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Abstract

In a multivariable logistic regression setting where measuring a continuous exposure requires an 

expensive assay, a design in which the biomarker is measured in pooled samples from multiple 

subjects can be very cost effective. A logistic regression model for poolwise data is available, but 

validity requires that the assay yields the precise mean exposure for members of each pool. To 

account for errors, we assume the assay returns the true mean exposure plus a measurement error 

(ME) and/or a processing error (PE). We pursue likelihood-based inference for a binary health-

related outcome modeled by logistic regression coupled with a normal linear model relating 

individual-level exposure to covariates and assuming that the ME and PE components are 

independent and normally distributed regardless of pool size. We compare this approach with a 

discriminant function-based alternative, and we demonstrate the potential value of incorporating 

replicates into the study design. Applied to a reproductive health dataset with pools of size 2 along 

with individual samples and replicates, the model fit with both ME and PE had a lower AIC than a 

model accounting for ME only. Relative to ignoring errors, this model suggested a somewhat 

higher (though still nonsignificant) adjusted log-odds ratio associating the cytokine MCP-1 with 

risk of spontaneous abortion. Simulations modeled after these data confirm validity of the 

methods, demonstrate how ME and particularly PE can reduce the efficiency advantage of a 

pooling design, and highlight the value of replicates in improving stability when both errors are 

present.
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1 | INTRODUCTION

A pooling study design is one in which a biomarker of interest is measured in combined 

biospecimen samples from multiple participants rather than individual samples.1,2 Pooling 

designs may be best known for their use in ascertaining individual-level disease status with 

fewer assays, eg, in screening donated blood for hepatitis B virus.3 Our focus, however, is on 

the use of pooling for measuring a continuous biomarker and estimating parameters in an 

individual-level regression model of interest.

There are numerous reasons one might consider a pooling study design. For example, the 

assay may require a sample volume greater than is available for individual participants, or it 

may be too expensive to obtain individual-level measurements for every participant.4 In a 

regression setting, if pools are comprised of samples from participants who are similar on 

relevant characteristics, a pooling design requiring far fewer assays may offer only slightly 

less power than a corresponding individual-level design.5,6 For a fixed budget, a pooling 

design requiring the same or fewer total assays may have much greater power than a 

traditional design; for a fixed target power, a pooling design may be drastically cheaper.

Logistic regression is a context in which pooling can be highly cost effective, provided that 

pools can be formed so that the subjects comprising them are homogeneous with respect to 

the outcome. Assuming the assay returns the arithmetic mean biomarker level for members 

of each pool, Weinberg and Umbach4,7 provide a poolwise logistic regression model for 

estimating log-odds ratios for the exposure and other covariates. As they note, however, 

fitting this model without accounting for errors in the biomarker measurements can lead to a 

well-known consequence of covariate measurement error: inconsistent parameter estimation.
8,9

Schisterman et al10 describe two types of errors in particular that can affect poolwise 

biomarker measurements and induce bias if ignored. These are measurement error (ME), 

which is due to the assay being imperfect, and processing or “pooling” error (PE), which is 

variability induced as a result of the process of combining samples. The latter can be due to 

imperfect lab conditions or cross-reactions between components of blood from different 

participants.4 Schisterman et al aimed to estimate parameters of a biomarker distribution 

based on data from a “hybrid” design with measurements for individuals and pools of 

several different sizes, accounting for ME and PE by leveraging information about variance 

components from the different data types.

Lyles et al11 took a similar approach to account for ME and PE in estimating the covariate-

adjusted log-odds ratio relating a continuous exposure measured in pools and a binary 

outcome. They developed a discriminant function approach that leads to a convenient 

poolwise model into which additive normal ME and PE can be incorporated, resulting in a 

closed-form likelihood for the pooled data. This approach is computationally simple and 

does not require homogeneous pools with respect to case status but does not produce log-

odds ratio estimates for covariates other than the pooled exposure variable. The likelihood 

methods of Liu et al12 are similar in that they model the pooled biomarker as the dependent 

Van Domelen et al. Page 2

Stat Med. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variable, but their focus is solely on outcome ME as opposed to correcting an adjusted odds 

ratio estimate for exposure ME and/or PE.

In this paper, we follow the framework of Schisterman et al and Lyles et al to extend the 

Weinberg and Umbach logistic regression model to accommodate errors in the poolwise 

exposure. We consider a hybrid study design that includes several different pool sizes, 

typically including some pools of size 1 (“singles” or “single-specimen pools”). We use a 

maximum likelihood (ML) approach assuming processing and measurement errors are 

independent and normally distributed with 0 means and variances σp
2, and σm

2  that do not 

depend on pool size. As in Schisterman et al,10 we assume processing errors affect 

multispecimen pools only, while measurement errors affect single- and multi-specimen 

pools and have the same variance regardless of pool size.

While all parameters are identifiable with a design that includes at least three different pool 

sizes including 1, we demonstrate that numerical stability and precision can be improved by 

incorporating a relatively small number of replicates into the study design. We apply our 

methods to exploring the relationship between levels of a serum cytokine during pregnancy 

and risk of spontaneous abortion using a dataset in which cytokines were measured in pools 

of size 1 and 2 and in which replicate measurements are available. The discriminant function 

approach,11 modified slightly to accommodate replicates, is included as a reference method 

throughout; accessible software for implementing both methods is provided.

2 | STATISTICAL METHODS

2.1 | Poolwise logistic regression

Suppose we wish to estimate parameters in an individual-level logistic regression model 

relating a binary outcome Yij to a continuous exposure Xij and covariates Cij

logit P Y i j = 1 = β0 + βxXi j + βc
T Ci j . (1)

Here, i indexes the eventual pool number (i = 1, …, k), and j indexes membership within a 

pool (j = 1, … , gi) so that Yij is the case status for the jth member of the ith pool comprised 

of gi members (gi ∈ 1, 2, … ). We consider a design in which the ith pool is comprised of 

specimens that are homogeneous on the outcome (ie, Yi = 1or Yi = 0), which requires 

observing individual outcomes prior to forming pools in which to measure the exposure.

