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Kernel entropy component analysis (KECA) is a newly proposed dimensionality reduction (DR) method, which has showed
superiority in many pattern analysis issues previously solved by principal component analysis (PCA). ,e optimized KECA
(OKECA) is a state-of-the-art variant of KECA and can return projections retaining more expressive power than KECA. However,
OKECA is sensitive to outliers and accused of its high computational complexities due to its inherent properties of L2-norm. To
handle these two problems, we develop a new extension to KECA, namely, KECA-L1, for DR or feature extraction. KECA-L1 aims
to find a more robust kernel decomposition matrix such that the extracted features retain information potential as much as
possible, which is measured by L1-norm. Accordingly, we design a nongreedy iterative algorithm which has much faster
convergence than OKECA’s. Moreover, a general semisupervised classifier is developed for KECA-based methods and employed
into the data classification. Extensive experiments on data classification and software defect prediction demonstrate that our new
method is superior to most existing KECA- and PCA-based approaches. Code has been also made publicly available.

1. Introduction

Curse of dimensionality is one of the major issues in ma-
chine learning and pattern recognition [1]. It has motivated
many scholars from different areas to properly implement
dimensionality reduction (DR) to simplify the input space
without degrading performances of learning algorithms.
Various efficient methods associated with DR have been
developed, such as independent component analysis (ICA)
[2], linear discriminant analysis [3], principal component
analysis (PCA) [4], projection pursuit [5], to name a few.
Among these robust algorithms, PCA has been one of the
most used techniques to perform feature extraction (or DR).
PCA implements linear data transformation according to
the projection matrix, which aims to maximize the second-
order statistics of input datasets [6]. To extend PCA to
nonlinear space, Schölkopf et al. [7] proposed the kernel
PCA, the so-called KPCA method. ,e key of KPCA is to
find the nonlinear relation between the input data and the

kernel feature space (KFS) using the kernel matrix, which is
derived from a positive semidefinite kernel function of
computing inner products. Both PCA and KPCA perform
data transformation by selecting the eigenvectors corre-
sponding to the top eigenvalues of the projection matrix and
the kernel matrix, respectively. All of them (including their
variants) have experienced great success in different areas
[8–12], such as image reconstruction [13], face recognition
[14–17], image processing [18, 19], to name a few. However,
as suggested by Zhang and Hancock [20], the DR should be
performed according to the perspective of information
theory for obtaining more acceptable results.

To improve performances of the aforementioned ap-
proaches to DR, Jessen [6] developed a new and completely
different data transformation algorithm, namely, kernel
entropy component analysis (KECA). ,e main difference
between KECA and PCA or KPCA is that the optimal ei-
genvectors (or called entropic components) derived from
KECA can compress the most Renyi entropy of the input
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data instead of being associated with top eigenvalues. ,e
procedure of selecting the eigenvectors related to the Renyi
entropy of the input space is started with a Parzen window
kernel-based estimator [21]. ,en, only the eigenvectors
corresponding to the most entropy of the input datasets are
selected to perform DR. ,is distinguished characteristic
helps KECA achieve better performances than the classical
PCA and KPCA in face recognition and clustering [6]. In
recent years, Izquierdo-Verdiguier et al. [21] employed the
rotation matrix from ICA [2] to optimize KECA and pro-
posed the optimized KECA (OKECA). OKECA not only
shows superiority in classification of both synthetic and real
datasets but can obtain acceptable kernel density estimation
(KDE) just using very fewer entropic components (just one
or two) compared with KECA [21]. However, OKECA is
sensitive to outliers for its inherent properties of L2-norm.
In other words, if the input space follows normal distri-
bution and is contaminated by nonnormal distributed
outliers, this may lead to the downgrade of its performance
on DR in terms of OKECA. Additionally, OKECA is very
time-consuming when handling large-scale input datasets
(Section 4).

