122]. Treatment with cART 

has shifted regional neuropathology, but patients still show substantial damage to dopamine-

rich regions, including striatal dysfunction, increased inflammation, neuronal damage, and 

diminished resting state functional connectivity [123-128]. PET scans of cART treated HIV-

patients with no history of illicit drug use found increased microglial activation in the basal 

ganglia [129]. High expression of HIV is still seen in these regions [28, 130], as is 

accumulation of HIV-infected microglia [131]. Additional studies which are discussed below 

also show specific effects of dopamine HIV infection and myeloid-mediated 

neuroinflammatory functions.

Polymorphisms in dopamine related genes, and changes in dopaminergic gene expression 

are also seen during HIV infection. Autopsy data from HIV+ patients have revealed 

correlations between dopaminergic gene expression and inflammation, suggesting that 

inflammatory mediators might be linked to dopamine signaling in HIV [19]. Several studies 

have connected genetic alterations in dopamine receptors (DRD) to neurocognitive 

impairment. Failure to downregulate the DRD2L gene is associated with unfavorable 

neuropsychologic and neuropathologic outcomes [19]. The rs6280TC single nucleotide 

polymorphism (SNP) in DRD3 is correlated with increased rates of cognitive impairment in 

HIV+ methamphetamine addicts [132], and several SNPs in DRD1 and DRD2 correlated 

with cognitive function in HIV+ drug abusers [133]. A strong correlation between a specific 

allele of the dopamine transporter (DAT), DAT 10/10, and HIV infection was found in 

German and African cohorts of HIV-positive and negative individuals. Individuals with the 

DAT10/10 allele, whether or not they were infected, showed higher baseline levels of CSF 

dopamine, suggesting that elevated dopamine is involved in HIV infection [134]. They also 

showed these changes in CSF dopamine and HIV infection were not correlated with genetic 

polymorphisms in catechol-O-methyltransferase (COMT, Val158Met), an enzyme involved 

in catecholamine metabolism, and dopamine receptors DRD2, DRD3, and DRD4 [135], 

although the specific DRD polymorphisms investigated were not the same as those 

mentioned above. Interestingly, the Val158Met polymorphism in COMT, while not 

associated with increased HIV infection, was found by separate groups to be associated with 

deficits in executive function and prefrontal activity in HIV infected individuals [136, 137].
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Infection with HIV may also interfere with dopamine metabolism, thereby altering 

dopamine concentrations in the CNS. Infected individuals and SIV-infected macaques show 

decreases in CSF dopamine [27], increased DOPAC, and decreased homovanillic acid 

(HVA) in the CSF [43, 138]. Studies show decreased CSF dopamine levels and neuronal 

degeneration in dopaminergic brain regions of HIV patients [42, 139, 140]. This is supported 

by experiments in SIV-infected macaques showing decreased dopamine and tyrosine 

hydroxylase (TH)-positive neurons, as well as increased DOPAC in putamen [141]. 

However, more recent studies from this group found increased CSF dopamine in HIV 

patients during asymptomatic infection prior to cART initiation [142, 143]. In these studies, 

CSF dopamine was inversely correlated with CD4 cell counts, suggesting that elevated 

dopamine may be associated with disease progression [142, 143]. Using behavioral testing, 

these dopaminergic changes can be detected as dysfunction of frontostriatal circuits that 

reflect HIV-associated dopaminergic abnormalities [17, 126, 144]. Examination of brain 

tissue from HIV-infected individuals shows abnormal expression of dopaminergic synaptic 

proteins in striatum [33] and PFC [19], perhaps reflecting an adaptive shift in response to 

elevated dopaminergic tone. Together, these data suggest that HIV infection is still facilitated 

in a dopamine-rich environment. Further, the increase in infection damages dopamine 

neurons and neuronal structures, interfering with dopaminergic neurotransmission, even in 

individuals on effective cART. This interference could alter dopaminergic tone in different 

regions of the CNS, exacerbating the effects of dopamine on HIV infection in these regions 

and may play a significant role in the development of NeuroHIV.

IIc. Impact of Drug Induced Dopamine in HIV Neuropathogenesis

Unlike the interactions of catecholamines and HIV, the effects of drug-abuse on HIV 

neuropathogenesis are well studied [145-150], but it is important to mention them as almost 

all abused substances increase CNS dopamine [151-159]. Thus, the effects of dopamine on 

HIV infection are particularly important for HIV-infected drug abusers, who constitute 10 – 

20% of the HIV-infected population worldwide [160-165]. While there is disagreement in 

the literature about the direction and specific impacts of drug abuse on HIV infection, it is 

generally agreed that drugs of abuse can synergistically disrupt dopaminergic transmission 

[24, 122], and can to alter the development of HAND [166-168]. This suggests HIV-infected 

drug abusers would be particularly susceptible to dopamine-mediated changes in 

neuropathogenesis, as the dopaminergic brain regions specifically affected by drugs of 

abuse, particularly the basal ganglia, are the regions in which exacerbated neuropathology 

has been found in the presence of dopamine. Indeed, HIV+ individuals with a history of 

illicit drug use show increased neuropathology and encephalitis at autopsy [170-174], and in 

the cART era, drug-abuse history remains one of the best predictors of neurocognitive 

decline [168, 173, 175-180]. Thus, use of illicit drugs, or of therapeutics that disrupt the 

dopaminergic system, could exacerbate the development of NeuroHIV in drug using HIV+ 

populations. A major caveat regarding many studies which clearly show an impact of drug 

abuse on distinct stages of HIV infection and HIV infected cells, is that these experiments 

are not necessarily examining the impact of dopamine on HIV infection. One issue with 

these types of studies is that many of them, in both animal models and humans, examine 

peripheral pathogenesis [181-184]. As addictive drugs exert the majority of their 

dopaminergic effects within the CNS and dopamine cannot cross the BBB, the mechanisms 
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involved are not likely mediated by elevated dopamine. Similarly, there are many studies 

which show potentiation of HIV infection by addictive drugs in vitro, in various immune cell 

types [185-189], particularly human macrophages [190-193]. These studies have provided a 

tremendous amount of useful information, but a significant caveat for this type of research is 

that it is generally performed in monoculture systems. It is not known whether treatment of 

macrophages or T-cells in vitro with drugs such as morphine or cocaine elicits a dopamine 

response, and it is not likely that the response would be the same as that generated by in vivo 
exposure of dopamine neurons within the central nervous system. Despite these caveats, the 

data still demonstrate that use of illicit drugs, or of dopaminergic therapeutics, could 

exacerbate the development of NeuroHIV by disrupting the dopaminergic neurotransmission 

in the CNS. Therefore, developing an improved understanding of the reciprocal interactions 

by which dopaminergic dysfunction and HIV-associated neuropathogenesis exacerbate each 

other will be critical to future therapeutics required in the developing HIV epidemic.

IId. Adrenergic Catecholamines in HIV Neuropathogenesis

The interaction of the adrenergic system with HIV neuropathogenesis has been studied far 

less than the interactions of dopamine and HIV. Studies show significant neuroinflammation 

and atrophy occurs in HIV-infected brain regions encompassing the CNS adrenergic system, 

such as the brainstem and pons [194-197], with elevated HIV RNA in the hippocampus 

proper [118]. However, HIV associated-neuropathology in specific adrenergic brain regions 

such as the locus coeruleus remains undetermined. Early in the epidemic, prior to cART, 

Glasgow and colleagues found significant adrenal pathology in HIV-infected individuals 

[198]. In the cART-era, the hippocampus remains significantly impacted, with increased 

myeloid cell activation [95, 199] and decreased hippocampal volumes [200], and no studies 

have specifically examined adrenergic brain regions in HIV-infected individuals on cART.

Most of the studies that have examined the adrenergic impact on HIV infection focus on the 

interactions with sympathetic nervous system (SNS) or the hypothalamus-pituitary-adrenal 

(HPA) axis. These studies show that the SNS and/or HPA axis are dysregulated in HIV-

infected individuals, with decreases in norepinephrine during stress response [39], and hypo-

reactivity of the autonomic system and HPA axis [41, 201]. There is a direct correlation 

between constitutive autonomic nervous system activity and HIV plasma viral load [45], and 

elevated stress levels, autonomic nervous system activity and norepinephrine are correlated 

with a poorer response to cART therapy [202, 203]. These studies suggest that the release of 

the adrenergic catecholamines, particularly norepinephrine, could enhance HIV infection, 

providing a pathway by which stress or other adrenergic stimulators might impact systemic 

HIV pathogenesis [40, 46, 204]. This is corroborated by a more recent study which also 

found that higher levels of peripheral norepinephrine correlate with accelerated disease 

progression, represented by increased plasma viral load and decreased CD4 counts, over a 4-

year period [205]. These studies indicate that disruptions in adrenergic signaling may be 

important in the development of systemic infection, but that much more work needs to be 

done in this area.

