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Signaling through the Hedgehog (Hh) pathway is mediated by
the Patched (Ptch) family of proteins. Although the vertebrate
Ptch proteins Ptch1 and Ptch2 harbor two closely related trans-
membrane modules related to sterol-sensing domains (SSDs),
the role of these closely related receptors in the Hh pathway are
not equivalent. Ptch1 is essential for development and appears
to be the principal receptor mediating responses to Hh ligands,
whereas Ptch2 is nonessential, and its role in Hh-signaling
remains ambiguous. We hypothesized that the SSDs of the Ptch
proteins function as generic modules whose protein-specific
activities are determined by the adjacent cytoplasmic and lumi-
nal domains. We first showed that individual N-terminal and
C-terminal halves of Ptch1 associated noncovalently to mediate
ligand-dependent regulation of Hh signaling. The analogous
regions of Ptch2 also interacted noncovalently but did not
repress the Hh pathway. However, the SSD of Ptch2 were capa-
ble of repressing Hh signaling, as determined using chimeric
proteins where the SSDs of Ptch1 were replaced by those from
Ptch2. Replacement of the SSDs of Ptch1 with the analogous
regions from the cholesterol transporter NPC1 failed to produce
a chimeric protein capable of Hh repression. Further refinement
of the specific regions in Ptch1 and Ptch2 revealed that specific
cytoplasmic domains of Ptch1 were necessary but not sufficient
for repression of Hh signaling and that the two principal luminal
domains of Ptch1 and Ptch2 were interchangeable. These data
support a model where the SSDs of the Ptch family proteins
exhibit generic activities and that the adjacent cytoplasmic and
luminal domains determine their protein-specific activities.

Despite the centrality of the principal receptor of the Hedge-
hog (Hh)2 signaling pathway, Patched-1 (Ptch1), in develop-
mental and neoplastic diseases, the structural determinants of
its activities remain ill-defined. The primary sequence of Ptch1

predicts that it encodes a 12-pass transmembrane protein
related to the RND class of bacterial small-molecule transport-
ers (1–3). The best-characterized function of Ptch1 is its
indirect regulation of the activity of the seven-pass, G protein–
coupled protein Smoothened (Smo) (3–5). Although less well-
studied, Ptch1 also modulates additional signaling cascades
operating through both Smo-dependent (6 –8) and Smo-inde-
pendent mechanisms (9 –13).

Vertebrates express a second, closely related Patched family
member, Ptch2 (14 –16). Despite its apparent sequence similar-
ity to Ptch1 in regions critical for Ptch1 activity, conflicting data
exist regarding the activities of Ptch2, in particular its ability to
repress canonical Hh signaling and its response to Hh ligand.
One group has shown that Ptch2 appears to behave similarly to
Ptch1 by robustly repressing Smo-dependent Hh signaling and
responding to Hh ligand (17). Other groups, however, reported
only weak repression of Hh signaling (18) or no repression at all
(19) for Ptch2. These apparently contradictory activities for
Ptch2 lead to distinct models regarding its role in the Hh path-
way. As suggested originally, Ptch2 activity may be redundant
to Ptch1 in control of Hh signaling (17). These redundant activ-
ities were supported by the observation that Ptch2-deficient
mice develop normally, even in tissues with normally high lev-
els of Ptch2 expression (20), or exhibit only minor, nonlethal
defects in hair follicles occurring late in adult animals (21).
However, this redundancy does not appear to be reciprocal
because mice lacking Ptch1 exhibit an embryonic lethal pheno-
type (22). These latter data imply that Ptch1 is the principal
regulator of Hh signaling and that Ptch2 cannot compensate for
the loss of Ptch1 activity. Indeed, only in the absence of Ptch1
were apparent roles for Ptch2 during development discernable
(23). The apparent lack of Hh pathway repression activity by
Ptch2 and its inability to compensate for the lack of Ptch1 sug-
gest an alternative role for Ptch2. In this context, Ptch2 may act
primarily as a ligand-dependent antagonist by sequestering Hh
ligand (18, 24). In this case, Ptch2 potentially limits the range of
Hh ligand activity rather than acting as a direct repressor of
Smo-dependent Hh signaling. Taken together, despite the
apparent structural similarities to Ptch1, the precise role of
Ptch2 in the Hh signaling pathway remains ambiguous.