,erefore, the main purpose of this paper is to propose
a new variant of KECA and improve the proneness to
outliers and efficiency of OKECA. L1-norm is well known
for its robustness to outliers [22]. Additionally, Nie et al. [23]
established a fast iteration process to handle the general L1-
normmaximization issue with nongreedy algorithm. Hence,
we take advantages of OKECA and propose a new L1-norm
version of KECA (denoted as KECA-L1). KECA-L1 uses an
efficient convergence procedure, motivated by Nie et al.’s
method [23], to search for the entropic components con-
tributing to the most Renyi entropy of input data. To
evaluate the efficiency and effectiveness of KECA-L1, we
design and conduct a series of experiments, in which the data
vary from single class to multiattribute and from small to
large size. ,e classical KECA and OKECA are also included
for comparison.

,e remainder of this paper is organized as follows:
Section 2 reviews the general L1-norm maximization issue,
KECA, and OKECA. Section 3 presents KECA with non-
greedy L1-norm maximization and semisupervised-
learning-based classifier. Section 4 validates the perfor-
mance of the new method on different data sets. Section 5
ends this paper with some conclusions.

2. Preliminaries

2.1. An Efficient Algorithm to Solving the General L1-
Norm Maximization Issue. ,e general L1-norm maxi-
mization problem is first raised by Nie et al. [23]. ,is
issue, based on a hypothesis that there exists an upper
bound for the objective function, can be generally for-
mulated as [23]

max
]∈C

f(]) + 􏽘
i

gi(])
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (1)

where both f(]) and gi(]) for each i denote arbitrary
functions, and ] ∈ C represents an arbitrary constraint.

,en a sign function sign(·) is defined as

sign(x) �
1 if x≥ 0,

−1 if x< 0,
􏼨 (2)

and employed to transform the maximization problem (1) as
follows:

max
]∈C

f(]) + 􏽘
i

αigi(]), (3)

where αi � sign(gi(])). Nie et al. [23] proposed a fast it-
eration process to solve problem (3), which is shown in
Algorithm 1. It can be seen from Algorithm 1 that αi is
determined by current solution ]t, and the next solution ]t+1

is updated according to the current αi. ,e iterative process
is repeated until the procedure converges [23, 24]. ,e
convergence of the Algorithm 1 has been demonstrated, and
the associated details can also be read in [23].

2.2. Kernel Entropy Component Analysis. KECA is charac-
terized by its entropic components instead of the principal or
variance-based components in PCA or KPCA, respectively.
Hence, we firstly describe the concept of the Renyi quadratic
entropy. Given the input dataset X � [x1, . . . , xN](xi ∈ RD),
the Renyi entropy of X is defined as [6]

H(p) � −log􏽚 p
2
(x)dx, x ∈ X, (4)

where p(x) is a probability density function. Based on the
monotonic property of logarithmic function, Equation (4)
can be rewritten as

V(p) � 􏽚 p
2
(x)dx. (5)

We can estimate Equation (5) using the kernel kσ(x, xt)

of Parzen window density estimator determined by the
bandwidth coefficient σ [6] such that

V(p) ≈ 􏽢V(p)

�
1
N

􏽘
x∈X

p(x)

�
1
N

􏽘
xi∈X

1
N

􏽘
xj∈X

kσ xi, xj􏼐 􏼑

�
1

N21
TK1,

(6)

where Kij � kσ(xi, xj) constitutes the kernel matrix K and 1
represents an N-dimensional vector containing all ones.
With the help of the kernel decomposition [6],

K � AAT
� ED1/2

􏼐 􏼑 D1/2ET
􏼐 􏼑. (7)

Equation (6) is transformed as follows:

􏽢V(p) �
1

N2 􏽘

N

i�1

��

λi

􏽱

1Tei􏼒 􏼓
2
, (8)

where the diagonal matrix D and the matrix E consist of
eigenvalues λ1, . . . , λN and the corresponding eigenvectors
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e1, . . . , eN, respectively. It can be observed from Equation (7)
that the entropy estimator 􏽢V(p) consists of projections onto
all the KFS axes because

Kij � kσ xi, xj􏼐 􏼑 � ϕ xi( 􏼁
Tϕ xj􏼐 􏼑, (9)

where the function of ϕ(·) is to map the two samples xi and
xj into the KFS. Additionally, only an entropic component ei

meeting the criteria of λi ≠ 0 and 1Tei ≠ 0 can contribute to
the entropy estimate [21]. In a word, KECA implements DR
by projecting ϕ(X) into a subspace El spanned not by the
eigenvectors associated with the top eigenvalues but by
entropic components contributing most to the Renyi en-
tropy estimator 􏽢V(p) [25].