Studies specifically examining norepinephrine in the context of NeuroHIV are rare, although 

Dever and colleagues recently found an increase in β-adrenergic receptor gene expression in 

Nolan and Gaskill Page 7

Brain Res. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frontal lobe white matter and/or frontal cortex from HIV-positive individuals with combined 

neurocognitive impairment and HIV encephalitis [206]. In SIV-infected macaques, enhanced 

stress reduced survival [207, 208], and SIV replication was enhanced in close proximity to 

elevated catecholamine levels present in catecholaminergic varicosities [48]. In rodents, the 

HIV envelope protein gp120 interferes with the β-adrenergic receptor mediated function of 

microglia and astrocytes [209]. Thus, in the CNS, elevated norepinephrine could exacerbate 

HIV infection activation of myeloid β-adrenergic receptors, which are increased in the 

infected brain. As both norepinephrine and epinephrine are increased with stress, a common 

issue in HIV-infected individuals, these changes may exacerbate both peripheral and CNS 

infection in a significant proportion of the HIV-infected population. Unfortunately, the data 

on this subject are quite sparse, and the full effects of adrenergic catecholamines on both the 

HIV infection process and the associated inflammatory effects remain relatively undefined. 

To better treat both long term HIV infection and the chronic diseases associated with it, it is 

important to further define the role of adrenergic catecholamines in HIV infection.

III. Catecholamines

Catecholamines are monoamines, organic compounds containing a catechol ring (ortho-

dihydroxybenzene) linked to an amino side-group. Dopamine, norepinephrine or 

noradrenaline, and epinephrine or adrenaline are catecholamine neurotransmitters derived 

from the amino acid tyrosine. Catecholamines are synthesized in their cognate neurons, both 

in cell bodies and in the nerve terminals. From there they are rapidly transported and stored 

in the endoplasmic reticulum or in vesicles along dendrites and at synaptic terminals [210, 

211]. The release and reuptake of these molecules is highly-regulated through complex 

mechanisms, which act independently or in conjunction with other regulatory mechanisms. 

These molecules play vital roles in the modulation of behavior, metabolism, autonomic 

function, and immunity, acting in both the periphery and the CNS [212]. In the CNS, 

dopamine, norepinephrine, and to a much lesser extent epinephrine enable interneuronal 

communications that modulate neuronal activity and influence behavior. While the majority 

of studies on the actions of catecholamines have been performed in neurons, recent studies 

show that all catecholamines also have immunomodulatory actions. These occur in a number 

of different immune cell types, including T-cells, myeloid cells and neutrophils, and has 

been widely reviewed [47, 213-218]. Although these and many other studies clearly 

demonstrate an immunoregulatory effect of catecholamine interaction with immune cells, it 

is important to note that many of them used pharmacologic levels (10−6M and higher) of 

catecholamines or catecholamine receptor agonists/antagonists. Therefore, it is not entirely 

clear how human immune cells in the CNS, where catecholaminergic concentrations remain 

unclear, respond to catecholaminergic stimulation in vivo. Further, during HIV infection, 

these effects may be changed by HIV-associated disruption in catecholaminergic tone.

IIIa. Catecholamine Signaling and Metabolism

Catecholamine metabolism is a critical step in the regulation of activity, as the amount of 

catecholamine to which a receptor is exposed is controlled by a) reuptake through DAT or 

the norepinephrine (NET) transporter, and b) synthesis and degradation of the 

catecholamine. All catecholamines are derived from tyrosine, and are synthesized through a 
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series of enzymatic reactions, beginning with the rate-limiting step, the conversion of 

tyrosine to L-DOPA by TH (Figure 1). Dopamine is then synthesized from L-DOPA by the 

action of DOPA decarboxylase, and then either released or hydroxylated by dopamine β-

hydroxylase (DBH) to form norepinephrine. The final step in catecholamine biosynthesis is 

the conversion of norepinephrine to epinephrine by phenylethanolamine-N-

methyltransferase (PNMT). There are also a number of pathways by which catecholamines 

can be catabolized, which are primarily mediated by COMT and monoamine oxidase 

(MAO), although additional enzymes are active in several stages of the catabolic cycle 

(Figure 1).

The actions of all catecholamines are mediated through their cognate receptors, dopamine or 

adrenergic receptors, which are members of the G-protein coupled receptor superfamily 

[219]. Dopamine receptors are divided into two groups, D1-like (D1 and D5), which couple 

to Gαs/olf, and D2-like (D2, D3, D4) which are coupled to Gαi/o [219, 220]. Canonically, 

D1-like receptors activate adenylate cyclase, increasing intracellular cAMP, while D2-like 

receptors inhibit adenylate cyclase, blocking intracellular cAMP production [219-221]. 

These receptors can also signal through alternative pathways, the most prominent being 

mobilization of intracellular Ca2+ and activation of protein kinase C (PKC) through 

activation of phospholipase C (PLC). These pathways are thought to be mediated by either 

the Gq/11 protein coupling to D5 or D1:D2 heteromers, or by D2-like dopamine receptors 

signal through Gβγ, although the specific mechanisms remain controversial [222-224]. 

Another pathway exclusively activated by D2-like receptors acts through β-arrestin 2 to 

regulate the activity of Akt and glycogen synthase kinase 3-α/β (GSK3β) [219, 225]. 

Adrenergic receptors are also divided into two subgroups, α and β, and can be further 

subdivided into α1, α2, β1, β2, and β3 receptors [226]. Each of the α receptors has distinct 

pharmacology, with the α 1-receptors coupled to Gαq, and stimulating PLC, while α2-

receptors are coupled to Gαi, inhibiting the production of cAMP [227]. All β-adrenergic 

receptors couple to Gαs, meaning that activation stimulates the production of cAMP [228, 

229]. Interestingly, data also show that in some circumstances, β2-receptors may also couple 

to Gαi, inhibiting cAMP production and potentially interfering with the effects of other β-

adrenergic receptors [230].

IIIb. Catecholaminergic System in Immune Cells

Over the past two decades, the data has found that many types of immune cells, including 

both myeloid cells and T-lymphocytes, express all five dopamine receptors, as well as all the 

α and β adrenergic receptors. Human monocytes, monocyte-derived macrophages (MDMs) 

[52, 231, 232] and microglia express mRNA for all five dopamine-receptor subtypes, with 

the exception of D5 not being found in microglia [233]. We have shown D1, D2, D3 and D4 

expression in the MDM plasma membrane, and other studies have also identified dopamine 

receptors on monocytes by flow cytometry [231, 232, 234-237]. Analysis of mRNA 

expression and surface proteins also confirm expression of all five dopamine-receptor 

subtypes in T-cells, although D1-like receptor expression is low and not consistent between 

studies [234, 238-241].
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Expression of adrenergic-receptors on immune cells has been more widely studied than 

dopamine-receptors. Immunoblotting and pharmacologic assays show human monocytes 

and macrophages express functional α1, β1, and β2 receptors [242-249]. These cells respond 

functionally to stimulation by α2 specific agonists [244, 250], however expression of α2 

receptors has not been established. The presence of functional adrenergic receptors in human 

microglia has not been confirmed, but mRNA and pharmacologic data indicate that α1, α2, 

β1, and β2 receptors are present in rat microglia [251, 252]. T-lymphocytes also express 

mRNA and protein for β1, β2 and β3 receptors [241, 253]. Pharmacological studies and 

ligand-binding experiments also indicate that T-cells express α2 receptors [254, 255], but 

expression of α1 receptors has not been established.

In addition to expression of dopamine and adrenergic receptors, many immune cells express 

TH, DAT, and the vesicular monoamine transporter 2 (VMAT2) [236, 241, 256, 257]. 