The cartoon in Fig. 1A illustrates the three basic modules in
Ptch1 that include two luminal “loops,” the second of which
(loop 2) encodes a conserved Hh ligand– binding motif (25);
three large cytoplasmic domains we predicted to form intrinsi-

This work was funded by Canadian Institutes of Health Research Grant MOP-
142490 (to P. A. H.). The authors declare that they have no conflicts of inter-
est with the contents of this article.

1 To whom correspondence should be addressed: Dept. of Laboratory Medi-
cine and Pathobiology, Faculty of Medicine, 1 King’s College Circle, Univer-
sity of Toronto, Toronto, ON M5S 1A8, Canada. Tel.: 416-978-8741; Fax: 416-
978-5959; E-mail: paul.hamel@utoronto.ca.

2 The abbreviations used are: Hh, Hedgehog; Ptch, Patched; RND, resistance–
nodulation– division; SSD, sterol-sensing domain; aa, amino acids; HA,
hemagglutinin; ML, middle loop; HEK, human embryonic kidney; MEF,
mouse embryonic fibroblast; SH, Src homology; gRNA, guide RNA; Endo H,
endoglycosidase H; PNGase F, peptide:N-glycosidase F.

croARTICLE

J. Biol. Chem. (2018) 293(43) 16583–16595 16583
© 2018 Fleet and Hamel. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

mailto:paul.hamel@utoronto.ca
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.RA118.004478&domain=pdf&date_stamp=2018-8-30


Conserved activities of Patched1 transmembrane domains

16584 J. Biol. Chem. (2018) 293(43) 16583–16595



cally disordered protein regions; and two five-pass transmem-
brane regions that resemble sterol-sensing domains (SSDs)
found in the family of proteins involved with cholesterol trans-
port and homeostasis (26 –28). These domains are also related
to the large class of RND-containing transmembrane trans-
porters in bacteria (for a review, see Ref. 29). Recently, the
structures of the luminal and transmembrane domains for
human and mouse Ptch1, alone or in complex with Shh-ligand,
were solved using cryo-EM (30 –32). These structures revealed
that the two luminal domains and the two SSD-like regions,
respectively, form distinct but closely apposed modules. These
structures also provide insights into the possible means by
which specific mutations found in Ptch1 in Gorlin syndrome
might alter the activities of Ptch1 because at least some of the
alterations arise in amino acids at the center of the interface
between the two SSD-like modules.

These recent Ptch1 structures also revealed a high degree of
similarity to the cholesterol transporter Niemann–Pick disease
type C1 (NPC1) (33). As suggested by their highly similar
sequences, the three-dimensional structure of the two trans-
membrane modules is predicted to be structurally similar to the
analogous regions in NPC1, forming two closely apposed trans-
membrane domains. Likewise, the luminal regions give rise to
a predicted structure similar to the luminal loops in NPC1.
Despite these predicted similarities and the recent evidence
that loss of NPC1 may alter cilium-dependent Hh signaling
activities (34, 35), NPC1 does not appear to modulate Hh sig-
naling directly (36). These data suggest that the transmembrane
modules of Ptch1 and NPC1 may harbor distinct transport
activities either because of intrinsic differences in these mod-
ules or to protein-specific activities imparted by their respective
adjacent domains.

We addressed whether the transmembrane domains, re-
ferred to here as SSD1 and SSD2, of Ptch1, Ptch2, and NPC1
behave as generic transmembrane modules whose protein-spe-
cific activities are determined by the adjacent luminal and cyto-
plasmic domains. We showed that, despite Ptch1 and Ptch2
exhibiting distinct Smo-repressing activities, their SSD mod-
ules harbored indistinguishable activities. The Hh signaling
repression activities were, however, specified in the Ptch family
proteins, at least in part, by their adjacent cytoplasmic domains.
We further showed that the generic activities of the SSD could
not be extended to NPC1 because replacement of either of
these domains in Ptch1 with the analogous regions of NPC1
generated proteins incapable of regulating the Hh signaling
pathway.

Results

The N- and C-terminal halves of Ptch1 interact noncovalently

Homologs of Patched from Drosophila (dPtc) to vertebrates
(Ptch) encode proteins harboring two closely related trans-

membrane modules known as SSDs. Co-expression of the
N-terminal and C-terminal halves of dPtc recapitulated a sig-
nificant amount of the activity of the intact native molecule
(37). Furthermore, the two halves of dPtc could assemble non-
covalently, as determined in co-immunoprecipitation assays.
We first tested whether the halves of vertebrate Ptch1 also
interacted noncovalently to form a functional molecule.