2.3. Optimized Kernel Entropy Component Analysis. Due to
the fact that KECA is sensitive to different bandwidth co-
efficients σ [21], OKECA is proposed to fill this gap and
improve performances of KECA on DR. Motivated by the
fast ICA method [2], an extra rotation matrix (applying W)
is employed to the kernel decomposition (Equation (7)) in
KECA for maximizing the information potential (the en-
tropy values in Equation (8)) [21]:

max
wk∈W

J(w) � 1T
NED

1/2w( 􏼁
2
,

s.t. WWT � I, ‖w‖2 � 1,

⎧⎪⎨

⎪⎩
(10)

where ‖ · ‖2 is the L2-norm and w denotes a column vector
(N × 1) in W. Izquierdo-Verdiguier et al. [21] utilized
a gradient-ascent approach to handle the maximization
problem (10):

w(t) � w(t− 1) + τ
zJ

zw(t)
, (11)

where τ is the step size. zJ/zw(t) can be obtained by La-
grangian multiplier:

zJ

zw(t)
�

zL(w)

zw
� 2 1T

NED
1/2w􏼐 􏼑 1T

NED
1/2

􏼐 􏼑
T
. (12)

,e entropic components multiplied by the rotation
matrix can obtain more (or equal) information potential
than that of the KECA even using fewer components [21].
Moreover, OKECA shows the capability of being robust to
the bandwidth coefficient. However, there exist two main
limitations for OKECA. First, the new entropic components
derived from OKECA are sensible to outliers since its

inherent properties of L2-norm (Equation (10)). Second,
although a very simple stopping criterion is designed to
avoid additional iterations, OKECA is still of high com-
putational complexities for its computational cost is O(N3 +

4tN2) [21], where t is the number of iterations for finding the
optimal rotation matrix, compared with that the one of
KECA is O(N3) [21].

3. KECA with Nongreedy
L1-Norm Maximization

3.1. Algorithm. In order to alleviate the problems existing
in OKECA, this section presents how to extend KECA to
its nongreedy L1-norm version. For readers’ easy under-
standing, the definition of L1-norm is firstly introduced as
follows:

Definition 1. Given an arbitrary vector x ∈ RN×1, the
L1-norm of the vector x is

‖x‖1 � 􏽘
N

j�1
xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (13)

where ‖ · ‖1 is the L1-norm and xj denotes the jth element
of x.

,en, motivated by OKECA, we attempt to develop
a new objective function to maximize the information po-
tential (Equations (8) and (10)) based on the L1-norm:

max J(W) � WTED1/2
����

����1 � 􏽘
N

j�1
sign aT

j W􏼐 􏼑WTaj,

s.t. WTW � I,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

where (a1, . . . , aN) � A � ED1/2, N is the size of samples.
,e rotation matrix is denoted as W ∈ RDIM×m, where DIM
and m are the dimension of input data and dimension of the
selected entropic components (or number of projection),
respectively. It is difficult to directly solve problem (14), but
we may regard it as a special case of problem (1) when
f(]) ≡ 0. ,erefore, the Algorithm 1 can be employed to
solve (14). Next, we show the details about how to find the
optimal solution of problem (14) based on the proposal from
References [23, 24]. Let

M � 􏽘
N

j�1
ajsign aT

j W􏼐 􏼑. (15)

,us, problem (14) can be simplified as

max
WTW�I

J(w) � Tr WTM􏼐 􏼑. (16)

By singular value decomposition (SVD), then

M � UΛVT
, (17)

where U ∈ RDIM×DIM, Λ ∈ RDIM×m, and V ∈ Rm×m. ,en we
obtain

Initialize ]1 ∈ C, t � 1;
While not converge

For each i, compute αt
i � sign(gi(]t));