Rather than observing the exposure for each member of a pool, Xi = Xi1, …, Xigi

T
, one 

ideally obtains from an assay the poolwise mean Xi = 1
gi

∑ j = 1
gi Xi j, from which the 

poolwise sum can be calculated as Xi
∗ = giXi (asterisks denote poolwise sums throughout). 
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While individual-level data is assumed present for the other covariates, Ci = Ci1, …, Cigi

T
, 

we similarly calculate poolwise sums Ci
∗ = ∑ j = 1

gi Ci j.

In the absence of ME and PE in a case-control setting, Weinberg and Umbach4,7 provide the 

appropriate poolwise logistic regression model for estimating β = β0, βx, βc
T T

logit P Y i = 1 = qi + giβ0 + βxXi
∗ + βc

T Ci
∗ . (2)

The offset is defined as

qi = gi ln P A D
P A D

+ gi ln
nD
nD

+ ln
# case pools of size gi

# control pools of size gi
, (3)

where P(A|D) and P A D  are accrual probabilities for cases and controls and nD and nD are 

the total number of cases and controls across all pools. If accrual probabilities are unknown, 

the first term on the right hand side can be omitted, with the only consequence being invalid 

estimation of β0 if there is case oversampling.

2.2 | ML for handling errors in Xi
∗

As assumed in Schisterman et al,10 suppose the measurement obtained from the assay is not 

the precise poolwise mean Xi but rather the poolwise mean plus a processing error ϵi
p (if gi > 

1) and a measurement error ϵi
m. Letting Xi represent the error-prone measurement, we 

assume

Xi = Xi + ϵi
pI gi > 1 + ϵi

m . (4)

The poolwise logistic regression model in (2) uses the poolwise sum rather than the 

poolwise mean, which can be calculated as Xi
∗ = giXi.

In the ith pool, we observe Y i, Xi
∗, Ci

∗  Conditioning on precisely measured summed 

covariate values Ci
∗, the likelihood contribution is 

Li θ = f Y i, Xi
∗ Ci

∗ = ∫
Xi

∗ f Y i, Xi
∗, Xi

∗ Ci
∗ dXi

∗. Taking a classical measurement error 

modeling approach,8 we factor the likelihood as follows:
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Li θ = ∫
Xi

∗ f Y i Xi
∗, Xi

∗, Ci
∗ f Xi

∗ Xi
∗, Ci

∗ f Xi
∗ Ci

∗ dXi
∗

= ∫
Xi

∗ f Y i Xi
∗, Ci

∗ f Xi
∗ Xi

∗ f Xi
∗ Ci

∗ dXi
∗ .

(5)

The simplification f Y i Xi
∗, Xi

∗, Ci
∗ = f Y i Xi

∗ Ci
∗  reflects a standard nondifferential error 

assumption8: the imprecise Xi
∗ does not inform the outcome given the precise Xi

∗ and 

covariates. The result f Xi
∗ Xi

∗, Ci
∗ = f Xi

∗ Xi
∗  reflects an assumption that the errors in (4) 

are independent of covariate values.

The three-density factorization in (5) is common in the measurement error literature, and the 

three components are often termed the disease model (or outcome model), the measurement 

error model, and the exposure model, respectively.13 The disease model is already 

determined by (2). For the measurement error model, if we assume ϵi
p N 0, σp

2  and 

ϵi
m N 0, σm

2  and these errors are independent, then by (4), we have 

Xi
∗ = giXi = Xi

∗ + giϵi
pI gi > 1 + giϵi

m, leading to

Xi
∗ Xi

∗ N Xi
∗, gi

2σp
2I gi > 1 + gi

2σm
2 (6)

For the exposure model Xi
∗ Ci

∗, we first specify an individual-level model for Xij | Cij and 

then derive the corresponding poolwise model. A common approach in the measurement 

error literature and one that leads to a simple poolwise model is a normal linear regression.8 

If we assume Xi j + α0 + αc
TCi j + ϵi j

x , ϵi j
x iidN 0, σx

2 , then 

Xi
∗ = ∑ j = 1

gi Xi j = giα0 + αc
TCi

∗ + ϵi
x ∗, ϵi

x ∗ ind N 0, giσx
2 . Assuming ϵi

x ∗ is independent of 

ϵi
p and ϵi

m, the third term in the likelihood is

Xi
∗ Ci

∗ N giα0 + αc
TCi

∗, giσx
2 . (7)

With the likelihood contribution for each pool specified, optimization routines can be used to 

obtain ML estimates for θ = βT, αT, σx
2, σp

2, σm
2 T

, with their variance-covariance matrix 

obtained by numerically approximating the Hessian at the MLEs and taking its inverse. Both 

steps require numerically integrating out Xi
∗ for each pool at each iteration.
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2.3 | Approximate ML

To facilitate an alternative approach designed to avoid numerical integration in (5), we first 

factor the density f Y i, Xi
∗ Ci

∗  slightly differently to obtain the following equivalent 

expression for Li(θ):

Li θ = ∫
Xi

∗ f Y i Xi
∗, Ci

∗ f Xi
∗ Xi

∗,Ci
∗ dXi

∗ f Xi
∗ Ci

∗ . (8)

The first density is specified by (2). To obtain the second and third, we first derive the joint 

density f Xi
∗, Xi

∗ Ci
∗ . Implicitly conditioning on Ci

∗ and using the poolwise linear regression 

in (7) for Xi
∗ Ci

∗, we can write

Xi
∗

Xi
∗ =

giα0 + αc
TCi

∗

giα0 + αc
TCi

∗ +
1 0 0
1 giI gi > 1 gi

ϵi
x ∗

ϵi
p

ϵi
m

. (9)

Given the prior normality and independence assumptions, the error vector ϵi = ϵi
x ∗, ϵi

p, ϵi
m T

is trivariate normal, and therefore, Xi
∗ Xi

∗ T
 is also normal

Xi
∗

Xi
∗ N2

giα0 + αc
TCi

∗

giα0 + αc
TCi

∗ ,
giσx

2 giσx
2

giσx
2 giσx

2 + gx
2I gi > 1 σp

2 + gi
2σm

2 . (10)

Hence, Xi
∗ Ci

∗ N giα0 + αc
TCi

∗, giσx
2 + gi

2I gi > 1 σp
2 + gi

2σm
2  and 

Xi
∗ Xi

∗, Ci
∗ N μi = μi1 +

∑i12
∑i22

Xi
∗ − μi2 , σp

2 = ∑i11 −
∑i12

2

∑i22
 with (μi1, μi2, Σi12, Σi22) 

apparent from (10).