Vectors expressing either the N-terminal portion (Ptch1-N,
aa 1– 673) or the HA-tagged C-terminal half (Ptch1-CHA, aa
674 –1434) of Ptch1 (Fig. 1B) were expressed in HEK293 cells.
Following confirmation of their expression (Fig. 1C, i and ii),
immunoprecipitation of either Ptch1-N (Fig. 1C, iii) or Ptch1-
CHA (Fig. 1C, iv) co-immunoprecipitated the reciprocal half of
Ptch1. Fig. 2 further illustrates that expression of the individual
halves of Ptch1 had no effect on canonical Hh signaling in
Ptch1-deficient MEFs. However, analogous to the reconstitu-
tion of dPtc in Drosophila, co-expression of both halves of
mPtch1 potently repressed Smo-dependent Hh signaling. Fur-
thermore, addition of N-Shh ligand reversed this repression to
levels similar to those observed for the intact, full-length Ptch1
protein.

We showed previously that the cytoplasmic ML and C-ter-
minal regions of Ptch1 mediated oligomerization of Ptch1 (38).
Thus, it was determined next whether these same regions medi-
ated the noncovalent assembly of the two halves of Ptch1.
Mutants deleting the cytoplasmic regions of the Ptch1 N- and
C-terminal halves, respectively (Fig. 1B), were tested by co-im-
munoprecipitation for their ability to associate with the recip-
rocal portion of Ptch1 (Fig. 1C). As lanes 4 – 6 in Fig. 1C, iii and
iv, show, the N- and C-terminal halves of Ptch1 bound to each
other regardless of the presence of either cytoplasmic domain.
Similar to our previous observations, Fig. 2 shows that Ptch1-
C�ML, when expressed with the C-terminal half of Ptch1
(Ptch1-C), repressed Smo-dependent Hh signaling. Deletion of
the C terminus (Ptch1-C�C), however, prevented repression of
Hh signaling when expressed in the context of either Ptch1-N
or Ptch1-N�ML, consistent with previous observations showing
the requirement of the cytoplasmic C-terminal domain of
Ptch1 for repression of Hh signaling (39). We also verified that
the pairs of Ptch1 fragments were properly transported by
determining whether they had been processed through the
Golgi. Fig. 3, A and B, shows that P1-N, P1-N�ML, and P1-C
do not appear to be processed when expressed individually
because cleavage by Endo H was not protected. However, pro-
cessing of P1-N�ML and, to a lesser extent, P1-N (Fig. 3B) was
evident when they were co-expressed with P1-C. Likewise, pro-
cessing of P1-C and P1-C�CT was clearly evident when they
were co-expressed with P1-N�ML and P1-N, respectively. Only
when P1-C was co-expressed with P1-N was no processing evi-
dent for the C-terminal portion of Ptch1. The lack of pro-
cessing was unrelated, however, to the ability of this pair of

Figure 1. Noncovalent interaction between the N- and C-terminal halves of Ptch1. A, cartoon of Ptch1 illustrating the predicted orientation of specific
regions in the membrane. B, stick diagram illustrating the specific amino acid boundaries of the Ptch1 constructs used in this assay. Amino acid numbering
refers to the sequence of mPtch1. C, HEK293 cells were transfected with constructs expressing the N- or C-terminal half of Ptch1 with or without the cytoplasmic
domains. i and ii, straight Western blots showing expression of the N-terminal halves (i) and HA-tagged C-terminal halves (ii) of Ptch1. iii, co-immunoprecipi-
tation of the HA-tagged C-terminal halves with an antibody directed to the N terminus. iv, the reciprocal co-immunoprecipitation, demonstrating co-immu-
noprecipitation of the N-terminal halves with an anti-HA tag (C terminus) antibody.
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Ptch1 fragments to repress Hh signaling and respond to Hh
ligand. Thus, the two halves of mPtch1 can interact nonco-
valently independently of their cytoplasmic domains to gen-
erate a functional protein that represses Smo activity and
responds to Hh ligand.