]t+1 � argmax
]∈C

f(]t) + 􏽐iαigi(]t);

t � t + 1;
end
Output: ]t+1

ALGORITHM 1: Fast iteration approach to solving the general
L1-Norm maximization problem (3).
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Tr WTM􏼐 􏼑 � Tr WTUΛVT
􏼐 􏼑 � Tr ΛVTWTU􏼐 􏼑

� Tr(ΛZ) � 􏽘
i

λiizii,
(18)

where Z ∈ Rm×m, λii and zii denote the (i, i)− th element of
matrixΛ and Z, respectively. Due to the property of SVD, we
have λii ≥ 0. Additionally, Z is an orthonormal matrix [23]
such that zii ≤ 1. ,erefore, Tr(WTM) can reach the max-
imum only if Z � [Im, 0m×(DIM−m)], where Im denotes the
m × m identity matrix, and 0m×(DIM−m) is a m × (DIM−m)

matrix of zeros. Considering that Z � VTWTU, thus the
solution to problem (16) is

W � U Im; 0(DIM−m)×m􏽨 􏽩VT
. (19)

Algorithm 2 (A MATLAB implementation of the al-
gorithm is available at the Supporting Document for the
interested readers) shows how to utilize the nongreedy L1-
norm maximization described in Algorithm 1 to compute
Equation (19). Since problem (16) is a special case of
problem (1), we can obviously obtain that the optimal
solution W∗ to Equation (19) is a local maximum point for
‖WTED1/2‖1 based on ,eorem 2 in Reference [23].
Moreover, the Phase 1 of the Algorithm 2 spends O(N3) on
the eigen decomposition. ,us, the total of computational
cost of KECA-L1 is O(N3 + Nt), where t is the number of
iterations for convergence. Considering that the compu-
tational complexity of OKECA is O(N3 + 4tN2), we can
safely conclude that KECA-L1 has much faster convergence
than OKECA’s.

3.2. 8e Convergence Analysis. ,is subsection attempts to
demonstrate the convergence of the Algorithm 2 in the
following: theorem:

Theorem 1. 8e above KECA-L1 procedure can converge.

Proof. Motivated by References [23, 24], first we show
the objective function (9) of KECA-L1 will monotonically
increase in each iteration t. Let gi(ut) � WTaj and
αt

i � sign(aT
j W), then (9) can be simplified to

max J(W) � 􏽘
N

j�1
sign aT

j W􏼐 􏼑WTaj � 􏽘
N

j�1
αt

i gi u
t

􏼐 􏼑,

s.t. WTW � I.

⎧⎪⎪⎨

⎪⎪⎩

(20)

Obviously, αt+1
i is parallel to gi(ut+1), but neither is αt

i .
,erefore,

gi u
t+1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � αt+1
i gi u

t+1
􏼐 􏼑≥ αt

i gi u
t+1

􏼐 􏼑

⇒ gi u
t+1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌− α
t
igi u

t+1
􏼐 􏼑≥ 0.

(21)

Considering that |gi(ut)| � αt
igi(ut), thus

gi u
t

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌− α
t
igi u

t
􏼐 􏼑 � 0. (22)

Substituting (22) in (21), it can be obtained

gi u
t+1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌− α
t
igi u

t+1
􏼐 􏼑≥ gi u

t
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌− α
t
igi u

t
􏼐 􏼑. (23)

According to the Step 3 in Algorithm 2 and the theory of
SVD, for each iteration t, we have

􏽘

N

i�1
αt

igi u
t+1

􏼐 􏼑≥ 􏽘
N

i�1
αt

igi u
t

􏼐 􏼑. (24)

Combining (23) and (24) for every i, we have

􏽘

N

i�1
gi u

t+1
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌− α
t
igi u

t+1
􏼐 􏼑􏼒 􏼓≥ 􏽘

N

i�1
gi u

t
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌− α
t
igi u

t
􏼐 􏼑􏼒 􏼓

⇒􏽘
N

i�1
gi u

t+1
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ 􏽘
N

i�1
gi u

t
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(25)

Table 1: UCI datasets description.