With Y i Xi
∗, Ci

∗ Bernoulli pi = 1 + e
−qi − giβ0 − βxXi

∗ − βc
TCi

∗ −1
 and 

Xi
∗ Xi

∗, Ci
∗ N μi, σi

2 , the integral in (8) is a variant on a logistic-normal integral that arises 

in logistic regression with covariate measurement error outside of the pooling context. A 

closed-form approximation can be used to avoid integrating out Xi
∗ numerically.8,14 The first 

density under the integral in (8) is pi
yi 1 − pi

1 − yi, where pi = H ηi = e
ηi

1 + e
ηi

 and 
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ηi = qi + giβ0 + βxXi
∗ + βc

TCi
∗. Replacing the logistic function H(ηi) with the probit 

approximation Φ
ηi
k , where Φ(·) is the standard normal CDF and typically k = 1.7,15 leads to

pi
∗ = P Y i = 1 Xi

∗, Ci
∗ ≈ H

qi + giβ0 + βxμi + βc
TCi

∗

1 +
βx

2σi
2

1.72

. (11)

Thus, the integral in (8), which represents f Y i Xi
∗,Ci

∗ , can be approximated by the closed-

form expression pi
* yi 1 − pi

∗ 1 − yi
. Thoresen and Laake note that the probit approximation 

should perform well for disease probabilities between 0.1 and 0.9.16 Approximate ML 

estimates and standard errors can be obtained using the same procedures as for full ML, but 

without numerical integration.

As noted by a reviewer, (11) has been used in the pooling context before. Zhang and 

Albert17 encountered a logistic-normal integral in developing regression calibration models 

to account for individual-level biomarker levels differing from observed poolwise means. 

Their scenario is different in that pools are not homogeneous with respect to case status, and 

measurement and processing errors are not considered.

2.4 | Discriminant function approach

An alternative to poolwise logistic regression is the discriminant function approach 

described by Lyles et al.11 The basic idea is to estimate βx, the same exposure-disease log-

odds ratio in (1), using estimated parameters from a normal-errors linear regression of Xij on 

(Yij, Cij) rather than a logistic regression of Yij on (Xij, Cij). The assumed model is

Xi j = γ0 + γyY i j + γc
TCi j + ϵi j, ϵi j

iidN 0, σ2 . (12)

If this assumption holds, it can be shown that the quantity 
γy

σ2  represents the same adjusted 

log-odds ratio targeted by βx in (1).18 While the ML estimate for the log-odds ratio is 

log − ORml =
γ y

σ2 , one can also use a bias-adjusted version of the estimator resulting from a 

second-order Taylor series expansion11

log − ORad j = log − ORml −
γ yV σ2

σ2 3 . (13)
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Given the individual-level linear regression in (12), the poolwise model for the sum is

Xi
∗ = ∑ j = 1

gi Xi j = giγ0 + γyY i
∗ + γc

TCi
∗ + ϵi

∗, ϵi
∗ ind N 0, giσ

2 . (14)

Here, Y i
∗ is the number of subjects with Yij = 1 in the ith pool, as opposed to the logistic 

regression setup where Yi = 1 for case pools and 0 for control pools. We again assume the 

assay returns the error-contaminated poolwise mean Xi = Xi + ϵi
pI gi > 1 + ϵi

m, from 

which we calculate the poolwise sum Xi
∗ = giXi = Xi

∗ + giϵi
pI gi > 1 + giϵi

m. The 

likelihood contribution for the observed Y i
∗, Xi

∗, Ci
∗  is Li θ ∝ f Xi

∗ Y i
∗, Ci

∗ , where 

Xi
∗ Y i

∗, Ci
∗ N giγ0 + γyY i

∗ + γc
TCi

∗, giσ
2 + gi

2I gi > 1 σp
2 + gi

2σm
2 . This derivation differs in 

a small but important way from that of Lyles et al.11 They assume that errors add to the 

poolwise sum Xi
∗, whereas we take it as more plausible that they add to the poolwise mean 

Xi that the assay aims to measure.

We numerically maximize the likelihood to obtain θ = γT, σ2, σ p
2, σm

2 T
, estimate V θ  as the 

inverse of the estimated Hessian at θ, and calculate the bias-adjusted log-odds ratio using 

(13). A delta method-based variance estimate for the MLE of the log-odds ratio is 

V log − ORml = f ′ θ V θ f ′ θ T with f ′ θ = 1
σ2 , −

γ y

σ2 2 . We use this same variance 

estimator to approximate a standard error for the bias-adjusted log-odds ratio estimator in 

(13), which should generally be slightly conservative.

2.5 | Incorporating replicates

For both logistic regression and the discriminant function approach, all parameters are 

identifiable without replicates, provided the study design includes a sufficient number of 

different pool sizes. Identifiability requires at least two different pool sizes if Xi is subject to 

ME only or PE only and at least three different pool sizes including singles if Xi is subject to 

both error types. Still, replicate biomarker measurements can be incorporated into the 

likelihoods and may help to distinguish σm
2  from σx

2 and σp
2. While replicates could be 

obtained for pools of any size, we focus on replicate singles.

If for the ith single, we obtain ki independent replicate assay measurements, 

Xi = Xi1, …, Xiki

T
, the logistic regression likelihood contribution for subject i is the same 

as in (5) (asterisks omitted since gi = 1), except Xi is vector-valued so the second term under 

the integral becomes f Xi Xi . With no processing involved, we assume each Xi j, is the true 
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Xi plus an independent normal measurement error Xi = 1ki
Xi + ϵi

m, ϵi
m Nki

0ki
, σm

2 Iki
 It 

follows that

Xi Xi Nki
1ki

Xi, σm
2 Iki

. (15)

To incorporate replicates for approximate ML, we replace Xi
∗ in (9) by 

Xi = 1ki
α0 + αc

TCi + ϵi
x + ϵi

m, leading to corresponding slight modifications of (10) and 

the subsequent results for Xi Xi, Ci  and Xi Ci.

