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Mechanisms for Abscisic Acid Inhibition of Primary Root Growth
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ABSTRACT
Abscisic acid (ABA) plays pivotal roles in plant growth and development and in responses to diverse
stresses. It also modulates the growth of primary and lateral roots. Much evidence indicated that key
cellular components auxin, ethylene, PLETHs, reactive oxygen species and Ca2+ are involved in the
regulation of ABA suppression of root elongation. In this review, we summary the molecular mechanism
for ABA inhibiting primary root growth, focusing on the roles of these components in Arabidopsis.
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Abscisic acid (ABA) is a key phytohormone that controls
many cellular processes including stomatal movement, seed
maturation and germination, leaf senescence and responses
to multiple abiotic and biotic stresses.1–3 It also regulates
primary root growth and lateral root branching in plants.3–5

To date, both positive and negative effects of ABA on pri-
mary root growth have been documented, depending on
ABA concentrations, environmental conditions, develop-
mental contexts, genotypes and plant species. Typically,
low concentrations of ABA stimulate but high concentra-
tions inhibit root formation.4–6

The key mechanisms for low concentrations of ABA pro-
moting primary root development are that ABA enhances the
activity of stem cells through maintaining the activity of
quiescent center (QC), and suppresses the differentiation of
stem cells and their daughter cells in root meristem.7,8 Both
the QC center and stem cells, which constitute stem cell
niches, have been demonstrated to play a central role in
determining root meristem activity.9 Low concentrations of
ABA also stimulate root growth by positively modulating the
transport and signaling of auxin.4,5,10

In recent years, great progress has been made on the
mechanisms of high concentrations of ABA inhibiting root
growth. Many components such as auxin, ethylene, reactive
oxygen species (ROS) and Ca2+ have been found to mediate
the processes, and the functions of these components are
being uncovered.5,11–19 In this review, we summarize the
main mechanisms underlying ABA suppression of primary
root growth in Arabidopsis.

ABA signaling components mediate the inhibitory
effects of ABA on root growth

Much evidence has indicated that high concentrations of ABA
not only inhibits cell division in the apical meristems but also
repress cell expansion in the elongation zone in roots.8,11,18

Moreover, ABA exerts these effects largely through ABA

signaling. At present, many key components of ABA signaling
have been identified in Arabidopsis. They include PYR/PYL/
RCAR (Pyrabactin resistance1/PYR1-like/Regulatory compo-
nents of ABA receptor) ABA receptors, type 2C protein phos-
phatases (PP2Cs) ABI1 (ABA-insensitive1), ABI2, HAB1
(Hypersensitive to ABA1) and PP2CA, sucrose nonfermenting
(SNF) 1-related kinases (SnRK2s) SnRK2.2, SnRK2.3 and
SnRK2.6, Ca2+-dependent protein kinases (CPKs), G protein,
ROS, Ca2+, transcription factors, and so on.2,3 There exist 14
ABA receptors (AtPYR1 and AtPYL1-13) in Arabidopsis.20,21

Of these, AtPYR1, AtPYL1, AtPYL2, AtPYL4, AtPYL5 and
AtPYL8 redundantly and positively regulate ABA inhibition
of primary root formation.21–23 ABI1, ABI2, HAB1 and
PP2CA redundantly block the effects of ABA on root
growth.15,24,25 SnRK2.2, SnRK2.3 and SnRK2.6 act downstream
of PP2Cs and promote the ABA inhibition of primary root
development.26,27 Besides, CPK4, CPK11, proline-rich exten-
sin-like receptor kinase 4 (PERK4), ROS, Ca2+ and transcrip-
tion factor ABI5 (ABA insensitive5) increase while G protein
subunits Gα and Gβ, and G protein-coupled receptors decrease
the inhibitory effects of ABA on root growth. 11,14,15,18,28–30

ABA regulate DNA replication and the expression of
cell cycle-related genes

Root growth involves cell division of apical meristem and
elongation of the divided cells. Cell division requires DNA
replication. Yin et al reported that an Arabidopsis ABA-overly
sensitive mutant abo4-1, in which DNA polymerase ε catalytic
subunit gene POL2a/TILTED1 (TIL1) is disrupted, exhibits
clearly ABA supersensitive phenotypes in terms of root
growth inhibition.12 Moreover, the expression of the G2/M
specific cyclin CycB1;1 gene becomes constitutive in root
meristems from abo4-1 mutant. Likewise, Yao et al described
that mutations in the DNA replication factor C1 gene confer
Arabidopsis sensitivity to ABA suppressed root growth.16