Database N DIM Nc Ntrain Ntest

Ionosphere 351 33 2 30 × 2 175
Letter 20000 16 26 35 × 26 3870
Pendigits 10992 16 9 60 × 9 3500
Pima-Indians 768 8 2 100 × 2 325
WDBC 569 30 2 35 × 2 345
Wine 178 12 3 30 × 3 80
N: number of samples, DIM: number of dimensions, Nc: number of classes,
Ntrain: number of training data, and Ntest: number of testing data.

Input K and m

Initialize W1 ∈ RDIM×m such that WTW � I, t � 1;
/--------------------------------Phase 1------------------------------/

(1) Eigen decomposition. [E,D]⟵eig(K). D⟵sort(D), E⟵sort(E), A � ED1/2;
/--------------------------------Phase 2------------------------------/
While not converge

(2) M � 􏽐
N
j�1ajsign(aT

j W);
(3) Compute the SVD of M as M � UΛVT. Let Wt+1 � U[Im; 0(DIM−m)×m]VT;
(4) t � t + 1;

end
Output: Wt+1 ∈ RDIM×m

ALGORITHM 2: KECA-L1.
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which means that Algorithm 2 is monotonically increasing.
Additionally, considering that objective function (14) of
KECA-L1 has an upper bound within the limited iterations,
the KECA-L1 procedure will converge. □

3.3. 8e Semisupervised Classifier. Jenssen [26] established
a semisupervised learning (SSL) algorithm for classification
using KECA. ,is SSL-based classifier was trained by both

labeled and unlabeled data to build the kernel matrix such that
it can map the data to KFS appropriately [26]. Additionally, it
is based on a general modelling scheme and applicable for
other variants of KECA, such as OKECA and KECA-L1.

More specifically, we are given N pairs of training data
xi, yi􏼈 􏼉

N

i�1 with samples xi ∈ RD and the associated labels yi.
In addition, there are M unlabeled data points for testing.
Let Xu � [x1u, . . . , xM

u ] and Xl � [x1l , . . . , xN
l ] denote the

testing data and training data without labels, respectively;
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Figure 1: Overall accuracy obtained by the PCA-L1, KPCA-L1, KECA, OKECA, and KECA-L1 using different UCI databases with different
numbers of extracted features. (a) Ionosphere, (b) Letter, (c) Pendigits, (d) Pima-Indians, (e) WDBC, and (f) Wine.
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thus, we can obtain an overall matrix X � [Xu Xl]. ,en we
construct the kernel matrix K derived from X using (6),
K ∈ R(N+M)×(N+M), which plays as the input of Algorithm 2.
After the iteration procedure of nongreedy L1-norm maxi-
mization, we obtain a projection ofX⟶ 􏽥E � [􏽥Eu

􏽥El]m×(M+N)

onto m orthogonal axes, where 􏽥Eu � [􏽥eu
1 , . . . , 􏽥eu

M] and
􏽥El � [􏽥el

1, . . . , 􏽥el
N]. In other words, 􏽥eu

i and 􏽥el
j are the low-

dimensional representations of each testing data point xi
u

and the training one xj

l , respectively. Assume that x∗u is an
arbitrary data point to be tested. If it satisfies

􏽥e
∗
u − 􏽥e

j

l

�����

�����2
� min

h�1,...,N
􏽥e
∗
u − 􏽥e

h
l

�����

�����2
, (26)

then x∗u is assigned to the same class with the jth data point
of Xl.

4. Experiments

,is section shows the performance of the proposed KECA-
L1 compared with the classical KECA [6] and OKECA [21]
for real-world data classification using the SSL-based clas-
sifier illustrated in Section 3.3. Several recent techniques
such as PCA-L1 [27] and KPCA-L1 [28] are also included for
comparison. ,e rationale to select these methods is that
previous studies related to DR found that they can produce
impressive results [27–29]. We implement the experiments
on a wide range of real-world datasets: (1) six different
datasets from the University California Irvine (UCI)
Machine Learning Repository (available at http://archive.ics.
uci.edu/ml/datasets.html) and (2) 9 different software pro-
jects with 34 releases from the PROMISE data repository
(available at http://openscience.us/repo). ,e MATLAB
source code for running KECA and OKECA, uploaded by
Izquierdo-Verdiguier et al. [21], is available at http://isp.uv.
es/soft_feature.html. ,e coefficients set for PCA-L1 and
KPCA-L1 is the same with [27, 28]. All of the experiments
are all performed by MATLAB R2012a on a PC with Inter
Core i5 CPU, 4 GB memory, and Windows 7 operating
system.

