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CD16a with oligomannose-type N-glycans is the only
“low-affinity” Fc y receptor that binds the IgG crystallizable
fragment with high affinity in vitro
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Fc vy receptors (FcyRs) bind circulating IgG (IgG1) at the sur-
face of leukocytes. Antibodies clustered at the surface of a tar-
geted particle trigger a protective immune response through
activating FcyRs. Three recent reports indicate that the compo-
sition of the asparagine-linked carbohydrate chains (N-glycans)
of FcyRIIla/CD16a impacted IgG1-binding affinity. Here we
determined how N-glycan composition affected the affinity of
the “low-affinity” FcyRs for six homogeneous IgG1 Fc N-glyco-
forms (GO, GOF, G2, G2F, A2G2, and A2G2F). Surprisingly,
CD16a with oligomannose N-glycans bound to IgG1 Fc (A2G2)
with a K, = 1.0 £ 0.1 nm. This affinity represents a 51-fold
increase over the affinity measured for CD16a with complex-
type N-glycans (51 * 8 nm) and is comparable with the affinity of
FcyRI/CD64, the sole “high-affinity” FcyR. CD16a N-glycan
composition accounted for increases in binding affinity for the
other IgG1 Fc glycoforms tested (10 -50-fold). This remarkable
sensitivity could only be eliminated by preventing glycosylation
at Asn'®? with an Asn-to-Gln mutation; mutations at the four
other N-glycosylation sites preserved tighter binding in the
Man5 glycoform. None of the other low-affinity FcyRs showed
more than a 3.1-fold increase upon modifying the receptor
N-glycan composition, including CD16b, which differs from
CD16a by only four amino acid residues. This result indicates
that CD16a is unique among the low-affinity FcyRs, and modi-
fying only the glycan composition of both the IgG1 Fcligand and
receptor provides a 400-fold range in affinities.

Immune cells bind to IgG through six human Fc y receptors
(FcyRs)? that can induce or suppress a protective but poten-
tially damaging immune response. Although the proteins
involved in this recognition are well-described, significant
questions remain regarding how each receptor interacts with
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the enormous diversity of IgG molecules in the serum and how
cells of each lineage modify the antibody-binding properties of
their receptors (1). Five FcyRs promote immune activation, and
one suppresses signaling (FcyRIIb/CD32b). These six receptors
are differentially expressed on various leukocytes and are
further subdivided into one high-affinity receptor (FcyRI/
CD64) and five low-affinity receptors (FcyRIIa,b,c/CD32a,b,c;
FcyRIlla,b/CD16a,b). FcyRs form a fundamental defense
against disease and require productive engagement with the
majority of therapeutic mAbs to achieve a therapeutic benefit
2,3).

IgG antibodies bind FcyRs through the invariant crystalliz-
able fragment (Fc). However, not all IgG antibodies exhibit the
same cytotoxic potential. One variable is the location of the
epitope on a given antigen; buried epitopes may lead to Fc
sequestration and prevent productive engagement of surface-
borne FcyRs. An additional well-known variable is the com-
position of the asparagine-linked carbohydrate (N-glycan)
attached to Asn**” of the IgG1 Fc (Fig. 1) (4, 5). Each IgG mol-
ecule contains an Asn®” glycan on both heavy chains, and this
modification is required to bind FcyRs (6 —8). Furthermore, the
composition of this N-glycan, resulting from the template-inde-
pendent synthesis and glycan remodeling in the Golgi during
protein expression, impacts affinity for various FcyRs. IgG1 Fc
contains predominantly complex-type biantennary N-glycans
with variable incorporation of fucose, galactose, and N-acetyl-
neuraminic acid (Fig. 1) (9). IgG1 Fc glycoforms containing
fucose bind with at least 4-fold weaker affinity to CD16a (10—
13). Thus, many mAbs are glycoengineered to improve effector
functions by preventing fucosylation, which is found on ~95%
of circulating IgG1 (14, 15). The improvement in treatment
efficacy by glycoengineered mAbs is likely due to increased
affinity for CD16 (16, 17).