Moreover, deletions of genes encoding other DNA replication
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related proteins such as DNA replication protein A2 and
chromatin remodeling factor 1 also cause the susceptibility
of the Arabidopsis mutants to ABA-arrested root
development.12 These results indicate that ABA inhibits root
formation by regulating DNA replication.

ABA has been shown to increases the expression of KRP1/
ICK1, a gene encoding the cell cycle-dependent protein kinase
(CDK) inhibitor, resulting in the suppression of G1/S transi-
tion in the cell cycle.31 Xu et al provided evidence that ABA
inhibition of primary root growth is mediated at least in part
by ABA down-regulation of the expression of cell cycle B-type
cyclin gene CYCB1 at the G2/M checkpoint.32 Other research-
ers also found that ABA inhibits the expression of the
CYCB1;1 gene.18,33 These findings imply that ABA suppresses
primary root growth through modulation of the transcrip-
tional abundances of cell cycle genes.

ABA inhibits root growth by affecting auxin
accumulation, transport and signaling

Auxin plays pivotal roles in controlling root formation. Its
accumulation, distribution, transport and signal transduction
events significantly affect primary root development.9,34 At
the root tip, an auxin gradient is generated with a maximum
in the stem cell niche, which controls the arrangement and
fate of apical meristem cells, further determining root
architecture.9,35 The formation of the auxin gradient is regu-
lated by the auxin inward transport carrier AUX1/LAX
(Auxin resistant1/Like AUX1) and the outward transport
carrier PINs (PIN-FORMEDs). PIN family contains 8 mem-
bers (PIN1-8) in Arabidopsis, of which PIN1, PIN2, PIN3,
PIN4, and PIN7 play a crucial role in root growth.36 Auxin
also negatively affects the expression of WOX5 (WUSCHEL
RELATED HOMEOBOX5), a key regulators of root develop-
ment in plants.9,35,37

ABA has been addressed to reduce the auxin level in roots,
resulting in root growth arrest in Arabidopsis. Moreover, the
inhibitory effects of ABA rely on ABA-induced ROS
production.14 High concentrations of ABA also decrease the
expression of AUX1, PIN1, PIN3, PIN4 and PIN7 genes in
roots.18,19 Consistently, Arabidopsis mutant aux1, axr4 (auxin
resistant4) and pin2 show markedly decreased sensitivity to
ABA inhibition of primary root growth compared with
WT.5,6,25 Moreover, ABI4 and ABI5, two key factors of ABA
signaling, also suppress PIN1 expression; and the abi4 mutant
exhibits enhanced root auxin transport.38,39 These results
suggest that ABA inhibits root development through impact-
ing auxin transport.

ABA negatively regulate some essential components of auxin
signaling like transport inhibitor response 1 (TIR1), IBR5 (IBA
response5), AXR1 (Auxin resistant1), AXR4, and Aux/IAA16
(Aux/Indole-3-acetic acid) in Arabidopsis. Compared with WT,
the mutants of these protein-encoding genes are clearly less
sensitive to ABA inhibition of root growth.5,6,25 Wang et al
found that ARF2 (Auxin response factor2), an important tran-
scription factor of auxin signaling, negatively modulates ABA-
inhibited root elongation by repressing its homeobox protein,
HB33 (Homeobox protein33) in Arabidopsis.33 ARF2 increases
the expression of PIN1, PIN3 and PIN7, but lowers the

abundances of PIN4 transcripts in the presence of ABA.19

Besides, researchers have demonstrated that high concentra-
tions of ABA prominently attenuate the response of roots to
auxin using Arabidopsis transgenic plants overexpressing
proDR5::GUS and ProIAA2::GUS.18,19,33 Collectively, these
results indicate that ABA regulates auxin signaling and root
response to auxin, thus suppressing primary root development.