Although expression of NET is undefined in human cells, NET and MAO-A expression was 

shown in rodents in a subset of macrophages called sympathetic neuron–associated 

macrophages (SAMs) [258]. Our data also show that MDM express both the genes (2A) and 

proteins (2B) for the majority of the enzymes involved in the metabolism of catecholamines, 

including MAO-A and B, COMT and very small amounts of DBH (Figure 2). Gene 

expression of PNMT was not found (data not shown). The purpose of immune 

catecholaminergic systems is not clear, but in T-cells, dopamine acts in an autocrine fashion 

to regulate both proliferation and TGF-β production [241, 259], and dopamine, but not 

norepinephrine or epinephrine, blocked a PKC-mediated induction of TH mRNA expression 

[257]. Elderly human microglia were found to be able to take up and release dopamine after 

K+ stimulation [233], and catecholamine uptake and release was shown in human PBMC 

[49, 241, 257, 259, 260]. These data indicate that immune cells can produce, release and 

metabolize of catecholamines, supporting the concept that these processes are 

immunoregulatory.

IIIc. Distribution of Catecholamines in the Central Nervous System

The catecholamines found in the central nervous system are primarily dopamine and 

norepinephrine, while the majority of epinephrine is found in the periphery. Epinephrine has 

been reported in a small number of brainstem neurons with projections to the thalamus and 

spinal cord, but very little is known about these neurons [261, 262]. Both dopamine and 

norepinephrine mediate their effects through volume transmission, acting on distinct brain 

regions to regulate a number of critical CNS functions. The pathways by which these 

catecholamines interact with different brain regions are described in Figure 3. As dopamine 

and norepinephrine are the predominant catecholamines present in the CNS, they are the 

primary catecholamines influencing the development of NeuroHIV and will be the focus for 

the remainder of this review.

In the CNS, dopamine is synthesized in dopaminergic neurons of the ventral tegmental area 

(VTA) (mesocortical and mesolimbic projections), substantia nigra (nigrostriatal 

projections), and arcuate nucleus of the hypothalamus (tuberoinfundibular pathway) [263]. 

Dopaminergic projections from the VTA ascend via the median forebrain bundle to 

innervate cortical and limbic regions. The mesocortical pathway projects to the prefrontal 
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and cingulate cortices and plays major role in cognition, motivation, and emotional response. 

The mesolimbic pathway projects to the nucleus acumbens, medial PFC, amygdala, and 

hippocampus to mediate reward-based habits, emotions, and cognition. Dysregulation of this 

pathway by dopaminergic stimuli plays a major role in the development of various 

addictions. The nigrostriatal pathway ascends from the midbrain substantia nigra pars 

compacta (SNpc) to striatal nuclei (caudate and putamen) in the forebrain to modulate 

production and coordination of movement. Dopaminergic neurons of the tuberoinfundibular 

pathway project from the arcuate nucleus to the median eminence and release dopamine into 

the hypophyseal portal system, regulating the release of prolactin from the anterior pituitary. 

Norepinephrine is predominantly synthesized in the locus coeruleus, as well as the lateral 

tegmental area of the brainstem. Neurons from the loci coerulei innervate a number of 

different CNS regions, releasing norepinephrine by volume transmission to modulate 

alertness and arousal. As mentioned, epinephrine is mostly peripheral, and is synthesized by 

chromaffin cells in the adrenal medulla. Norepinephrine and epinephrine both act on the 

autonomic nervous system, regulating fight-or-flight responses, as well as a number of other 

physiologic functions on tissues throughout the body.

In contrast to fast-acting, synaptic neurotransmitters like glutamate and GABA, dopamine 

and norepinephrine are more diffusely released along their axonal network in a process 

known as volume transmission [264, 265]. On midbrain and cortex neurons, most DAT and 

many dopamine receptors are located extrasynaptically [266-269], so neuronally released 

dopamine must diffuse through the extracellular space to bind to its receptors and to be taken 

back up into cells. Synaptic dopamine receptors are also present (particularly in the striatum) 

and are activated by precise synaptic dopamine release [267, 270]. However, following 

quantal dopamine release, diffusion occurs too quickly for extra-synaptic DAT uptake, 

resulting in extra-synaptic spillover and exposure of extra-synaptic cells to dopamine [271, 

272]. The size of the region exposed to dopamine depends on complex interactions between 

the volume and concentration of dopamine released, the volume of extracellular fluid 

volume, barriers to diffusion, uptake dynamics of DAT, and the sensitivity of regional 

dopamine receptors [273]. HIV associated damage to dopaminergic neurons can disrupt 

these interactions and dysregulate dopaminergic tone [36, 119], and all drugs of abuse and 

many therapeutics interfere with dopamine synthesis, release, uptake, or metabolism, 

potentially disrupting volume transmission [274, 275]. Thus, HIV infection, particularly 

when combined with drugs of abuse or dopaminergic therapeutics, exposing other CNS cell 

types including macrophages and microglia to altered levels of dopamine.

The precise amount of catecholamines to which CNS cells are exposed depends on the 

catecholamine concentrations in the human CNS. These are not well defined in the human 

brain, but in primates and rodents, basal dopamine levels are generally reported to be 

between 5 – 40 nM depending on the brain region [276-278]. These can be elevated into the 

low micromolar range by drugs of abuse [152, 155, 279-283], which is likely to result in 

significant spillover into the surrounding tissue, exposing immune cells and glia to elevated 

dopamine. Methamphetamine can also release norepinephrine via reversal of VMAT and 

DAT [284], increasing levels of norepinephrine in the CNS. The basal levels of 

norepinephrine in the locus coeruleus and the PFC have been reported between 1-5 nM, and 

may be elevated by 300% during phasic stimulation [285, 286]. Amphetamine increased 
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basal levels of norepinephrine in the PFC and locus coeruleus up to 50 nM [287], although 

the significance of this finding in compared to other natural stimuli is not known. The 

concentration of epinephrine in the hypothalamus has been reported to be lower than 100 

picomolar, and is been below the limit of detection in other brain regions [288, 289].

IV. Effects of Dopamine on HIV infection

Dopamine has long been associated with retroviral infection, as studies almost four decades 

ago showed dopamine-receptor antagonists such as chlorpromazine and haloperidol have a 

lytic effect on retroviruses and inhibit reverse transcriptase [290, 291]. More recently, Rohr 

and colleagues found pharmacologic dopamine increases HIV replication in Jurkat T-cells 

and PBMCs by promoting viral transcription through NF-κB [292, 293], and dopamine also 

increased HIV production in chronically infected ACH-2 T-cells [294]. Increasing dopamine 

availability in the CNS of SIV-infected macaques using the MAO-inhibitor selegiline and L-

DOPA significantly enhanced CNS viral replication, increased microglial activation, induced 

vacuole formation and disrupted dendritic architecture [31, 32]. These studies indicated that 

dopamine, a neurotransmitter, might contribute to the progression of NeuroHIV by directly 

increasing infection in immune cells.

This connection is supported by studies in the SIV macaque model of HIV, where treatment 

with methamphetamine, which greatly enhances CNS dopamine levels [283], increased 

brain viral load. Methamphetamine also increased expression of the HIV co-receptor CCR5 

in CNS macrophages, thereby enhancing the susceptibility of these cells to infection 

[295-297]. Ongoing studies in our lab have also examined the effects of dopamine exposure 

on HIV infection in vitro using primary human macrophages. These studies use dopamine 

concentrations (10−10 M – 10−5 M) present in the CNS during drug abuse, homeostatic and 

pathologic conditions [155, 276, 277, 279-282]. They show that exposing macrophages to 

elevated dopamine increases their susceptibility to infection. The effect on macrophages is 

critical to the development of NeuroHIV, as myeloid cells are thought to be the primary 

drivers of HIV neuropathogenesis. Primary MDM were infected with HIVYU2 or HIVBaL, 

HIV strains that use the CCR5 co-receptor, which is the main co-receptor involved in the 

infection of macrophages. Infections in the presence of dopamine, or specific agonists for 

D1-like (SKF38393) and D2-like (Quinpirole) dopamine receptors show that activation of 

all dopamine receptor subtypes increases HIV entry into macrophages. Pretreatment with the 

pan-dopamine receptor antagonist flupenthixol, or the CCR5 antagonist TAK779, blocked 

the effects of dopamine on HIV entry, indicating that the mechanism is dependent on both 

CCR5 and dopamine-receptors [231, 298].