4.1. Experiments on UCI Datasets. ,e experiments are
conducted on six datasets from the UCI: the Inonosphere
dataset is a binary classification problem of whether the
radar signal can describe the structure of free electrons in the
ionosphere or not; the Letter dataset is to assign each black-
and-white rectangular pixel display to one of the 26 capital
letters in the English alphabet; the Pendigits handles the
recognition of pen-based handwritten digits; the Pima-
Indians data set constitutes a clinical problem of diabetes
diagnosis in patients from clinical variables; the WDBC
dataset is another clinical problem for the diagnosis of breast
cancer in malignant or benign classes; and the Wine dataset
is the result of a chemical analysis of wines grown in the
same region in Italy but derived from three different cul-
tivars. Table 1 shows the details of them. In the subsequent
experiments, we just utilized the simplest linear classifier
[30]. ,e theory of maximizing maximum likelihood (ML)
[31] is selected as the rule for selecting bandwidth coefficient
as suggested in [21].

Table 2: Descriptions of data attributes.

Attribute Description
WMC Weighted methods per class
AMC Average method Complexity
AVG_CC Mean values of methods in the same class
CA Afferent couplings
CAM Cohesion among methods of class
CBM Coupling between Methods
CBO Coupling between object classes
CE Efferent couplings
DAM Data access Metric
DIT Depth of inheritance tree
IC Inheritance Coupling
LCOM Lack of cohesion in Methods
LCOM3 Normalized version of LCOM
LOC Lines of code
MAX_CC Maximum values of methods in the same class
MFA Measure of function Abstraction
MOA Measure of Aggregation
NOC Number of Children
NPM Number of public Methods
RFC Response for a class
Bug Number of bugs detected in the class

Table 3: Descriptions of software data.

Releases #Classes #FP % FP
Ant-1.3 125 20 0.160
Ant-1.4 178 40 0.225
Ant-1.5 293 32 0.109
Ant-1.6 351 92 0.262
Ant-1.7 745 166 0.223
Camel-1.0 339 13 0.038
Camel-1.2 608 216 0.355
Camel-1.4 872 145 0.166
Camel-1.6 965 188 0.195
Ivy-1.1 111 63 0.568
Ivy-1.4 241 16 0.066
Ivy-2.0 352 40 0.114
Jedit-3.2 272 90 0.331
Jedit-4.0 306 75 0.245
Lucene-2.0 195 91 0.467
Lucene-2.2 247 144 0.583
Lucene-2.4 340 203 0.597
Poi-1.5 237 141 0.595
Poi-2.0 314 37 0.118
Poi-2.5 385 248 0.644
Poi-3.0 442 281 0.636
Synapse-1.0 157 16 0.102
Synapse-1.1 222 60 0.270
Synapse-1.2 256 86 0.336
Synapse-1.4 196 147 0.750
Synapse-1.5 214 142 0.664
Synapse-1.6 229 78 0.341
Xalan-2.4 723 110 0.152
Xalan-2.5 803 387 0.482
Xalan-2.6 885 411 0.464
Xerces-init 162 77 0.475
Xerces-1.2 440 71 0.161
Xerces-1.3 453 69 0.152
Xerces-1.4 588 437 0.743
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,e implementation of KECA-L1 and other methods is
repeated using all the selected datasets with respect to dif-
ferent numbers of components for 10 times. We have uti-
lized the overall classification accuracy (OA) to evaluate the
performance of different algorithms on the classification.
OA is defined as the total number of samples correctly
assigned in percentage terms, which is within [0, 1] and
indicates better quality with larger values. Figure 1 presents
the average OA curves obtained by the aforementioned
algorithms for these six real datasets. It can be observed from
Figure 1 that OKECA is superior to KECA, PCA-L1, and
KPCA-L1 except for solving Letter issue. ,is is probably
because DR performed by OKECA not only can reveal the
structure related to the most Renyi entropy of the original
data but also consider the rotational invariance property
[21]. In addition, KECA-L1 outperforms the other methods
besides of OKECA. ,is may be attributed to the robustness
of L1-norm to outliers compared with that of the L2-norm.
In Figure 1(c), OKECA seems to obtain nearly the same
results with KECA-L1’s. However, the average running time
(in hours) of OKECA in the Pendigits is 37.384 times more
than that of KECA-L1 1.339.