The transmembrane domains of Ptch1 and Ptch2 are
equivalent functional modules

The primary structure of Ptch1 shares high sequence identity
with the closely related protein Ptch2 (14 –16, 40). This simi-
larity is evident for the luminal and the transmembrane
domains. However, the primary sequence of the cytoplasmic
regions of Ptch1 and Ptch2 are structurally unrelated. We

determined next whether the reciprocal halves of Ptch1 and
Ptch2 (see Fig. 4A) could associate noncovalently and whether
they gave rise to a functional regulator of canonical Hh signal-
ing. After verification of expression of the various halves of
Ptch1 and Ptch2 in HEK293 cells (Fig. 4B), the ability of these
proteins to associate noncovalently was tested in co-immuno-
precipitation assays. The N- and C-terminal halves of Ptch2
co-immunoprecipitated with the reciprocal C- and N-terminal
portions, respectively, of Ptch1 (Fig. 4C, lanes 2, 4, and 6). How-
ever, despite their ability to form complexes, repression of Hh
signaling was not apparent (Fig. 4D). The lack of activity of the
heterologous complexes was consistent, however, with the fail-
ure of intact, full-length Ptch2 to repress Hh signaling in this

Figure 2. The N- and C-terminal halves of Ptch1 combine to restore Smo-repressing activity. A, Ptch1-deficient MEFs were transiently transfected with an
8�Gli-luciferase construct, a constitutively expressing Renilla luciferase construct, and constructs expressing the Ptch1 halves, individually or together. Cells
were serum-starved for 48 h and treated with either control or N-Shh-conditioned medium for 24 h. Neither half of Ptch1 is sufficient to repress Smo-dependent
Hh signaling activity. However, when both halves are co-expressed, repression of Smo activity is restored. B, luciferase assay carried out as in A, but this time
co-expressing the respective halves of Ptch1 with or without the middle loop or C terminus. Ptch1-N�ML with Ptch1-C repressed Smo-dependent Hh-signaling.
However, Ptch1-C�C with either Ptch1-N or Ptch1-N�ML did not repress the Hh pathway. *, p � 0.05; **, p � 0.01; ***, p � 0.001.
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assay. To ensure that the lack of Hh signaling repression activity
of Ptch2 was not due to the presence of saturating levels of
Ptch2 in the Ptch1-deficient MEFs, we deleted Ptch2 in this
Ptch1-deficient line and performed a titration assay for Ptch2
activity. Fig. 5 shows that Hh signaling, although exquisitely
sensitive to Ptch1 expression, is refractory to the expression of
Ptch2. Only when Ptch2 was expressed at unusually high levels
was a small but significant level of repression of Hh signaling
observed.

Given the high degree of similarity between the sequences of
Ptch1 and Ptch2 in their luminal and transmembrane domains,

the failure of Ptch2 to repress Hh signaling appears paradoxical.
Thus, we tested the Hh signaling activities of the transmem-
brane domains of Ptch2 in the context of the luminal and cyto-
plasmic regions of Ptch1. Specifically, the transmembrane
modules of Ptch1 were replaced, either individually or together,
with the analogous regions from Ptch2 (Fig. 6A). Potent repres-
sion of Hh signaling was observed for chimeric Ptch1 proteins
harboring either individual or both transmembrane regions
from Ptch2 (Fig. 6B). Thus, both transmembrane domains of
Ptch2 are competent to repress Hh signaling in the context of
the adjacent luminal and cytoplasmic domains of Ptch1. This
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activity for the SSDs of Ptch2 is observed despite their apparent
inability to repress Hh signaling in the context of the adjacent
domains of Ptch2.

Because the SSD of Ptch2 could replace the activities of these
regions of Ptch1, we next determined whether the SSDs of more
distally related SSD-containing proteins acted as generic mod-
ules whose protein-specific activities were determined by the
adjacent luminal and cytoplasmic domains. Thus, we replaced
the SSD modules of Ptch1 with those from the cholesterol
transporter NPC1 (Fig. 7A) and tested the chimeric proteins for
their ability to repress Hh signaling. As Fig. 7B demonstrates,
neither of the SSD regions of NPC1 mediated repression of Hh
signaling, even when all but a single SSD of the chimeric protein
were attributable to Ptch1.

We next asked whether the NPC1 and Ptch1 SSDs were fun-
damentally distinct or whether the NPC1 SSDs could be made
functional by altering two specific amino acid residues in the
third transmembrane helix of SSD1. These residues are
required for Ptch1 function and, as Fig. 9 illustrates, are differ-
ent in NPC1 (3, 41, 42, 32). Specifically, we targeted the Ala
residue in NPC1 that is analogous to Gly495 in mPtch1 and the
Asn residue in NPC1 analogous to Asp500 in mPtch1. These
specific mutations in the SSD1 module of NPC1 were intro-
duced into a chimeric protein encoding the N-terminal half of
Ptch1 but with SSD1 replaced with that of NPC1 (PNS1-N, Fig.
7A).