The involvement of both D1- and D2-like dopamine receptors suggests activation of a 

signaling pathway common to both subtypes, although canonically, different dopamine 

receptor subtypes mediate opposing effects. However, both subtypes of dopamine receptors 

can also induce Ca2+ release from the endoplasmic reticulum [223], which has been 

connected with HIV infection in a number of experiments. Interaction of HIV-gp120 with 

CCR5 induces Ca2+ mobilization via Gαq [299-302], and Ca2+ flux is an essential step for in 

HIV entry in an astrocyte model of infection [303]. Our own studies in DR1 and DR2-

transfected HEK293 cells show that dopamine receptor activation potentiates Ca2+ 
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mobilization via initiated by Gαq [298]. Together, this indicates that Ca2+ release may be the 

common mechanism by which dopamine receptor activation enhances entry and suggests 

that PLC-mediated Ca2+ mobilization may be a novel therapeutic target in the prevention of 

HIV infection.

Although our data point to a Ca2+ mediated mechanism, dopamine-mediated potentiation of 

HIV infection act through other mechanisms, such as the NF-kB mediated effects shown in 

T-cells by Rohr and colleagues [292, 293]. Enhanced oxidative stress is another possible 

mechanism, as dopamine oxidizes to form free radicals and reactive dopamine quinones 

[304], and studies show HIV LTR driven reporter expression and reactivation of latent HIV 

in T-cells can be mediated by the interaction of reactive oxygen species (ROS) and NF-kB 

activation [305, 306]. The effects of dopamine in ACH-2 cells resulted from treatment with 

pharmacologic levels of dopamine (6 – 10 × 10−5 M), which increased HIV production via 

an oxidative mechanism. This effect was prevented by the addition of the antioxidant 

glutathione, indicating that the reactivation of HIV by dopamine was due to oxidative stress 

[294]. All these data come from T-cells, suggesting this cell type may be more vulnerable to 

virologic effects induced by oxidative stress, perhaps because macrophages require exposure 

to ROS for proper polarization and effector function [307, 308]. While our studies show 24-

hour exposure to dopamine is not cytotoxic in macrophages (Gaskill et. al., unpublished 

results), other studies show murine bone-marrow derived macrophages (BMDM) exposed to 

pharmacologic dopamine (5 × 10−6M) for 24 hours did increase expression of oxidative 

stress markers [309]. Taken together, these data suggest that dopamine may enhance HIV 

infection through several different effector pathways, and that these might differ with 

distinct cell types.

V. Effects of Norepinephrine on HIV infection

The few in vitro studies specifically examining the effects of norepinephrine on HIV 

infection suggest that this catecholamine can influence the HIV replication process, although 

the precise mechanism is unclear. Cole and colleagues found concentrations of 

norepinephrine (10−8 to 10−5M) dose-dependently increased HIV infection of human PBMC 

stimulated with CD3/CD28 after 6 days of infection. The increase was abrogated by the β-

adrenergic receptor antagonists Sotalol and Propranolol, but not the α-adrenergic-receptor 

antagonist Phentolamine, indicating it was mediated specifically by β-adrenergic receptors 

[310]. The mechanisms underlying this increase in infection were a reduction in the 

production of IL-10 [310] and an increase in the surface expression of CCR5 and CXCR4 

[45, 50], both of which have been shown to increase HIV infection [311]. The 

norepinephrine mediated increases in HIV infection occur irrespective of the concentration 

of the infecting virus and were seen in response infection with both X4 or R5 tropic viral 

strains [45]. However, another study showed HIV infection of CD8-depleted, CD3/CD28 

stimulated PBMC and MDM was significantly decreased by norepinephrine (10−8 – 10−6 

M). The decrease in HIV replication was only seen from days 9 to 18 post-infection, and 

unlike the experiments by Cole et. al., no impact on replication was observed during the first 

8 days post-infection. Another distinction between the studies was that the mechanism by 

which norepinephrine decreased HIV infection was a downregulation of the HIV-1 LTR 

through inhibition of NF-kB [312].
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To clarify these opposing findings, we examined HIV infection of MDM in the presence of 

the β-adrenergic receptor agonist isoproterenol, as these receptors mediated the effects on 

HIV infection in the majority of similar experiments. Primary MDM were inoculated with 

HIV in the presence the isoproterenol. In these experiments, MDM were generated from 

PBMC, inoculated with HIVYU2 or HIVBaL and infection was assessed using a viral 

replication assay or viral entry assay as previously described [231, 298]. These experiments 

showed isoproterenol (10−9 to 10−6 M) did not significantly increase HIV replication at 2 – 6 

days post infection (Figure 4A), nor did Isoproterenol (10−8 or 10−5 M) alter the viral entry 

into these cells (Figure 4B). These results indicate activation of β-adrenergic receptor does 

not change the entry process of the virus in macrophages, agreeing with the data from 

Moriuchi and colleagues. These data suggest that norepinephrine does not have a significant 

impact on HIV infection of MDM infection, while the data are conflicted regarding the 

impact on infection of CD3/CD28 stimulated PBMC, which is primarily T-cell infection. 

This could indicate that norepinephrine has different effects on HIV infection in distinct cell 

types, potentially indicating distinct signaling mechanisms by which norepinephrine 

mediated its effects. It is also possible that the disparity regarding the infection of activated 

PBMC is explained by the differences in experimental design, specifically the length of the 

experiments and of the norepinephrine treatments.

The data suggest that norepinephrine does not significantly impact the spread of HIV 

infection in myeloid cells in the CNS, although this is complicated by the study in SIV-

infected macaque suggesting that CNS catecholamines can increase SIV infection [48]. The 

picture is still less clear in regard to peripheral infection, particularly because the in vivo 
studies suggest elevated norepinephrine exacerbates HIV pathogenesis [40, 45, 46, 204]. 

Irrespective of these differences, these findings demonstrate that further investigation of the 

impact of norepinephrine on HIV infection is needed. In vitro models should examine the 

mechanisms by which norepinephrine could enhance HIV infection in different cell types. 

Patient studies should investigate the correlation between norepinephrine levels, endogenous 

immune cell expression of adrenergic receptors and both plasma and CSF viral load. 

Without this research, it will be difficult to understand and effectively counteract the effects 

of adrenergic activation of HIV target cells on disease progression.

VI. Role of Catecholamines in HIV-associated Neuroinflammation

While it is clear that CNS catecholamines can act as immunomodulators, their effects on 

neuroimmunity are not well studied. Further, it remains unclear whether and how disruptions 

in catecholaminergic neurotransmission contribute to HIV-associated inflammation, 

particularly in the case of norepinephrine. However, many of the immune functions altered 

by activation of dopaminergic or adrenergic receptors on immune cells, such as cytokine 

secretion, chemotaxis and nitric oxide production, are central to the development of 

NeuroHIV. As myeloid cells are the primary targets for and responders to HIV infection in 

the CNS, the catecholaminergic effects on the inflammatory mechanisms driven by these 

cells are most likely to be central to HIV-associated neuropathogenesis. Thus, the 

interactions between the CNS catecholaminergic systems and myeloid inflammatory 

processes constitute a bidirectional feedback loop that could enhance the development of 
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NeuroHIV. Therefore, this section will focus mainly on the mechanisms by which dopamine 

impacts various myeloid cell functions that promote NeuroHIV.

VIa. Production of HIV-associated inflammatory mediators

Many cytokines that promote inflammation, such as IL-1β, IL-6, IL-10, IL-12, IL-18 and 

TNF-α, are important inflammatory regulators associated with HIV infection [1, 14, 16, 34, 

313]. In particular, IL-6 and IL-1β are play an important role in HIV neuropathogenesis 

through immune mobilization, the activation of inflammatory cascades, and by increasing 

BBB permeability [313-315]. In the pre-cART era, elevated CSF IL-6 and IL-1β were often 

reported in individuals with HIV-dementia [316, 317], but have not been linked to cognitive 

impairment in the cART era [96]. Similarly, the chemokines affected by dopamine, such as 

CCL2, are important chemoattractants that enhance inflammation by recruiting additional 

immune cells [318, 319]. Elevated levels of the chemokines CCL2 and CXCL8 are found in 

the CSF of HIV+ individuals with neurocognitive impairment [96, 320], and CCL2 is 

increased soon after infection in the CNS of SIV-infected macaques [321]. The release of 

cytokines and chemokines is critical to the development and persistence of HIV-associated 

neuroinflammation, and changes in cytokine production have also been shown to alter HIV 

infection directly [311].

i. Dopamine—Although studies directly examining the effects of dopamine on 

inflammation in HIV-infected cells are rare, there are a growing number of studies 

demonstrating that dopamine increases the production of a number of cytokines and 

chemokines in myeloid cells (Table 1). Further, long term exposure of dopamine neurons to 

CCL2 increases extracellular dopamine release in rat striatum [322], and inflammatory 

cytokines have been shown to disrupt basal ganglial function [323]. And postmortem 

analysis of brains from patients with Parkinsons’ Disease show increased levels of 

cytokines, including IL-1β, TNF-α and IL-6, in striatal regions [324, 325]. These data 

suggest that inflammation and damage in dopaminergic brain regions, such as that which 

occurs in HIV infection, could create a bi-directional feedback loop in which both 

inflammatory mediators and dopamine levels are increased over time.