For the discriminant function approach, the likelihood for a single with replicates is 

Li θ = f Xi Y i, Ci . We can write

Xi = 1ki
Xi + ϵi

m = 1ki
γ0 + γyY i + γc

TCi + ϵi + ϵi
m

= 1ki
γ0 + γyY i + γc

TCi + 1ki
Iki

ϵi

ϵi
m .

(16)

The error vector ϵi = ϵi, ϵi
mT T

 is multivariate normal and 

Xi Y i, Ci Nki
1ki

γ0 + γyY i + γc
TCi , σ2Jki

+ σm
2 Iki

. As before, this result implicitly conditions 

on the covariates Ci.

2.6 | Implementation

We used R 3.4.3 to develop the package pooling19 for fitting various models with poolwise 

data, including those described in this paper.20 The functions p_logreg_xerrors and 

p_dfa_xerrors implement poolwise logistic regression and the discriminant function 

approach, respectively, while correcting for PE, ME, both, or neither. Likelihoods are 

maximized using the nlminb function.20 Initial values and lower and upper bounds for 

parameters are adjustable; here, we use initial values of 0.01 and bounds of (−∞,∞) for 

regression coefficients and initial values of 1 and bounds of (0.001,∞) for variance 

components. Hessian matrices at the MLE’s are numerically approximated via hessian from 

the pracma package.21 The logistic regression function supports both full ML and 

approximate ML.

For full ML, numerical integration is implemented via the adaptlntegrate function in the R 

package cubature,22 which itself relies on the C function hcubature in the C package 

cubature.23 The latter function uses h-adaptive integration, which partitions the integration 

region into subregions, applies an integration rule to each subregion to obtain an integral 

estimate and error estimate, targets the region with the largest error for further partitioning, 
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and continues until the total error is below a specified cutpoint.24 Further details on the 

algorithm are provided by Berntsen et al25 and Genz and Malik.26 We used a change of 

variables transformation to integrate over the finite interval (−1, 1).

3 | COLLABORATIVE PERINATAL PROJECT

The Collaborative Perinatal Project (CPP) was a multisite prospective study initiated in 1959 

and aimed at identifying risk factors for maternal and infant mortality and cerebral palsy.27 

A later nested case-control study was conducted to test whether serum cytokine levels during 

pregnancy were associated with risk of spontaneous abortion (SA).28 We use data from the 

follow-up study, in which cytokines were measured in singles and pools of size 2 using 

stored serum samples from the original CPP study. Our aim is to assess whether the cytokine 

monocyte chemotactic protein (MCP-1) is associated with risk of SA, controlling for age, 

race, and smoking. The data consist of 96 singles without replicates (gi = 1, ki = 1) and 30 

singles with two replicates (gi = 1, ki = 2), and 280 pools of size 2 (gi = 2, ki = 1), for a total 

of 686 participants and 436 measurements.

Table 1A shows covariate-adjusted log-odds ratio estimates for the corrective methods 

without incorporating replicates, ie, using just one (randomly selected) of the two MCP-1 
measurements for the 30 observations with replicates (LRF = logistic regression with full 

ML, LRA = logistic regression with approximate ML, DFA = discriminant function 

approach). Cell values indicate β SE , AIC, with β representing the effect of a 0.1-ng/mL 

change in MCP-1 on log-odds of SA, and lower AIC indicating better fit relative to models 

in the same row.29

Without replicates, models with both PE and ME could not be fit; an additional pool size 

would have been necessary for identifiability. This is an important limitation because it 

means choosing from three candidate models that may all inadequately correct for MCP-1 
errors. AIC favored PE only for all three corrective methods. ME-only models had lower 

AIC than neither but produced clearly implausible parameter estimates (eg, residual error 

variances hitting lower bounds of 0.001). Logistic regression was particularly unstable for 

ME only; different starting values produced very different β’s but similar maximized log-

likelihoods (not shown). Relative to neither-error models, PE-only models had larger point 

estimates but also larger standard errors, such that the association between MCP-1 and SA 

still did not approach statistical significance.

Estimation after incorporating the second MCP-1 measurement for the 30 observations with 

replicates is summarized in Table 1B. Note that the neither-error and PE-only models cannot 

incorporate replicates because no ME is incompatible with observing two nonidentical 

MCP-1 measurements for the same specimen (eg, (15) with σm
2 = 0 implies Xi1 = Xi2 = Xi). 

AIC favored PE and ME for all three methods. The estimated variance components for LRF 

were σx
2 = 1.580, σ p

2 = 0.729, σm
2 = 0.108. Relatively small ME variance is reasonable given the 

high correlation between the 30 replicate MCP-1 measurements (r = 0.976).
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Table 2 summarizes the LRF fit with replicates incorporated and accounting for both error 

types alongside the naive poolwise logistic regression fit ignoring errors in MCP-1. Both 

model fits suggest that older age, nonwhite race, and current smoking are associated with 

higher odds of SA. The covariate-adjusted association between MCP-1 and SA was not 

statistically significant in either case, but the odds ratio was slightly higher in the error-

adjusted model.

4 | SIMULATION STUDIES

We performed simulations modeled after the CPP data to confirm validity of the error-

correction methods, assess robustness to non-normal errors, and compare the efficiency of 

traditional vs pooling study designs as a function of PE and ME.

The main assumption underlying the discriminant function approach (normal linear 

regression for Xij|(Yij, Cij)) implies logistic regression, whereas the assumptions underlying 

the logistic regression method (homogeneous pools, logistic regression for Yij|(Xij, Cij), 

linear regression for Xtj|Cij) do not necessarily imply the discriminant function model. 

Because our main focus is logistic regression, where odds ratios for all predictors rather than 

just the pooled exposure can be estimated, we generate data under logistic regression. The 

discriminant function approach is therefore more of a working model for the data.