4.2. Experiments on Software Projects. In software engi-
neering, it is usually difficult to test a software project
completely and thoroughly with the limited resources [32].
Software defect prediction (SDP) may provide a relatively
acceptable solution to this problem. It can allocate the

limited test resources effectively by categorizing the software
modules into two classes: nonfault-prone (NFP) or fault-
prone (FP) according to 21 software metrics (Table 2).

,is section aims to employ KECA-based methods to
reduce the selected software data (Table 3) dimensions and
then utilize the SSL-based classifier combined with the
support vector machine [33] to classify each software
module as NFP or FP. ,e bandwidth coefficient set is still
restricted to the rule of ML. PCA-L1 and KPCA-L1 are
involved as a benchmarking yardstick. ,ere are 34 groups
of tests for each release in Table 3. ,e most suitable releases
[34] from different software projects are selected as training
data. We evaluate the performance of different selected
methods on SDP in terms of recall (R), precision (P), and
F-measure (F) [35, 36]. ,e F-measure is defined as

F �
2 × precsion × recall
precsion + recall

, (27)

where

Precsion �
TP

TP + FP
,

Recall �
TP

TP + FN
.

(28)

In (28), FN (i.e., false negative) means that buggy
classes are wrongly classified to be nonfaulty, while FP
(i.e., false positive) means nonbuggy classes are wrongly
classified to be faulty. TP (i.e., true positive) refer to
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Figure 2: ,e standardized boxplots of the performance achieved by PCA-L1, KPCA-L1, KECA, OKECA, and KECA-L1, respectively.
From the bottom to the top of a standardized box plot: minimum, first quartile, median, third quartile, and maximum.

Computational Intelligence and Neuroscience 7



correctly classified buggy classes [34]. Values of Recall,
Precision, and F-measure range from 0 to 1 and higher
values indicate better classification results.

Figure 2 shows the results using box-plot analysis. From
Figure 2, considering theminimum,maximum,median, first
quartile, and third quartile of the boxes, we find that KECA-
L1 performs better than the other methods in general.
Specifically, KECA-L1 can obtain acceptable results in ex-
periments for SDP compared with the benchmarks proposed
in Reference [34], since the median values of the boxes with
respect to R and F are close to 0.7 and more than 0.5, re-
spectively. On the contrary, not only KECA and OKECA but
PCA-L1 and KPCA-L1 cannot meet these criteria.,erefore,
all of the results validate the robustness of KECA-L1.

5. Conclusions

,is paper proposes a new extension to the OKECA ap-
proach for dimensional reduction. ,e new method
(i.e., KECA-L1) employs L1-norm and a rotation matrix to
maximize information potential of the input data. In order
to find the optimal entropic kernel components, motivated
by Nie et al.’s algorithm [23], we design a nongreedy iterative
process which has much faster convergence than OKECA’s.
Moreover, a general semisupervised learning algorithm has
been established for classification using KECA-L1. Com-
pared with several recently proposed KECA- and PCA-based
approaches, this SSL-based classifier can remarkably pro-
mote the performance on real-world datasets classification
and software defect prediction.

Although KECA-L1 has achieved impressive success on
real examples, several problems still should be considered
and solved in the future research.,e efficiency of KECA-L1
has to be optimized for it is relatively time-consuming
compared with most existing PCA-based methods. Addi-
tionally, the utilization of KECA-L1 is expected to appear in
each pattern analysis algorithm previously based on PCA
approaches.
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