Table 3.
SVM | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tel Aviv |
Beijing |
Cambridge |
|||||||||||||
Self | GSP | U | P | A | Self | GSP | U | P | A | Self | GSP | U | P | A | |
z-scores | 53 | 71 | 51 | 82 | 47ns,2 | 73 | 75 | 61 | 98 | 71ns,2 | 66 | 86 | 62 | 80 | 74ns,ns |
PCA | 59 | 72 | 54 | 86 | 59ns,2 | 74 | 69 | 59 | 95 | 751,2 | 79 | 73 | 63 | 93 | 771,2 |
DM | 72 | 69 | 59 | 98 | 67ns,2 | 64 | 75 | 57 | 89 | 69ns,2 | 70 | 78 | 61 | 92 | 762,2 |
μIDM | 73 | 70 | 60 | 97 | 69ns,2 | 66 | 75 | 58 | 91 | 69ns,2 | 73 | 78 | 63 | 95 | 782,2 |
ICPQR | 74 | 64 | 57 | 90 | 64ns,2 | 63 | 59 | 53 | 96 | 661,2 | 77 | 74 | 63 | 97 | 832,2 |
ICPQR | 54 | 62 | 51 | 93 | 51ns,2 | 70 | 61 | 54 | 91 | 62ns,2 | 78 | 71 | 62 | 93 | 761,2 |
Random forests | |||||||||||||||
Tel Aviv |
Beijing |
Cambridge |
|||||||||||||
Self | GSP | U | P | A | Self | GSP | U | P | A | Self | GSP | U | P | A | |
z-scores | 78 | 63 | 58 | 85 | 65ns,2 | 64 | 67 | 55 | 97 | 792,2 | 72 | 81 | 63 | 91 | 832,ns |
PCA | 70 | 58 | 54 | 88 | 58ns,2 | 66 | 64 | 55 | 98 | 69ns,2 | 73 | 77 | 63 | 96 | 76ns,2 |
DM | 70 | 65 | 56 | 92 | 55ns,2 | 58 | 69 | 53 | 89 | 62ns,2 | 64 | 81 | 58 | 82 | 69ns,ns |
μIDM | 72 | 56 | 53 | 84 | 53ns,2 | 60 | 66 | 53 | 94 | 59ns,2 | 70 | 73 | 59 | 97 | 70ns,2 |
ICPQR | 70 | 60 | 53 | 86 | 61ns,2 | 56 | 61 | 51 | 95 | 641,2 | 65 | 74 | 57 | 91 | 761,1 |
ICPQR | 69 | 62 | 54 | 85 | 58ns,2 | 69 | 65 | 56 | 94 | 66ns,2 | 71 | 75 | 60 | 96 | 72ns,2 |
Self, the percent of brains from the test sample that were correctly classified by a model created on the test sample (applying 10-folds cross-validation); GSP, the percent of brains from the test sample that were correctly classified by a model created on the GSP sample; U, the percent of brains expected to be similarly classified by the GSP and Self models if they were unrelated; P, the percent of brains expected to be similarly classified by the GSP and Self models if they were perfectly overlapping; A, the actual percent of brains similarly classified by the GSP and Self models; the uppercase text marks whether this percentage was significantly different from the percent expected if the models were unrelated and perfectly overlapping, respectively. ns, not significant; 1, p < 0.0014 (alpha following the Dunn–Šidák correction for multiple comparisons); 2, p < 0.0001; PCA, principle component analysis; DM, diffusion mapping, Euclidean distances; μIDM, isometric diffusion map; ICPQR, incomplete pivoted QR decomposition with the kernel of the diffusion map; ICPQRd, incomplete pivoted QR decomposition without the kernel of the diffusion map.