Point mutants were co-expressed with the WT C-terminal
half of Ptch1 (Ptch1-C) or the C terminus with the second SSD
replaced with that from NPC1 (PNS2-C) and tested for their
ability to repress Smo-dependent Hh-activity (Fig. 7C). Despite
the requirement for these specific amino acids for Ptch1 func-
tion, the replacements in the SSD1 of NPC1 were unable to
confer Smo repression activity on the NPC1 SSDs. Thus,
although Ptch1 and Ptch2 are related closely enough that their
SSD are interchangeable, these domains cannot be replaced by
the analogous regions from NPC1, even with replacement of
amino acids critical for Ptch1 activity.

The activities of the Ptch family proteins are governed by the
adjacent cytoplasmic regions

The SSDs of Ptch2 were able to repress Hh signaling in the
context of the adjacent domains derived from Ptch1. Given the
similarity between the luminal domains of Ptch1 and Ptch2, we
tested the possibility that their cytoplasmic domains governed
the protein-specific activities of their SSDs. To address this pos-
sibility, the cytoplasmic C-terminal regions of Ptch1 and Ptch2
were exchanged in constructs expressing the C-terminal halves
of those proteins (Fig. 8A). As Fig. 8B confirms, co-expression
of the two halves of Ptch1 but not Ptch2 repressed canonical Hh
signaling and responded to Hh ligand. Repression of Smo
required the cytoplasmic C-terminal domain of Ptch1 because
the construct deleting this region (P1-C�CT) or replacing it with
the analogous C-terminal region of Ptch2 (P1-CP2-CT) failed to
repress the Hh pathway when co-expressed with the N-termi-
nal half of Ptch1. The C terminus of Ptch1 is not sufficient,
however, to confer repression activity on Ptch2 because the
P2-CP1-CT protein, when expressed with the N-terminal half
of Ptch2, did not suppress Hh signaling. However, when
P2-CP1-CT was co-expressed with the N-terminal half of Ptch1,
partial repression (40%) was consistently observed. Interest-
ingly, when the ML region of Ptch1 (P1-N�ML) was deleted and
expressed with P2-CP1-CT, potent repression (�70%) was
observed. In addition, this repression was refractory to the
inhibitory effects of added N-Shh ligand.

Taken together, these data reveal that the cytoplasmic
domains of Ptch1 play an integral role in the repression of Hh
signaling activity by the Ptch family proteins Ptch1 and Ptch2.
They show further that, for these related factors, the protein-
specific activities of their interchangeable SSDs are determined
by the adjacent cytoplasmic domains.

Discussion

Despite a fundamental role during development and its activ-
ity as a tumor suppressor, most of the basic structural aspects
that give rise to the activities of Ptch1 remain nebulous. The
basic structure of its transmembrane regions supports the

Figure 5. Ptch2 does not repress Smo-dependent Hh signaling. Ptch2-deficient cells were derived from Ptch1-deficient MEFs. The ability of Ptch1 or Ptch2
to repress Hh signaling in a transient assay was assessed by titrating increasing levels of constructs expressing these two proteins. Although exquisitely
sensitive to repression by Ptch1, these cells showed essentially no repression of Hh signaling when FLAGPtch2 was expressed. ***, p � 0.001.

Conserved activities of Patched1 transmembrane domains

16588 J. Biol. Chem. (2018) 293(43) 16583–16595



notion that it acts as a transporter because of their similarity to
other proteins harboring similar domains, such as the RND
superfamily of membrane transporters and the eukaryotic cho-
lesterol transporter NPC1 (43). Like other members in its class,
Ptch1 harbors two transmembrane SSD regions, this arrange-
ment was proposed to have arisen as the result of a gene dupli-
cation (44). These transmembrane regions also exhibit a high

degree of similarity across species. As discussed in more detail
below, essential amino acid residues in the transmembrane
domains are conserved between proteins with SSDs as well as
with the analogous regions of the RND superfamily of mem-
brane transporters in bacteria.

The two apposing luminal domains (loop1 and loop2 in
Ptch1) are also highly similar among SSD-containing proteins.
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In contrast, the three regions that encode the cytoplasmic
domains (the N terminus, the middle loop (ML), and the C-ter-
minal domain) are essentially unrelated between the different
proteins. However, they are almost identical in the same pro-
teins when compared between species. For example, although
the N terminus, C terminus, and ML regions in Ptch1 show
remarkable identity across vertebrates, the analogous regions
in the otherwise closely related Ptch2 proteins are unrelated to
those in Ptch1. Importantly, although we and others have dem-

onstrated that these regions facilitate binding to factors that
harbor SH3, SH2, and WW domains (38, 45– 47), they appear
to encode intrinsically disordered protein regions. It should be
noted further that none of the recently published cryo-EM
structures for Ptch1 were solved using proteins containing
intact cytoplasmic domains (30 –32). For Ptch1 proteins that
contained segments of these cytoplasmic domains, no apparent
structure for these regions was reported, further suggesting
that they are disordered.