Covariates generated independently include mother’s age, C1ij ∈ (14, … , 45) with sampling 

probabilities matching the CPP age distribution; nonwhite race, C2ij~Bernoulli(0.34); and 

smoking, C3ij~Bernoulli(0.47). Using estimates from the full-ML logistic regression with 

both error types and replicates, MCP-1 in 10 ng/mL (Xij) given covariates is a linear 

regression with (α0, αc1, αc2, αc3, σx
2) = (0.50, 0.03,−0.17, 0.02, 1.58), and SA (Yij) given 

MCP-1 and covariates is a logistic regression with (β0, βx, βc1, βc2, βc3) = (−1.58, 0.20,0.04, 

0.57, 0.34). The estimated log-odds ratio for MCP-1 was 0.046, but we use 0.20 to simulate 

a moderate effect where a 0.1-ng/mL increment in MCP-1 increases odds of SA as much as 

a five-year increment in mother’s age. Error variances were set to σp
2 = 0.73 and σm

2 = 0.11.

4.1 | Validity of error-correction methods

The first set of simulations is intended to assess validity of the error-correction methods for a 

design comprised of an approximately equal number of pools of size 1, 2, and 3. For each 

trial, we generate 686 values for (C1ij, C2ij, C3ij, Xij, Yij) and split the data into n1 cases and 

n0 controls. Within the cases, we form 
n1
6  (rounded up) pools of size 2 and 3 and leave the 

remaining observations as singles and similarly for controls. For the error-prone poolwise 

exposure, we calculate the poolwise mean Xi, add normal errors to obtain the imprecise 

poolwise mean Xi
≃

, and multiply by the pool size to obtain the imprecise poolwise sum Xi* .

We calculate poolwise sums for covariates to obtain the full poolwise vector (Yi, Xi*, Ci1* , Ci2* ,

Ci3* ). For scenarios with replicates, Xi = Xi1, Xi2
T is generated by adding two independent 

measurement errors to Xi.
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Table 3 summarizes performance of the three methods and naive poolwise logistic regression 

for PE only, ME only, and both. Error type refers to both data generation and estimation, 

such that LRF, LRA, and DFA are correctly specified in each scenario.

In the PE-only scenario, naive logistic regression exhibited substantial downward bias and 

low CI coverage, suggesting that PE is too large to ignore. The corrective methods 

performed reasonably well, although LRF and LRA had some upward bias. Despite 

generating data under logistic regression, DFA had slightly less bias and better efficiency 

than LRF and LRA.

In the ME-only scenario, naive logistic regression exhibited a small amount of downward 

bias and slightly lower than nominal CI coverage, suggesting that ME was nearly small 

enough to ignore. Without replicates, LRF and LRA exhibited upward bias of about the 

same magnitude as the naive approach, whereas DFA was virtually unbiased and more 

efficient. The ME variance estimate σm
2  hit its lower bound of 0.001 in 23.5% of trials for 

both LRF and LRA and 27.7% of trials for DFA. Replicates improved estimation; for all 

three methods, σm
2  never hit 0.001, bias was reduced and efficiency improved, and CI 

coverage was closer to nominal.

In the PE and ME scenario, performance without replicates was poor. The corrective 

methods often produced extreme estimates (log − OR outside of [−1, 1] in 13.1% of trials for 

LRF, 12.6% for LRA, 13.9% for DFA) and exhibited upward median bias. At least one 

variance component estimate hit 0.001 in the majority of trials for all three methods (LRF: 

σx
2 0.1%, σ p

2 16.8%, σm
2  48.0%; LRA: σx

2 0.1%, σ p
2 16.9%, σm

2  47.8%; DFA: σ2 4.8%, σ p
2

20.3%, σm
2  48.2%). Adding replicates resolved this issue and drastically improved 

estimation.

The stabilizing role of replicates in the PE and ME scenario is illustrated by the log − OR
histograms in Figure 1. While the log-odds ratio is identifiable with pools of size 1, 2, and 3 

and no replicates, estimation is relatively unstable even for a fairly large sample size. We 

note that log-odds ratio estimates outside of [−1, 1] remained fairly common even after a 

five-fold increase to n = 3,430 (1000 trials: 2.9% for LRF, 3.6% for LRA, 2.9% for DFA).

4.2 | Robustness to non-normality of errors

To assess performance under misspecification of the error distribution, we repeated the 

previous simulations with errors distributed lognormal (shifted to mean 0) rather than 

normal. Processing errors were generated as LN(0.925, 0.099) minus 2.6498 and 

measurement errors LN(−0.022, 0.099) minus 1.0279, which correspond to skewness = 1 

and the same variances as in the normal-errors scenario (0.73 and 0.11). Results are 

summarized in Table 4. All three methods performed well despite modeling right-skewed 

lognormal errors as normal; performance metrics were extremely similar to the normal-

errors results in Table 3. Performance was also similar with errors uniformly distributed with 

mean 0 and variances 0.73 and 0.11 (not shown).
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4.3 | Efficiency of traditional vs. pooling designs

The purpose of the next set of simulations is to compare the efficiency of various designs as 

a function of PE and ME, holding the total number of assays fixed at 900. For each trial, we 

generate 50 000 individual-level values (C1ij, C2ij, C3ij, Xi j* , Yij with the same data 

generating process as in the prior simulations. For the traditional design, we sample 450 

cases and 450 controls. For the first pooling design (“P-1-2-3”), we sample 900 cases and 

form 450 pools, 150 with gi = 1, 150 with gi = 2, and 150 with gi = 3, and similarly for 

controls. For the second, more aggressive pooling design (“P-1–5”), we sample 1650 cases 

and form 450 pools, 150 with gi = 1 and 300 with gi = 5, and similarly for controls. In 

scenarios with ME, the traditional design requires replicates for validity, so we randomly 

select 50 observations for which to generate two exposure measurements and 50 to exclude 

to keep the assay count at 900. We also incorporate 50 replicates into both pooling designs 

in scenarios with ME.