Data from our laboratory support this hypothesis, showing treatment with physiologic 

dopamine (10−8 – 10−5M) significantly increased production of CCL2, IL-6, CXCL8 and 

IL-10, and decreased TNF-α, in unstimulated or LPS-stimulated primary human monocyte 

derived macrophages [236]. Treatment of murine BMDMs and microglia with 

pharmacologic dopamine concentrations (1.5 – 2.5 × 10−4M) negatively regulated NLRP3 

inflammasome activity, blocking nigericin-induced secretion of IL-1β and IL-18 in a D1-like 

dopamine receptor dependent manner. Production of IL-1β could also be inhibited in a more 

physiologically relevant manner through repetitive treatment with 1.5 μM of dopamine every 

5 minutes for 2.5 hours [326]. Indirect increases in dopamine also modulate cytokine 

generation, as blocking VMAT with reserpine, thereby preventing dopamine uptake, also 

decreased TNF-α in the U937 myeloid cell line [327]. However, selegiline treatment, which 

increases CNS dopamine, increased TNF-α mRNA expression in SIV-infected macaques 

[32]. Disruption of striatal dopaminergic neurotransmission by expression of HIV-1 Nef in 

transgenic mice, potentially altering dopaminergic tone in striatum, increased CCL2 
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expression in microglia [328]. However, pharmacologic dopamine treatment (10−5 M) of 

murine microglial N9 cells with increased MAO activity, which should decrease dopamine 

levels, also increased secretion of IL-6 and IL-1β [329]. And the D2-antagonist haloperidol 

inhibits secretion of IL-6, IL-1β, and IL-12 in LPS-activated RAW264.7 murine 

macrophages, while the non-specific dopamine receptor antagonist chlorpromazine 

enhanced IL-10 production in mice [330, 331]. In many of these studies, inflammatory 

effects were driven by activity of D1-like dopamine receptors, while anti-inflammatory 

activities were linked to D2-like dopamine receptors, suggesting that the dopamine receptor 

subtypes play distinct roles in the regulation of inflammation.

ii. Norepinephrine—Numerous studies examining the effects of adrenergic receptor 

activation in myeloid cells (Table 2) broadly agree that both norepinephrine and epinephrine 

mediate predominantly anti-inflammatory effect via β-adrenergic receptors in cells 

stimulated with immune-activators such as LPS, Aβ or IL-18 [51, 244-246, 250, 251, 

332-350]. Stimulation of α-adrenergic receptors in LPS-activated macrophages, microglia 

and monocytes had the opposite effect, increasing inflammatory cytokine production [249, 

250, 345]. A similar pattern was found in resting or unstimulated cells treated with β-

adrenergic receptor activation, which increased production of the inflammatory cytokines 

IL-6 [351-353], IL-1β [351, 353, 354], TNF-α [346, 351], IL-12 [346], IL-18 [355]. 

Interestingly, in rodent macrophages, β-adrenergic receptors activated by dopamine were 

also shown to decrease production of IL-12p40 and increase production of IL-10 [356]. 

Together, these data indicate that both α- and β-adrenergic receptor expression levels and the 

activation state of the cell are important to determining the effects of adrenergic 

neurotransmitters on cytokine production.

There is little research specifically investigating HIV-infected cells, although in HIV-infected 

PBMC, norepinephrine (10−5 M) significantly decreased production of IL-1β, IL-6, TNF-α, 

IL-10 and IFN-γ, with the effects on IL-10 and IFN-γ mediated through modulation of 

cAMP production [310]. And in HIV infected individuals with autonomic system hypo-

reactivity, there was an increase in baseline TNF-α [41]. These data suggest that 

norepinephrine mediated activation of adrenergic receptors, particularly β-adrenergic 

receptors, may play an important role in the regulation of HIV-associated inflammation. This 

is supported by studies showing elevated stress in HIV-infected individuals, as stress 

increases expression of inflammatory cytokines in both the plasma and CNS via activation 

of β-adrenergic receptors [357]. Thus, physiologically-relevant increases in norepinephrine 

could exacerbate neuroinflammation during HIV, however more research is needed to 

determine which cells and cytokines are involved.

VIb. Changes in Chemotaxis and Transmigration

The transport of HIV into the CNS predominantly involves the transmigration of mature 

CD14+ CD16+ monocytes across the BBB. These mature monocytes are enriched in the 

blood of HIV infected individuals, and this enrichment of CD14+CD16+ cells is maintained 

in the presence of cART treatment [71]. These mature monocytes, particularly once they are 

infected, preferentially transmigrate across the blood brain barrier in response to 

chemoattractants such as CCL2 [67, 319]. This is a critical process in the development of 

Nolan and Gaskill Page 16

Brain Res. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIV-associated neurologic disease. These cells not only bring HIV into the CNS, they also 

contribute to neuroinflammation and differentiate into infected macrophages, which further 

contribute to NeuroHIV [16, 66, 67, 72]. Thus, changes in the processes by which 

monocytes transmigrate into the CNS, or move throughout the brain once transmigration are 

complete, could have a significant impact on neuropathogenesis.

i. Dopamine—Studies in the Berman lab have shown that dopamine receptor expression on 

monocytes changes with maturation, with mature monocytes expressing increased amounts 

of D1-like dopamine receptors. Dopamine increased chemokinesis in these cells, and 

enhanced the CCL2-mediated transmigration of these cells across a BBB model in response 

to dopamine and the D1-like agonist SKF38393 (10−6 – 5 × 10−5 M) [232, 237]. Notably, 

the enhancement of transmigration only applied to mature CD14+CD16+ monocytes, with 

transmigration of immature Cd14lowCD16+ monocytes and T-cell remaining unaffected 

[237]. This indicates that increased extracellular CNS dopamine could increase the 

accumulation of these monocytes, and the virus they are transporting, in the CNS, 

specifically in dopaminergic brain regions. While the effects of dopamine on macrophage 

chemotaxis are not clear, dopamine has been shown to stimulate microglial chemotaxis. 

Physiologic dopamine (10−7M) significantly increases migration of human microglia relative 

to untreated and CCL2 stimulated chemotaxis, an effect mediated by D2-like dopamine 

receptors, as it was blocked by treatment with the D2-antagonist Spiperone [233]. Similar 

findings were reported in rodent microglia, significantly increasing chemotaxis in response 

to physiologic dopamine (10−8 – 10−5 M) or the D1 and D2 agonists dihydrexidine and 

quinpirole [51]. Dopamine may affect macrophage chemotaxis similarly, but additional 

research is necessary to confirm this. These studies suggest increased chemotaxis could be 

an important mechanism by which elevated CNS dopamine exacerbates inflammation and 

neurocognitive impairment in HIV-infected individuals with altered dopaminergic tone.

ii. Norepinephrine—As with cytokine production, the effects of norepinephrine on 

myeloid cell chemotaxis seem to be highly context and receptor-dependent. Short-term 

exposure to low levels of norepinephrine (10−10 M, 2 hrs), or isoproterenol stimulates 

chemotaxis of human macrophages and monocytes in a β-adrenergic receptor and cAMP 

dependent manner [358]. However, long term exposure of mouse BMDM to norepinephrine 

(10−6M, 7 days) inhibited cell proliferation and migration toward CCL2 via downregulation 

of MHC II and CCR2, although increasing MHC II and CCR2 expression with a lower 

concentration of norepinephrine (10−8 M), and had no effect of macrophage migration [359]. 