Figure 7. The SSDs from NPC1 cannot restore Ptch1 activity. A, stick diagram illustrating the specific amino acid boundaries of the Ptch1 and NPC1
constructs used to create chimeric Ptch1 proteins with the SSDs from NPC1. The arrow at aa 672 indicates the break point separating the two half-molecules
used in C. DNA and amino acid sequences for the specific boundaries of the chimeric proteins are also shown. B, Ptch1 with individual or both SSD regions
replaced with the analogous regions of NPC1 were tested in the Hh repression assay. None of the constructs tested were able to repress Smo-dependent Hh
signaling, thus demonstrating that the SSDs from these distinct classes of SSD-containing proteins do not act as generic modules. C, two amino acids necessary
for Ptch1 function, which are different in NPC1 (Gly495 and Asp500 in mPtch1), were mutated to those in the identical position in Ptch1. This was done in a
chimeric protein encoding the N-terminal half of Ptch1 but with SSD1 replaced with that of NPC1 (PNS1-N). These were co-expressed with the WT C-terminal
half of Ptch1 (Ptch1-C) or the C terminus with the second SSD replaced with that from NPC1 (PNS2-C) and tested for their ability to repress Smo-dependent Hh
activity. Changing these specific amino acids was not sufficient to restore Smo repression activity. ***, p � 0.001.
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We propose that the unique sequences in the cytoplasmic
regions of these SSD-containing factors lead to at least two
protein-specific phenomena. First, these regions impart pro-
tein-specific complexity to the pathways through which the Hh
ligands signal. This complexity arises because of the unique
cohort of factors that bind to these regions. So, for example, as
we and others have shown, the cytoplasmic domains of Ptch1
facilitate the noncovalent association of a number of proteins
involved in distinct signaling cascades (10, 11, 45, 48). It is evi-
dent from the primary sequences of the C-terminal domains of
Ptch1 and Ptch2, respectively, that the interactome of these
proteins are likely distinct. Similarly, the N terminus of Ptch2
contains two uncharacterized protein interaction motifs (PPXY
and YXXP, aa 11–17) that we predict bind to a unique set of
WW- and SH2-containing factors. This motif is absent from
the N terminus of Ptch1, although a related motif can be found
in its C-terminal domain. Thus, regardless of its role in regulat-
ing Smo-dependent Hh-signaling, we expect that Ptch2 may
facilitate increased complexity in the signaling cascades that
respond to the Hh ligands.

Second, we demonstrated that these same cytoplasmic
regions are important for intramolecular regulation of the
activities of the Ptch family proteins. Specifically, we showed
that, although Ptch1 but not Ptch2 repressed the canonical Hh
signaling pathway, the SSDs of Ptch2 were quite capable of
repressing canonical Hh signaling when present in the context
of the adjacent luminal and cytoplasmic domains of Ptch1.
Refinement of the domains that regulate SSD activities in Ptch1
and Ptch2 showed that the C terminus of Ptch1 was also neces-
sary, but not sufficient, to allow the SSDs of Ptch2 to exhibit Hh
pathway repression activity.

The mechanism by which the cytoplasmic domains of the
Ptch family proteins control the activity of the transmembrane
domains is unclear. It is possible that the cytoplasmic domains
exert a conformational effect on the transmembrane regions
whereby the presence or absence of the cytoplasmic domains
(or interactions with another protein mediated by the cytoplas-
mic domains) effects changes in the functional conformation of
the transmembrane domains. Alternatively, the cytoplasmic
domains may mediate changes in cellular localization required
for specific activities. Deletion of the C terminus of Ptch1 or
replacement of this region with the C-terminal domain from
Ptch2 inhibited Hh pathway repression, consistent with Kim et
al. (39), who showed that the C terminus of Ptch1 is necessary
for proper localization and repression of Smo.