Figure 2 compares efficiency of traditional and pooling designs for the LRA and DFA 

methods (LRF omitted; Pearson r > 0.998 for LRF and LRA in first 25 trials for all 

scenarios). The width of the middle 80% of estimates (ie, the difference between the 90th 

and 10th percentile) was chosen as a measure of variability to lessen the impact of extreme 

estimates. Trends for pooling vs traditional designs were generally similar for LRA (left 

column) and DFA (right). For PE only (top panel), the pooling designs were highly efficient 

for small PE, but that advantage eroded and eventually reversed as σp
2 increased. For ME 

only with replicates (middle) and both PE and ME with replicates (bottom), the efficiency 

advantage was reduced with increasing ME, but the pooling designs did not become clearly 

counterproductive even for large σm
2 . Notably, DFA was more efficient than LRA in all 54 

scenarios.

5 | DISCUSSION

Prior researchers4,7 developed a homogeneous-pools logistic regression model that provides 

an analytic method to accompany a cost-effective pooling design, which can be used in any 

scenario where outcomes are observed prior to measuring exposure (eg, cross-sectional and 

case-control studies and cohort studies with stored specimens). However, fitting this model 

without accounting for potential errors in the poolwise exposure measurements can lead to 

bias. Validity requires not only that the assay has negligible measurement error but also that 

each value it returns is exactly the arithmetic mean exposure for members of a pool. In 

reality, handling and combining samples in the laboratory may lead to extra variability that 

cannot be ignored.

In general, the corrective methods we examined to correct for errors produced valid 

estimates of covariate-adjusted log-odds ratios. Our updates to a proposed discriminant 

function approach11 tended to give less biased and in some cases considerably more efficient 

estimates of the exposure log-odds ratio than the newly developed logistic regression 

approach based on full or approximate ML in simulations despite generating data under 

logistic regression. The bias adjustment incorporated into the discriminant function approach 
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(eg, in (13)) likely explains some of this difference as logistic regression is prone to small-

sample bias away from the null.30,31 Nevertheless, we suspect analysts may still prefer 

logistic regression given that it is the more familiar and general of the two and yields log-

odds ratio estimates for all covariates rather than just the pooled exposure. Both methods can 

theoretically correct for both PE and ME as long as there are at least three different pool 

sizes including 1, but we find that adding replicate single measurements drastically improves 

stability when both error types are present.

For logistic regression, full and approximate ML produced very similar parameter estimates 

for the CPP dataset and had extremely similar performance in simulations. Full ML is much 

slower because it requires numerical integration for each pool at each iteration of likelihood 

maximization. For our Table 3 simulations with both error types and replicates, each trial 

took approximately 5 minutes for full ML and only about 3 seconds for approximate ML. In 

practice, investigators with poolwise data could fit both versions, confirm that estimates are 

similar, and report the full ML results. Comparing parameter estimates and maximized log-

likelihoods might also be helpful in detecting numerical issues with full ML when they 

occur.

Our approaches are fully parametric and thus potentially susceptible to validity issues when 

assumptions are violated. Simulations suggested considerable robustness to non-normal 

errors, but the error distributions we tested were still mean 0 and additive. If normality 

assumptions are clearly violated, one could consider using our full ML logistic regression 

framework with a different measurement error model and/or exposure model. However, 

alternative exposure models (eg, a log-transformed linear regression) will typically not have 

a convenient poolwise sum result like linear regression.32 The discriminant function 

approach could also be used with nonormal errors, but it would likely not have a closed-form 

likelihood.

One question raised by a reviewer is whether data from a homogeneous pools design could 

be used to analyze a secondary outcome. Associations with other variables conditional on 

the original outcome could be explored. For example, one could compare mean biomarker 

level by sex within case pools and within control pools and perhaps combine estimates if 

they are similar. However, estimating unconditional associations would likely require 

adapting special methods like those proposed by Tchetgen Tchetgen33 and Reilly et al34 to 

the pooling context. In terms of our methodology, the logistic regression methods would not 

be usable for a secondary outcome because pools would no longer be homogeneous. The 

discriminant function approach could still be used, however; fitting it separately for cases 

and controls would produce two odds ratio estimates, whereas fitting it with case status as a 

covariate would be akin to adjusting for the original outcome variable. Other methods 

compatible with heterogeneous pools35,36 could also be used, although most cannot correct 

for errors in the pooled biomarker.

Our methods assume that errors in the pooled exposure have the same form for those 

experiencing and not experiencing the outcome. While this nondifferential ME assumption 

may be considered dubious when exposure levels are self-reported,8,37 it appears reasonable 

for assay-based exposure assessment. It seems unlikely that assay errors would differ by 
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case status (differential ME) or that case samples and control samples might be handled in a 

way that induces different amounts of extra variability to each (differential PE). The latter 

could perhaps occur in scenarios where new controls are matched to case samples that have 

been stored for an extended period of time.

One way to relax the nondifferential error assumption is to allow the processing and/or 

measurement errors to have different variances in case pools and control pools. While this 

would nullify the discriminant function approach’s advantage of not requiring homogeneous 

pools, the pooling design lacks efficiency in that scenario anyway.11 We have included an 

option to allow for differential PE and/or ME in our publicly available R functions.

A similar concern is whether it is reasonable to assume that the PE variance is independent 

of pool size. If caused by factors such as unequal specimen volumes and cross-reactions 

among samples from different people, PE may be more severe in larger pools. We suggest 

two potential solutions. First, one can avoid the problem entirely with a study design that 

includes singles and pools of just one other size such as the P-1–5 design. The models 

discussed herein would account for whatever PE affects the pooled observations; it would 

not matter whether pools of other sizes would have been subject to larger or smaller errors. 

Second, one could specify a relationship between pool size and PE variance. One simple 

approach currently supported in our R functions is to assume the assay returns the poolwise 

mean plus a normal PE times 
gi
2 I gi > 1  (plus the ME, if applicable). This reflects an 

assumption that the PE variance increases at the same rate as pool size so that, for example, 

a pool with twice the number of members is subject to PE with twice the variance. Other 

more flexible approaches are also possible, eg, a linear relationship between pool size and 

PE variance with a nonunity slope estimated from the data.