In murine peritoneal macrophages, varying concentrations of norepinephrine (10−12 M to 

10−3 M) induced both adherence and chemotaxis, but the effects varied with the age of the 

mice from which the cells were derived [360]. A second study from this group confirmed 

that low-level norepinephrine increased murine macrophage chemotaxis, and suggested this 

effect was mediated by β-adrenergic receptor activation. They also found that higher levels 

of norepinephrine enhanced phagocytosis [361]. In microglia, norepinephrine (10−7 M, 2 

hrs) and isoproterenol also increase microglial migration in response to Aβ [348]. However, 

bath application of norepinephrine (3 × 10−5M) to mouse cortical brain slices resulted in 

significant retraction of microglial processes in both resting and LPS-activated cells, with 

the specific adrenergic receptor subtypes involved dependent on the activation state of the 
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cells [362]. This suggests the presence of other cells and inflammatory factors could 

modulate microglial response to norepinephrine. For example, norepinephrine increases 

release of CCL2 from astrocytes, but inhibited CCL2 expression in microglia [363]. 

Astrocyte and microglia density vary in different brain regions [364, 365], so norepinephrine 

modulation of CCL2 expression in different cells may cause region-specific effects on 

chemotaxis. While the effect of norepinephrine on the chemotaxis or motility of myeloid 

cells has not been investigated in the context of HIV, these studies suggest that changes in 

the concentration of this neurotransmitter could distinctly alter myeloid migration within the 

HIV infected CNS, depending on the microenvironments present in specific brain regions.

VIc. Effects on Nitric Oxide Production

Nitric oxide (NO) is a key molecule in immunity and inflammation. In pathologic 

conditions, NO can both support or inhibit inflammation, acting in either a cytoprotective or 

cytotoxic capacity. Nitric oxide is produced by inducible nitric oxide synthase (iNOS or 

NOS2), generally after induction with immunologic or inflammatory stimuli. A variety of 

immune cells, particularly innate immune cells such as macrophages, both produce and 

respond to NO [366]. In the CNS, excessive NO production can contribute to neuronal 

damage and death via induction of oxidative stress [367-370]. Increases in NO production 

occurs during HIV infection [371, 372], with both pro- [373, 374] and anti-viral [375-377] 

effects. In human PBMC, HIV replication is inhibited by NO in acutely infected cells, but 

stimulated by NO in chronically-infected cells [378]. In the HIV-infected brain, modulation 

of NO the NO-arginase network in microglia reduces neuroinflammation [379], but also 

enhances neuroinflammation through up-regulation in response to the HIV proteins Tat and 

g120 [380]. The opposing effects of NO make it difficult to determine how alterations NO 

production would affect NeuroHIV [368].

i. Dopamine—A number of studies show dopamine-receptor activation modulates NO 

production (Table 1). The effects of dopamine human myeloid cells remain undetermined, 

but in RAW264.7 murine macrophages, pharmacologic dopamine (5 × 10−5 M) enhanced 

LPS-induced production of NO [381], and the D2/D3 specific agonist pramipexole and 

increased LPS/IFN-γ-induced secretion of NO from primary murine microglia [382]. 

Contrary to these findings, stimulation of primary rat microglia with pharmacologic 

dopamine (10−6M – 10−5M) for 24 hrs significantly reduced LPS mediate NO production 

[51], and pretreatment with higher dopamine concentrations (3 × 10−6 – 10−4M) 

significantly reduced LPS-induced NO in BV-2 murine microglial cells [383]. The effects of 

dopamine were dopamine receptor dependent in the rat microglia, but not the BV-2 cells, in 

which they were induced by the formation of dopamine quinones. These contradictory 

findings suggest that dopamine impacts NO production through multiple pathways and 

receptors, and the specific effects on NO may reflect a concentration-dependent activation of 

a predominant pathway in each specific context. These data also emphasize the importance 

of cell origin, culture conditions, and treatment paradigm when interpreting data from 

various studies. Thus, further studies are needed to determine whether and how the 

dopaminergic changes occurring in NeuroHIV alter NO production in human myeloid cells.
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ii. Norepinephrine—Adrenergic receptor activation also modulates NO production in 

myeloid cells (Table 2). Szelenyi and colleagues found that isoproterenol increased NO 

production in PMA-primed human monocytes, but decreased NO production in LPS-primed 

monocytes. They also found that isoproterenol decreased NO production in LPS-primed 

murine macrophages [346]. The β-receptor agonists isoprenaline, dobutamine, and 

salbutamol, as well as epinephrine, inhibited NO production in LPS-primed murine 

macrophages at a concentration of 10−7M [344]. On the other hand, Chi and colleagues 

found that norepinephrine and epinephrine increased NO production in murine LPS-primed 

macrophages, although this study was performed in the RAW264 cell-line using a high 

concentration (5 × 10−6M) of catecholamine [381]. Adrenergic receptor activation also 

inhibited NO production in microglia. In LPS-primed rat microglia, norepinephrine, 

isoproterenol, phenylephrine, dobutamine, and terbutaline reduce NO at multiple 

concentrations (10−7 – 10−5 M) [251, 347]. In addition, norepinephrine (5 × 10−6M), 

isoproterenol (2.5 × 10−7M), and phenylephrine (7.8 × 10−6M) all reduced NO produced in 

LPS-primed murine N9 microglia. These studies suggest that activation of all subtypes of 

adrenergic receptors can have a suppressive effect on LPS-induced NO production in most 

myeloid cells. However, there is still little known about how adrenergic receptor activation 

would impact NO production under basal conditions or during HIV infection. Further 

studies are needed, particularly in human macrophages to elucidate the mechanism and 

impact of altered NO production by norepinephrine or epinephrine.

VII. Concluding remarks

The ability to control HIV replication has greatly improved the lifespan and quality of life 

for infected individuals, but that transformation to a chronic disease has created a number of 

new issues. Among these effects is the dysregulation of catecholaminergic 

neurotransmission due to neuroinflammation and neurologic damage, which can result in the 

exposure of CNS myeloid populations to aberrant levels of catecholamines. Additionally, the 

effects of cART drugs on catecholaminergic systems remains undetermined, so the potential 

effects of these therapeutics also require further study. These alterations in 

catecholaminergic tone can be further exacerbated by the use of illicit drugs or legal 

therapeutics that modulate dopaminergic and noradrenergic neurotransmission. The effect of 

brain catecholamines on myeloid cell functions is highly relevant in the cART era, as the 

persistence of HIV within CNS monocytes and macrophages is a major obstacle to HIV-

eradication and the treatment/prevention of HIV-associated neuroinflammation. This review 

has attempted to disentangle the bidirectional interactions between catecholamines and 

immune-processes implicated in HIV-infection of the CNS. The data described here suggest 

that elevated dopaminergic tone in the CNS may increase CNS viral load and enhance 

neuroinflammation through dopamine-mediated changes in myeloid inflammatory processes 

and susceptibility to viral infection. Elevated CNS norepinephrine may also alter HIV-

infection, particularly in regard to modulation of neuroinflammation, but the direction and 

magnitude of these effect remain unclear due to the paucity of studies investigating the role 

of the adrenergic system in HIV infection. Thus, dysregulation of catecholaminergic systems 

through direct or indirect viral effects, elevated stress, use of illicit drugs or 
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catecholaminergic therapeutics, or a combination of these factors, is likely to exacerbate 

NeuroHIV.

However, more research is needed to determine the precise mechanisms responsible for the 

immunomodulatory effects of catecholamines, including the involvement of specific 

receptors and signaling pathways in immune cells. This is particularly true regarding the 

immunomodulatory effects of the adrenergic system, which remains poorly understood in 

the context of HIV infection. Research in this area is complicated by contradictory findings 

that are likely due to variations in culture conditions, treatment paradigms, and specificity of 

receptor agonists and antagonists. Our summary of catecholaminergic modulation of 

inflammatory mediators (Tables 1 and 2) reflects these contradictions. Further, they suggest 

that the disparate dopamine and adrenergic receptor subtypes play distinct and potentially 

opposing roles in inflammation. Continuing research that utilizes receptor-specific 

pharmacologic assays and gene-level knockdown may reveal these specific roles. Because of 

the differences in neurotransmission among mammals, it is important to use both in vitro 
systems involving human cells and animal models to interrogate the precise molecular 

mechanisms and pathways involved in this type of neuroimmune communication. Further, 

new technologies enabling investigation of human CNS cells, using technologies such as 

iPSC co-culture or multi-cell type brain organoids, provide novel platforms in which to 

expand these studies. Determining the effects of catecholamines on myeloid cells during 