The data in Fig. 8B also illustrate that the two principal lumi-
nal domains of Ptch1 and Ptch2 have interchangeable activities.
For example, when the N-terminal half of Ptch1 with or without
the ML region (P1-N and P1-N�ML, respectively) was co-
expressed with the C-terminal half of Ptch2 harboring the
Ptch1 C-terminus (P2-CP1-CT), repression of Hh signaling was
observed. Furthermore, the ability of the combination of P1-N
and P2-CP1CT to respond to ligand demonstrates that the sec-
ond luminal loop of Ptch2 is capable of facilitating a response to
Hh ligand. Given that this loop encodes a sequence predicted to
act as a binding site for Hh ligand (25), this observation sup-
ports the previously proposed model (18) suggesting that Ptch2

may act as a ligand-dependent antagonist of Hh signaling rather
than as a direct repressor of Smo activity.

The generic nature of the SSDs does not seem to extend to
other members of this family. Specifically, we exchanged the
SSD between the cholesterol transporter NPC1 with those from
Ptch1. When tested in the Hh repression assay, even exchange
of a single SSD in Ptch1 with that of NPC-1 produced a protein
that failed to repress Smo. The lack of activity might have been
expected because of differences in specific amino acids between
Ptch1/Ptch2 and NPC-1. As Fig. 9 illustrates, one mutation
in the third helix of the first SSD of Ptch1, G509V (50) (G495V
in the mouse), that gives rise to Gorlin syndrome generates a
Ptch1 protein with reduced repression activity in the Hh signal-
ing pathway (3, 41). This amino acid in the analogous helix of
NPC1 is an Ala residue. A similar logic applies to Asp500 which,
when deleted, leads to Gorlin syndrome (32, 42). The analogous
amino acid in NPC1 is an Asn and might be expected, therefore,
to block Ptch1 activity in the chimeric protein. However, as Fig.
7C shows, changing these specific amino acids was insufficient
to restore Smo repression activity.

The recently solved cryo-EM structures of Ptch1 (30 –32)
and NPC1 (33) suggest another possible explanation for why
the SSDs of Ptch1 and NPC1 do not exhibit overlapping activ-
ities. Close inspection of the NPC1 structure reveals that the
recently described amino acids that are critical for Ptch1 func-
tion are positioned at the bottom of the TM4 helix (TM3 of
SSD1) outside of the core structure of SSD1. The position of
these analogous amino acids in SSD1-TM3 of Ptch1 is distinct
from NPC1, being directly at the center of the SSD1 at the
interface between the two SSD-like regions. Indeed, a recent
paper describing the cryo-EM structure of Ptch1 delineated the
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Figure 9. Amino acid alignment in helix 3 of the first transmembrane
domain of SSD and RND proteins. Shown are the amino acid sequences for
the SSD-containing proteins Ptch1, Ptch2, dPtc, NPC1, PtchD1, PtchD4, Disp,
and SCAP as well as the RND proteins AcrB, CnrA, and p695. Two critical resi-
dues that are different in NPC1 and lead to Gorlin syndrome when altered in
hPtch1 are indicated with circles.
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significance of the charged residues in the middle of the third
helices of both SSD1 and SSD2 of Ptch1 (32). The contrasting
positions of these amino acids in Ptch1 versus NPC1 suggest
that the sequences surrounding this region may give rise to
profoundly different three-dimensional structures. Thus, dis-
tinct activities would be expected for these SSD in Ptch1 versus
NPC1. Alternatively, the nature or processing of the proteins
used to generate the cryo-EM structures of this region in NPC1
or Ptch1 has induced a significant structural alteration not rep-
resentative of the native proteins.

Experimental procedures

Plasmid constructs

All constructs were derived from murine Ptch1, murine
Ptch2, and human NPC1. Deletion mutants and chimeric mol-
ecules were created using either convenient restriction sites
combined with double-stranded oligonucleotides or gene syn-
thesis (GenScript). The precise amino acid boundaries are indi-
cated in each figure.

The Ptch1�/�Ptch2�/� cell line

Double Ptch1�/�Ptch2�/� MEFs were derived from Ptch1�/�

MEFs (a kind gift from C. C. Hui, Hospital for Sick Children,
Toronto, ON, Canada) derived from the Ptch1�/� mice har-
boring a lacZ gene in-frame with exon 1 of Ptch1 (22). A knock-
out mutation in Ptch2 was produced using the CRISPR/Cas9
system. Two gRNAs targeted against exon 3 of mPtch2
(gRNA sequences TCACCCCGCTTGACTGCTTC and GTT-
GATTCAGACTGCGCACC, Ref. 51) were cloned simultane-
ously into the pX330A-1 � 2 vector using the Golden Gate
assembly system (Addgene, Ref. 52). Cells were co-transfected
with 4 �g of the Cas9/gRNA vector and 200 ng PGK-Puro for
selection. 48 h post-transfection, transfected cells were selected
in medium containing 4.0 �g/ml puromycin. Individual colo-
nies were isolated, and the presence of indels was verified by
treating a PCR-amplified region containing exon 3 using T7
endonuclease according to manufacturer’s instructions (New
England Biolabs, Ref. 53). Knockout mutations in exon 3 of
Ptch2 were verified by sequencing.