A brief note on identifiability in the absence of replicates is warranted as our assessment 

differs slightly from those of prior authors.10,11 Returning to the original set of assumptions 

(nondifferential errors, PE variance independent of pool size), the variance of the error-prone 

poolwise sum exposure given covariates is giσx
2 + gi

2σp
2I gi > 1 + gi

2σm
2 . With ME only, two 

pool sizes g1 and g2 result in variances g1σx
2 + g1

2σm
2  and g2σx

2 + g2
2σm

2 , respectively. For any 

two distinct pool sizes (g1, g2), these quantities are not equal nor multiples of each other, so 

σx
2 and σm

2  are identified. The situation is the same with PE only: at least two different pool 

sizes are required, and neither has to be 1.11 With both error types, we agree that at least 

three different pool sizes, including 1, are required to identify all parameters.10,11 However, 

two pool sizes not including 1 is sufficient to identify σx
2 and the sum σp

2 + σm
2 , which, in 

theory, is enough to achieve the primary goal of removing bias due to both error types. If 

replicate singles are included in the study design, identifiability is guaranteed regardless of 

what pool sizes are included.

The fact that two pool sizes other than 1 is sufficient to correct for both error types, while 

not bothering to distinguish them, is initially encouraging. It suggests a way to get around 

stability issues that arise when both errors are present and there are no replicates. In this 
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scenario, each poolwise measurement is subject to a normal PE and a normal ME, which can 

be viewed as a single mean 0 normal error with variance σp
2 + σm

2 . This is no different than a 

PE-only scenario with PE variance σp
2 + σm

2 , so we might expect similar stability. 

Unfortunately, adequate stability in PE-only simulations is aided by the very presence of 

singles, which are not subject to PE and thus help distinguish σx
2 from σp

2 . In simulations not 

included here, we were unable to find a scenario where a P-2–3 design was advantageous 

over P-1-2-3. Still, it is noteworthy that correcting for both error types is possible if one 

encounters poolwise data with two pool sizes not including 1.

Next, we turn to the central question of whether a pooling design remains cost effective in 

the presence of errors. In a two-sample t-test scenario, a pooling design where each 

measurement is the arithmetic mean for gi members of a group is efficient because each 

measurement has variance σ2
gi

 rather than σ2. The ratio of variances for pooled measurements 

to individual measurements is 1
gi

, so the optimal design for a fixed number of assays is one 

very large pool size. Theoretically, a large enough pool size could provide power of virtually 

1 for any fixed number of assays.

With errors, the variance of each measurement in the traditional design is σ2 + σm
2  and, in the 

pooling design, is σ2
gi

+ σp
2 + σm

2 . The ratio is V p: t = 1
σ2 + σm

2
σ2
gi

+ σp
2 + σm

2 , which is 

minimized for σp
2 = σm

2 = 0. Thus, PE and ME both have the effect of reducing the efficiency 

advantage of a pooling design.

If there is PE only, V p: t = 1
gi

+
σp

2

σ2  which converges to 1
gi

 as σp
2 0, ∞ as σp

2 ∞, and 1
gi

+ 1

as σp
2 σ2 . We note that V p: t > 1 if σp

2 > σ2 1 − 1
gi

, meaning that, for example, if the biggest 

pool size possible is 5, a poolwise design will be less efficient than a traditional design if σp
2

is more than 80% of σ2. For ME only, V p: t =

σ2
gi

+ σm
2

σ2 + σm
2  which converges to 1

gi
 as σm

2 0, 1 as 

σm
2 ∞, and 0.5 <

1 + gi
2gi

< 1 as σm
2 σ2 . Thus, for PE only, a pooling design can become 

counterproductive if σp
2 is nearly as large or larger than σ2, but for ME only, a pooling design 

should remain more efficient even if σm
2  is as large as σ2. With both PE and ME, results are 

generally the same as for PE only, but the added measurement error will make any efficiency 

advantage smaller than it would have been with only PE and the same σp
2 .
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While our analytic framework is somewhat different (ie, the models are more involved, 

covariates are present, and the variance terms have to be estimated), our simulations (see 

Figure 2) mostly agreed with efficiency results predicted by the above t-test-based 

arguments.

In summary, we have provided a method to correct for errors that can compromise validity 

of homogeneous-pools logistic regression. The pooling study design should remain cost 

effective in situations where the assay is expensive and relatively precise, and careful 

handling can keep processing errors to a minimum. In future work, we plan to further 

generalize the methods presented here to accommodate non-normal errors and skewness in 

the pooled biomarker. Developing methods to handle potential sources of bias in pooling 

studies should lead to more feasible implementation of this very promising study design.
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FIGURE 1. 
Distribution of log-odds ratio estimates in simulations with processing error and 

measurement error (2500 trials, true value = 0.2). DFA, discriminant function approach; 

LRF, logistic regression with full maximum likelihood

Van Domelen et al. Page 19

Stat Med. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Width of middle 80% of log-odds ratio estimates (5000 trials each)
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TABLE 1

Estimates of the covariate-adjusted log-odds ratio for MCP-1 and spontaneous abortion, without (A) and with 

(B) the 30 replicate MCP-1 measurements incorporated. Values are estimated log-odds ratio (standard error), 

Akaike information criterion

(A) Error Type

Method Neither PE only ME only PE and ME

LRF 0.012 (0.024), 2822.0 0.070 (0.115), 2697.6 −0.071 (−), 2762.4
b Not identifiable

LRA n/a
a 0.071 (0.115), 2697.5 −0.088 (−), 2762.4

b Not identifiable

DFA 0.016 (0.025), 2277.6 0.090 (0.114), 2153.0 ∞ (−), 2217.7
c Not identifiable

(B) Error Type

Neither PE only ME only PE and ME

LRF n/a
d

n/a
d 0.026 (0.049), 2353.8 0.046 (0.082), 2340.8

LRA n/a
d

n/a
d 0.026 (0.049), 2353.8 0.046 (0.082), 2340.8

DFA n/a
d

n/a
d 0.030 (0.051), 1809.5 0.050 (0.081), 1796.5

a
There is no integral to approximate because assuming neither error type means MCP-1 is precisely measured.

b
Estimate of residual error variance in MCP-1 given covariates model hit lower bound of 0.001. Standard error omitted because variance-

covariance matrix not positive definite.

c
Estimate of residual error variance in discriminant function model hit lower bound of 0.001, causing “blow-up” in log-OR estimate.

d
Cannot fit with replicates because no ME would imply that two distinct values are both the true MCP-1.