HIV infection is critical to developing treatments for chronically infected individuals and 

may reveal important contraindications for the use of catecholaminergic therapeutics in HIV 

infection. Further, the proliferation of psychiatric drugs in todays’ medical settings suggests 

that the poorly defined interactions we have described here between catecholamines and 

immune cells likely have larger implications for other neuroinflammatory diseases and 

psychiatric disorders. Therefore, understanding the interactions between catecholamine 

neurotransmission and immune function, particularly in myeloid cells, is critical to the 

creation of strategies that will ameliorate the long-term effects of catecholaminergic 

dysregulation in HIV-infected individuals.
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BBB blood brain barrier

BMDM bone marrow derived macrophages

cART combination anti-retroviral therapy

CNS central nervous system
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COMT catechol-O-methyltransferase

CSF cerebrospinal fluid

DAT dopamine transporter

DBH dopamine beta hydroxylase

DRD dopamine receptor

HAD HIV-associated dementia

HAND HIV-associated neurocognitive disorder

HIVE HIV-associated encephalitis

HPA hypothalamic-pituitary axis

HVA homovanillic acid

iNOS inducible nitric oxide synthase

MAO monoamine oxidase

MDM monocyte derived macrophages

NET norepinephrine transporter

NO nitric oxide

PBMC peripheral blood mononuclear cells

PFC prefrontal cortex

PKC protein kinase C

PLC phospholipase C

PMN Polymorphonuclear neutrophil

PNMT phenylethanolamine-N-methyltransferase

ROS reactive oxygen species

SAM sympathetic neuron–associated macrophages

SIV simian immunodeficiency virus

SNP single nucleotide polymorphism

SNpc substantia nigra pars compacta

SNS sympathetic nervous system

TH tyrosine hydroxylase

VMAT2 vesicular monoamine transporter 2
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VTA ventral tegmental area
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Highlights

• Catecholamines significantly alter the development of HIV neuropathogenesis

• Catecholamines alter HIV-infection and HIV-associated immune functions

• Activation of b-adrenergic receptors does not alter HIV infection in 

macrophages

• Catecholamine immunomodulation could be a therapeutic target for treatment 

of HAND
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Figure 1. 
Metabolic pathways for catecholamine biosynthesis and degradation. Metabolic pathways 

for the formation and degradation of dopamine, norepinephrine and epinephrine (shown in 

red) are described. Catecholamine synthesis is initiated with the hydroxylation of the amino 

acid tyrosine is by tyrosine hydroxylase (TH), generating L-DOPA. L-DOPA is then 

converted to dopamine by DOPA decarboxylase (DDC, also known as aromatic L-amino 

acid decarboxylase, AADC). Dopamine is hydroxylated by dopamine β-hydroxylase (DBH) 

to form norepinephrine, which is then converted to epinephrine by phenylethanolamine-N-

methyltransferase (PNMT). The catecholamines are primarily metabolized by two enzymatic 

pathways with catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO). 

COMT converts dopamine to 3-methoxytyramine, norepinephrine to normetanephrine, and 

epinephrine to metanephrine via meta-O-methylation. MAO converts dopamine to 3,4-

Dihydroxyphenylacetaldehyde (DOPAL), and norepinephrine or epinephrine to 3,4-

didydroxyphenylclycoaldehyde (DOPGAL) by oxidative deamination. MAO also converts 

3-methoxytyramine to 3-methoxy-4-hydroxyacetaldehyde, and the metanephrines to an 

unstable aldehyde monohydroxyphenylglycol aldehyde (MOPGAL). MOPGAL is ultimately 

converted to the final product vanillyl mandelic acid (VMA) by aldehyde reductase. In the 

final steps of dopamine metabolism, COMT and aldehyde dehydrogenase (ALDH) convert 

DOPAL and 3-methoxy-4-hydroxyacetaldehyde to the final product homovanilic acid 

(HVA).
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Figure 2. Human macrophages express enzymes necessary for the synthesis of norepinephrine 
and degradation of catecholamines
Human macrophages were generated from peripheral blood mononuclear cells that were 

isolated from whole blood by ficoll density centrifugation, then matured into monocyte-

derived macrophages (MDM) by adherence and maturation for 6 days in 10 ng/mL M-CSF. 

(A) Expression of mRNA for MAO-A and MAO-B, COMT and DBH is seen in mRNA 

derived from MDM from 4 donors. (B) Analysis of protein lysates from MDM derived from 

3 or 4 additional donors shows expression of MAO (antibody did not distinguish A and B), 

COMT, and DBH protein.
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Figure 3. Anatomical location of catecholaminergic brain regions and projections
Dopamine is predominantly synthesized in midbrain nuclei that give rise to three major 

dopaminergic projections. The mesocortical pathway arises from the ventral tegmental area 

(VTA), and ascends via the median forebrain bundle to innervate prefrontal and cingulate 

cortices to modulate cognition, motivation, and emotional response. The VTA is also the 

origin of the mesolimbic pathway that projects to the nucleus acumbens, medial PFC, 

amygdala, hippocampus to mediate reward-based habits, emotions, and cognition. The 

nigrostriatal pathway ascends from the midbrain substantia nigra pars compacta (SNpc) to 

striatal nuclei (caudate and putamen) in the forebrain to modulate production and 

coordination of movement. There is an additional small group of dopamine neurons in the 

arcuate nucleus of the hypothalamus that project to the median eminence (via the 

tuberoinfundibular pathway) where dopamine is released into the hypophyseal portal system 

and transported to the anterior pituitary to inhibit the release of prolactin. Norepinephrine 

neurons from the locus coeruleus in the brainstem broadly innervate cortical and midbrain 

regions including the PFC, temporal lobe (hippocampus and amygdala), thalamus, 

hypothalamus, and cerebellum. Outside the brain, norepinephrine is released as a transmitter 

from postganglionic sympathetic nerve terminals near the spinal cord, and released as a 

hormone from the adrenal medulla into the blood stream. The role of norepinephrine is to 

modulate alertness and arousal (via cortical projections), and autonomic functions (via 

symphathetic nerves and adrenal medulla) in order to mobilize the body for action. Unlike 

norepinephrine and dopamine, the majority of epinephrine is synthesized in the periphery, 

with more than 90% of circulating epinephrine produced by chromaffin cells in the adrenal 

medulla. Some epinephrine may be synthesized in medullary epinephrine neurons that 

project to the thalamus and spinal cord, although very little is known about the function of 

these neurons.

Nolan and Gaskill Page 43

Brain Res. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Activation of β-adrenergic receptors does not increase HIV infection in human 

macrophages. Human macrophages were generated from peripheral blood mononuclear cells 

that were isolated from whole blood by ficoll density centrifugation, then matured into 

monocyte-derived macrophages (MDM) by adherence and maturation for 6 days in 10 

ng/mL M-CSF. (A) MDM from 5 donors were infected with 10 ng•p24/mL of the brain-

derived R5 virus HIVYU2 for 24 hours in the presence (greens) or absence (red) of the 

isoproterenol (β-adrenergic receptor agonist). Cells were washed after 24 hours and 

supernatant was collected every 24 hours for 6 days as assayed for p24•Gag as a measure of 

viral replication. (B) MDM from 5 donors were infected for 2.5 hours with a modified 

HIVBaL, a lung derived R5 virus, containing an active β-lactamase enzyme, enabling 

visualization of entry within 9 hours of inoculation. Infections were performed in the 

absence (red) or presence (greens) of isoproterenol. After 2.5 hours cells were washed to 

remove excess virus, and incubated in CCF2-AM (ThermoFisher) for 6 hours. After 6 hours, 

cells were imaged and the percentage of infected cells was enumerated by fluorescent 

microscopy. Amount of infection displayed as fold change relative to infection with HIV 

alone, which was set to 1. Statistical analysis for both experiments performed using one-way 

repeated measures ANOVA.
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Table 1
Effect of dopamine, and dopamine agonists or antagonists on cytokine & NO production

Effect of dopamine agonists/antagonists on cytokine production in myeloid cells A summary of in-vitro and 

in-vivo studies that have examined the effect of dopamine receptor agonists and antagonists on cytokine 

production in immune-cells. Haloperidol and chlorpromazine are non-specific dopamine-receptor antagonists. 

L-750,667 is a D4 receptor antagonist. Salsolinol and 1 BnTIQ are dopamine metabolites. Pramipexole is a 

D2/D3 receptor agonist.