Western blotting and co-immunoprecipitation

HEK293 cells grown in 100-mm plates were co-transfected
with 2 �g of each Ptch1 construct using 2 mg/ml polyethylenei-
mine at a 2:1 ratio of polyethyleneimine to DNA. Cell lysates
were prepared using 0.5% NP-40 as described previously (12,
38). For straight Western blots, 50 �g of lysate was mixed with
4� SDS loading buffer (50 mM Tris (pH 6.8), 100 mM DTT, 2%
SDS, 0.1% bromphenol blue, and 10% glycerol) and incubated
for at least 20 min at 37 °C. Samples were separated using 10%
SDS-PAGE (54) and blotted onto a nitrocellulose membrane
(55). Blots were blocked in 5% skim milk and probed overnight
with primary antibodies in a 3% BSA solution. The antibodies
used were as follows: 1:1000 goat anti-Ptch1 (Santa Cruz
Biotechnology, sc-6149), 1:1000 rabbit anti-HA (ABM, G166),
1:500 mouse anti-HA (12CA5, Developmental Studies
Hybridoma Bank), 1:1000 mouse anti-myc (ABM, G019), and
rabbit anti-FLAG (ABM, G188). The following day, horseradish

peroxidase–linked secondary antibodies in 5% skim milk were
applied for 1 h (1:5000 goat anti-rabbit IgG (Cell Signaling
Technology, 7074), 1:5000 horse anti-mouse IgG (Cell Signal-
ing Technology, 7076), or 1:5000 donkey anti-goat IgG (Santa
Cruz Biotechnology, sc-2020)). Western blots were developed
with Western Lightning PLUS ECL (PerkinElmer Life Sciences)
and imaged using a MicroChemi 2.0 Imager (FroggaBio,
Toronto, ON, Canada).

For immunoprecipitation, primary antibody was added to
250 �g of total cell lysate and incubated overnight at 4 °C in
0.5% NP-40 lysis buffer. The following day, 15 �l of protein
G–agarose or protein A–agarose beads was added at 4 °C for
2 h. Beads were then spun down and washed five times in 0.5%
NP-40 and then resuspended in 20 �l of 1� SDS loading buffer.
Proteins were separated on 10% SDS-PAGE gels, and western
blot analyses were performed as described above.

Glycosidase assay

HEK293 cells were transiently transfected, and lysates were
taken in 0.5% NP-40 lysis buffer as described above. 50 �g of
lysate was made up to 20 �l of volume with water and treated
with either no enzyme, 500 units of Endo H (New England
Biolabs), or 500 units of PNGase F (New England Biolabs) for
1 h at 37 °C. Cells were then mixed with 4� SDS loading buffer,
and western blots were run as above.

Luciferase reporter assays

Shh-conditioned and control media were prepared by tran-
siently transfecting HEK293 cells with either 5 �g of
pcDNA3.1-N-Shh or 5 �g of empty pcDNA3.1, as described
previously (38). Shh ligand activity was verified using Shh Light
II fibroblasts that harbor an intrinsic 8�Gli-luciferase pro-
moter as described previously (49).

To assay Ptch family protein modulation of canonical Hh
signaling, 50 ng of expression plasmids encoding various Ptch1
and/or Ptch2 mutants were co-transfected with 800 ng of an
8�Gli-firefly luciferase reporter transgene and 80 ng of a con-
stitutive Renilla luciferase transgene in either Ptch1- or Ptch1/
Ptch2-deficient MEFs using FuGENE 6 (4:1 ratio, Promega).
After 24 h, cells were starved in serum-free medium for 48 h.
For cells that were treated with Hh ligand, conditioned
medium was added after 24 h of starvation, and lysates were
taken after another 24 h in serum-free-medium. Firefly and
Renilla luciferase activities were determined using the Dual-
Luciferase reporter assay system (Promega) according to the
manufacturer’s instructions. Data were analyzed by one-way
analysis of variance, followed by pairwise comparison of
means using a Student’s t test. Data are displayed as mean �
S.E.; n 	 minimum of three independent experiments. Each
experiment was done using biological and technical dupli-
cates and averaged.
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