DFA, discriminant function approach; LRA, logistic regression with approximate maximum likelihood; LRF, logistic regression with full maximum 
likelihood; MCP-1, monocyte chemotactic protein-1; ME, measurement error; OR, odds ratio; PE, processing error.
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TABLE 2

Logistic regression fits for risk of spontaneous abortion

Ignoring MCP-1 errors Accounting for MCP-1 errors

Variable Beta (SE) OR (95% CI) p-value Beta (SE) OR (95% CI) p-value

Intercept −1.565 (0.372) - < 0.001 −1.581 (0.374) - < 0.001

MCP-1 (Δ 0.1 ng/mL) 0.012 (0.024) 1.012 (0.966, 1.060) 0.62 0.046 (0.082) 1.047 (0.891, 1.230) 0.58

Mother’s age 0.037 (0.013) 1.037 (1.011, 1.064) 0.005 0.036 (0.013) 1.037 (1.011, 1.064) 0.006

Non-white race 0.560 (0.175) 1.751 (1.242, 2.470) 0.001 0.566 (0.176) 1.761 (1.247, 2.488) 0.001

Current smoking 0.338 (0.162) 1.402 (1.021, 1.926) 0.04 0.338 (0.162) 1.402 (1.021, 1.926) 0.04

CI, confidence interval; MCP-1, monocyte chemotactic protein-1; OR, odds ratio; SE, standard error.
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TABLE 3

Simulation results for estimation of covariate-adjusted log-odds ratio relating MCP-1 and spontaneous 

abortion (2500 trials, true value = 0.20)

Mean Bias (Median Bias) SD(IQR) Mean SE MSE 95% CI Coverage

PE only

Logistic regression ignoring MCP-1 errors −0.097 0.047 0.047 0.012 0.447

LRF 0.014 0.099 0.099 0.010 0.958

LRA 0.013 0.099 0.098 0.011 0.958

DFA 0.005 0.092 0.094 0.009 0.959

ME only

Without replicatesa

Logistic regression ignoring MCP-1 errors −0.025 0.064 0.062 0.005 0.919

LRF 0.027 0.108 0.104 0.012 0.970

LRA 0.027 0.107 0.104 0.012 0.970

DFA 0.003 0.084 0.095 0.007 0.970

With replicates

LRF 0.005 0.076 0.074 0.006 0.954

LRA 0.004 0.076 0.074 0.006 0.954

DFA 0.001 0.074 0.073 0.005 0.954

PE and ME

Without replicates

Logistic regression ignoring MCP-1 errors (−0.106) (0.061) - - 0.355

LRF (0.062) (0.306) - - 0.987
c

LRA (0.062) (0.302) - - 0.987
d

DFA
b (0.053) (0.290) - - 0.986

With replicates

LRF 0.014 0.103 0.103 0.011 0.962

LRA 0.013 0.102 0.102 0.011 0.962

DFA 0.005 0.095 0.098 0.009 0.964

a
Excludes 2 trials in which LRF produced extreme log-OR estimates (>2).

b
non-bias-adjusted version of estimator used because bias adjustment frequently flipped sign of log-OR estimate (74.8% of trials).

c
Excludes 70 trials in which variance-covariance matrix was not positive definite.

d
Excludes 79 trials in which variance-covariance matrix was not positive definite.

CI, confidence interval; DFA, discriminant function approach; IQR, interquartile range; LRA, logistic regression with approximate maximum 
likelihood; ME, measurement error; OR, odds ratio; PE, processing error; SD, standard deviation; SE, standard error; MSE, mean squared error.
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TABLE 4

Simulation results for estimation of covariate-adjusted log-odds ratio relating MCP-1 and spontaneous 

abortion, with errors distributed lognormal (shifted to mean 0) with skewness of 1 and the same variance as in 

the normal-errors case (2500 trials, true value = 0.20)

Mean Bias (Median Bias) SD(IQR) Mean SE MSE 95% CI Coverage

PE only

Logistic regression ignoring MCP-1 errors −0.097 0.050 0.048 0.012 0.458

LRF 0.012 0.102 0.099 0.011 0.956

LRA 0.012 0.101 0.099 0.010 0.956

DFA 0.004 0.094 0.094 0.009 0.960

ME only

Without replicates

Logistic regression ignoring MCP-1 errors −0.024 0.064 0.063 0.005 0.921

LRF 0.028 0.109 0.104 0.013 0.969

LRA 0.027 0.107 0.103 0.012 0.969

DFA 0.004 0.085 0.094 0.007 0.964

With replicates

LRF 0.006 0.077 0.074 0.006 0.950

LRA 0.006 0.077 0.074 0.006 0.949

DFA 0.003 0.074 0.073 0.006 0.951

PE and ME

Without replicates

Logistic regression ignoring MCP-1 errors (−0.106) (0.062) - - 0.362

LRF (0.067) (0.366) - - 0.984
b

LRA (0.066) (0.359) - - 0.985
c

DFA
a (0.060) (0.348) - - 0.984

With replicates

LRF 0.016 0.109 0.104 0.012 0.959

LRA 0.015 0.108 0.103 0.012 0.959

DFA 0.007 0.100 0.099 0.010 0.956

a
non-bias-adjusted version of estimator used because bias adjustment frequently flipped sign of log-OR estimate (76.0% of trials).

b
Excludes 88 trials in which variance-covariance matrix was not positive definite.

c
Excludes 99 trials in which variance-covariance matrix was not positive definite.

CI, confidence interval; DFA, discriminant function approach; IQR, interquartile range; LRA, logistic regression with approximate maximum 
likelihood; ME, measurement error; OR, odds ratio; PE, processing error; SD, standard deviation; SE, standard error; MSE, mean squared error.
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