ABA downregulates PLETHs (PLTs) expression

PLTs belong to the transcription factor family with AP2
(APETALA 2) domain. They display a graded distribution
with a maximum near the root tip, very similar to auxin.
High concentrations of PLTs are present near the QC, and
responsible for regulation and maintenance of the stem cell
activity. Medium concentrations of PLTs promote cell divi-
sion whereas low concentrations of PLTs stimulate cell
differentiation.35,37 The Arabidopsis PLTs family has six
members (PLT1-6). PLT1-4 play an important role in root
development, and the functions of PLT1 and PLT2 are extre-
mely crucial. The expression of PLT1 and PLT2 is regulated
by auxin, and their transcriptional gradients highly correlate
with the auxin gradients in root meristem.35,37

It has been addressed that high concentrations of ABA sig-
nificantly reduce the expression of PLT1 and PLT2 at protein
levels in roots.18,19 ABA can also dampen the promoting effect of
PLT2 on cell differentiation.18,19 Moreover, ARF2 stimulates the
protein expression of PLT1, but decreases the expression of PLT2
in ABA signaling. These data indicate that ABA inhibits cell
division in the root tip by regulating the level of PLTs in roots.

ABA negatively affects root elongation via
modulation of ethylene signaling and synthesis

Ethylene plays a key role in root development. It controls root
elongation through regulating the biosynthesis, transport, distri-
bution and signaling of auxin.40–42 Evidence suggests that ABA
positively impacts ethylene signaling, and suppresses root
growth. Moreover, ETR1 (Ethylene receptor1), EIN2 (Ethylene
insensitive2) and ETO1 (Ethylene overproducer1), key regula-
tors of ethylene signaling pathway, have been demonstrated to
be required for ABA inhibition of primary root growth.25,43,44 In
addition, Luo et al. found that ABA inhibits root elongation by
blocking the biosynthesis of ethylene. ABA activates CPK4
and CPK11, which phosphorylate and stabilize ACS6
(1-Aminocyclopropane −1-carboxylic acid synthase6), one of
key rate-limiting enzymes for ethylene synthesis, and promote
the generation of ethylene17. Recently, Ludwików et al reported
that ABI1 negatively modulate ethylene production by counter-
acting the phosphorylation of ACS2/ACS6 mediated by MPK6.45

Together, these results hint that ABA blocks root development
by activating ethylene signaling and increasing its biosynthesis.

ABA inhibits root formation by induction of ROS
production

ROS are second messengers and play an important role in
ABA signaling.46 ROS regulates the cell division of apical
meristems, the transition from proliferation to differentiation
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and cell elongation through reducing the expression of cell
cycle-related genes, altering cellular redox balance, disrupting
DNA replication, and damaging cell wall structure.46 ROS also
decrease the level of auxin, negatively affecting auxin signaling
in roots.14 ABA has been addressed to activate NADPH oxi-
dases AtrbohD and AtrbohF in roots, leading to ROS synth-
esis and further inhibiting primary root elongation.15,47 ABA
can also induce ROS production in mitochondria, thereby
suppressing primary root growth.14,18

ABA elevates the level of cytoplasmic Ca2+ and
suppresses root development

Ca2+ is a vital secondary messenger in ABA signaling pathway
in plants. It required for ABA-regulated primary root growth.
Bai et al reported that PERK4 activates plasmamembrane Ca2
+-permeable channels, and stimulates the increase of cytosolic
Ca2+, mediating ABA-inhibited root elongation.11 Likewise,
Jiao et al found that ABA triggers the generation of ROS in
roots, which activate Ca2+-permeable channels and promote
the enhancement of Ca2+ levels in roots, hence inhibiting
primary root growth.15 Ca2+ may function in ABA signalling
in roots through activating CPK4 and CPK11, or via modu-
lating ROS levels.30,48 The detailed mechanisms need to be
further investigated.

In summary, ABA interacts with key cellular components
auxin, ethylene, ROS and Ca2+, and regulates the expression
of PLTs and some cell cycle-related genes, thus affecting DNA
replication, cell division and cell elongation in roots and
inhibiting primary root growth. Further work need to eluci-
date the interactional mechanisms of these components in
response to high concentrations of ABA in plant roots.
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