Effect on inflammation Dopamine agonist/antagonist cytokine Experimental model citation

Macrophages

↑ Dopamine ↑ IL-6, CCL2 Human macrophages [236]

↑↓ Dopamine ↑ IL-8, IL-10. ↓ 
TNF-α

LPS-primed human macrophages [236]

↑ Haloperidol, L750.667 (D2-like 
antagonist)

↓ IL-6, IL-1β, 
IL-12

RAW 264 murine macrophages [330]

↓ Dopamine (effect blocked by D1 
knockdown)

↓ IL-1β, IL-18 Nigericin-stimulated, LPS-primed Mouse 
BMDM

[326]

↑ Dopamine ↑ NO LPS-primed RAW 264 murine macrophages [381]

↑ Salsolinol, 1BnTIQ (dopamine 
metabolites)

↑ NO RAW 264 murine macrophages [384]

↑ Dopamine ↑ iNOS and 
CXCL9. ↓ IL-10, 
CCL22

Tumor-associated macrophages from rat 
glioma model

[385]

↓ dopamine (effect blocked by β 
antagonist)

↓ IL-12 LPS-primed mouse macrophages [335]

↓ Dopamine (increased by 
treatment with reserpine)

↓ TNF-α LPS- or PMA- treated human U937 
monocytoid cells

[327]

↑↓ Dopamine (through adrenergic 
receptors)

↑ IL-10, ↓ 
IL-12p40

LPS-treated mouse peritoneal macrophages [335]

↓ Fenoldopam (D1-like agonist) ↓ TNF-α, MIP-2 LPS-treated mouse peritoneal macrophages [386]

↑ Chlorpromazine (Pan dopamine 
receptor antagonist)

↑ IL-10 staphylococcal enterotoxin-stimulated mice [331]

↑ Selegiline/L-DOPA ↑ TNF-α mRNA SIV infected Macaque Brain [32]

Microglia

↑ dopamine ↑ IL-1β, IL-6 N9 murine microglia [329]

↑ Pramipexole (D2/D3 agonist) ↑ NO LPS or IFN-γ primed murine microglia [382]

↑ Dopamine (effect blocked by D1 
and D2 antagonists)

↓ NO LPS-primed murine microglia [51]

↓ Dopamine (effect blocked by N-
acetylcysteine)

↓ NO LPS-primed BV-2 murine microglia [383]
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Table 2

Effect of adrenergic agonists and antagonists on cytokine production in myeloid cells A summary of in-vitro 

and in-vivo studies that have examined the effect of adrenergic receptor agonists and antagonists on cytokine 

production in monocytes, macrophages, and microglia. Phenylephrine is a selective α1 receptor agonist, 

Norepinephrine (NE) and epinephrine are non-selective α and β receptor agonists. Isoproterenol and 

isoprenaline are non-selective β receptor agonists. Terbutaline, salmeterol, and formoterol are selective β2 

receptor agonists. Clonidine is a centrally acting α2 receptor agonist. Dobutamine is predominantly a β1 

receptor agonist with weak effects on β2 and α1 receptors. Butoxamine is a selective β2 receptor antagonist. 

Phentolamine is a non-selective α receptor antagonist. Yohimbine is predominantly a α2 antagonist that also 

has moderate affinity for α1 as well as D2 and serotonin receptors. Propranolol is a nonselective β receptor 

antagonist.

Effect of Adrenergic agonists/antagonists on cytokine production

Effect on inflammation Agonist/antagonist cytokine Experimental model citation

Monocytes

↑ Phenylephrine ↑ IL-1β LPS-primed human monocytes [249]

↑ NE, E, isoproterenol (effect blocked by 
β2 antagonist)

↑ IL-18, TNF-α, 
IFN-γ

Human PBMC [355]

↑ NE, E, isoproterenol (effect blocked by 
β2 antagonist)

↑ IL-18 Human monocytes [355]

↑ Terbutaline (effect blocked by β 
antagonist)

↑ IL-8 LPS primed human monocytes [336]

↑ Isoproterenol ↑ IL-12, TNF-α, 
NO

PMA-primed human monocytes [346]

↑ NE (effect blocked by β antagonist) ↓ IL-10 HIV-infected human monocytes [310]

↓ NE, clonidine ↓ IL-6, TNF-α LPS-primed whole blood [244]

↓ NE (effect blocked by β antagonist) ↓ IL-6, TNF-α, 
IL-1β, IL-2, IL-4, 
IFN-γ

HIV-infected human monocytes [310]

↓ Terbutaline, salmeterol, formoterol ↓ IL-1β LPS-primed human monocytes [245]

↓ NE, E (effect blocked by β2 antagonist) ↓ TNF-α LPS-primed human monocytes [334]

↓ E, isoproterenol (effect blocked by β2 
but not α antagonist)

↓ MIP-1 LPS-primed human monocytes [349]

↓ Dobutamine, salbutamol ↓ MIP-1, IL-8 LPS-primed human monocytes [350]

↓ Dobutamine ↓ CCL2 LPS-primed human monocytes [337]

↓ Salbutamol, butoxamine, terbutaline ↓ IL-18, IL-12 LPS-primed human monocytes [339]

↓ NE, E, isoproterenol, salbutamol, 
terbutaline

↓ TNF-α, IL-12, 
IFN-γ

IL-18-primed human monocytes [341]

↓ Isoproterenol ↓ TNF-α, IL-12, 
NO

LPS-primed human monocytes [346]

↓ NE, E, terbutaline ↑ IL-10, IL-4. ↓ 
IFN-γ

tetanus-primed human monocytes [332]

↓ Terbutaline ↑ IL-10, ↓ TNF-α LPS primed U937 human monocytes [336]

Macrophages

↑ NE ↑ TNF-α LPS-primed mouse macrophages [359]

↑ Phenylephrine ↑ IL-1β LPS-primed human macrophages [249]
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Effect on inflammation Agonist/antagonist cytokine Experimental model citation

↑ Phentolamine, yohimbine ↓ IL-1β LPS-primed mouse macrophages [250]

↑ NE (effect blocked by β antagonist) ↑ IL-6 U937 human macrophages [352]

↑ NE, E ↑ NO LPS-primed RAW 264 murine 
macrophages

[381]

↑ Salbutamol ↑ IL-1β, IL-6 RAW 264 murine macrophages [353]

↑ Isoproterenol ↑ TNF-α, IL-12, 
NO

PMA-primed mouse macrophages [346]

↓ E, isoprenaline, dobutamine, salbutamol ↓ NO LPS-primed mouse macrophages [344]

↓ Propranolol ↑ IL-1β LPS-primed mouse macrophages [250]

↓ Isoproterenol (effect blocked by β 
antagonist)

↓ TNF-α LPS-primed mouse macrophages [345]

↓ NE, E, formoterol, salbutamol ↓ IL-27 LPS-primed mouse macrophages [340]

↓ NE, E, formoterol (effect blocked by β2 
antagonist)

↓ TNF-α, IL-8. ↑ 
IL-10

LPS-primed porcine macrophages [342]

↓ Dopamine (effect blocked by β 
antagonist)

↓ IL-12 LPS-primed mouse macrophages [335]

↓ Clenbuterol ↓ TNF-α, IL-6. ↑ 
IL-10

LPS-primed PMA-differentiated 
U937 human macrophages

[246]

↓ Isoproterenol ↓ TNF-α, IL-12, 
NO

LPS-primed mouse macrophages [346]

Microglia

↑ Isoproterenol (effect blocked by β 
antagonists)

↑ IL-1β Rat microglia [354]

↑ Isoproterenol ↑ IL-6, IL-1β, 
↓TNF-α

Rat microglia [351]

↑ Propranolol ↓ IL-6, IL-1β, 
↓TNF-α

Rat microglia isolated after surgical 
trauma

[351]

↓ NE, isoproterenol ↓ TNF-α, CCL2 Aβ stimulated mouse microglia [348]

↓ NE, isoproterenol ↓ NO LPS-primed rat microglia [347]

↓ NE, epi, isoproterenol, phenylephrine ↓ NO LPS-primed N9 murine microglia [333]

↓ NE ↓ TNF-α, IL-6 LPS-primed mouse microglia [51]

↓ NE, phenylephrine, dobutamine, 
terbutaline

↓ TNF-α, NO LPS-primed rat microglia [251]

↓ dobutamine, terbutaline ↓ TNF-α, CCL2, 
IL-6

LPS-primed microglia in mouse 
hippocampal slices

[338]

↑ Isoproterenol (effect blocked by β 
antagonists)

↑ IL-1β Rat microglia [354]

↑ Isoproterenol ↑ IL-6, IL-1β, TNF-
α

Rat microglia [351]
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