Recent reports indicate FcyR N-glycan composition likewise
impacts antibody-binding affinity (18-20). In one study,
CD16a with minimally processed oligomannose-type Man5
N-glycans bound to IgG1 Fc with 12-fold greater affinity than
CD16a with highly processed complex-type N-glycans. The
impact of this affinity increase was unclear because it is believed
the majority of cell surface glycoproteins, including the FcyRs,
display highly processed N-glycans similar to those found on
serum glycoproteins. Indeed, a recent report indicated CD16b
isolated from human serum contained primarily highly pro-
cessed complex-type N-glycans, with minimally processed
forms found at the Asn* glycosylation site (21). However,
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Figure 1. The low-affinity FcyRs are heavily glycosylated and bind the glycosylated Fc region of IgG1. A, the FcyRllla/CD16a soluble extracellular domain
is sufficient for high-affinity IgG1 Fc binding and serves as a model for the binding of the other low-affinity FcyRs. B, multiple N-glycan species are synthesized
on any given protein, and the distribution depends on conditions in the expressing cell among other variables.

CD16a from primary human natural killer cells contained
a large amount of minimally processed N-glycans, which
included a significant fraction of hybrid and oligomannose
N-glycans (45%) (20, 22).

From these reports it was clear that a wide range of N-glycan
species may be found decorating the low-affinity FcyRs
expressed at the surface of human immune cells; however, it
was not clear whether the function of each receptor would be
affected by N-glycan composition as much as CD16a. Further-
more, the magnitude to which N-glycan composition impacted
CD16a remains undefined because only a limited panel of [gG1
Fc glycoforms were used in the prior study. The goal of the
experiments described here is to determine the extent to which
receptor N-glycan composition impacted affinity for I[gG1 Fc in
vitro by testing a range of different receptors and Fc glycoforms.
We likewise sought to determine whether the glycan at one
specific site of the receptor, of the many found on the heavily
glycosylated FcyRs, contributes a greater degree toward the
receptor sensitivity to N-glycan composition.

Results

Preparation and N-glycan analysis of recombinant
Fc y receptors

Transiently transfected human embryonic kidney (HEK)
2938 cells expressed the soluble, antibody-binding extracellular
domains of the low-affinity FcyRs (rCD16a, rCD16b, rCD32a,
and rCD32b) to high yields and high purity following elution
from a nickel—nitrilotriacetic acid column (80 —120 mg liter ';
Fig. S1). The HEK293S (Gntl-) cell line synthesizes N-glyco-
proteins with primarily Man5 N-glycans because of a GNTI
gene deletion that prevents the later stages of N-glycan pro-
cessing (23). LC-MS—based analysis of these recombinant
receptors revealed the presence of >99% oligomannose-type
N-glycans (Fig. 2). We previously reported the binding affin-
ity of each low-affinity FcyR, expressed in the parent
HEK293F cell line, to an array of IgG1 Fc N-glycoforms (12).
A parallel analysis of these HEK293F-expressed receptors
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indicated that >89% of the glycans were of a complex type
(CT) (Fig. 2B).

Binding-affinity measurements

Each of the four low-affinity Fc vy receptors with Man5 N-gly-
cans bound to IgG1 Fc glycovariants immobilized on a surface.
These experiments tested binding to six homogeneous IgG1 Fc
glycovariants: GO, GOF, G2, G2F, A2G2, and A2G2F with GO
indicating zero galactose residues on the complex-type bian-
tennary N-glycan branches, A2 indicating the presence of two
N-acetylneuraminic acid residues on the branches, and F indi-
cating a single core fucose residue. Once binding reached a
kinetic equilibrium, the intensity at equilibrium provided a mea-
sure of the amount of receptor bound to the single covalently
anchored IgG1 Fc glycoform. Fitting a binding isotherm to
these equilibrium intensity values provided an estimate for the
dissociation constant and is shown with representative data in
Figs. 3 and 4. The complete data are compiled in Table 1 and
Table S1.

The general patterns of relative affinity among the low-affin-
ity Fc vy receptors with oligomannose-type N-glycans proved
comparable with those measured with complex-type N-gly-
cans. rCD16a bound the tightest, followed by rCD32a, rCD32b,
and rCD16b when using fucosylated I[gG1 Fc. The patterns
between receptors with complex-type and oligomannose
N-glycans were likewise similar when binding to afucosylated
IgG1 Fc. In this case, rCD16a bound the tightest, followed by
rCD16b, rCD32a, and rCD32b in descending order of affinity.
Thus, both rCD16a-Man5 and rCD16b-Man5 but neither
rCD32a-Man5 nor rCD32b-Man5 exhibited a marked sensitiv-
ity to IgG1 Fc fucosylation. This relative binding-affinity rank-
ing is consistent with previous results observed using the com-
plex-type glycoforms (12).

Of the receptors analyzed, only rCD16a with Man5 oligo-
mannose N-glycans showed a dramatic increase in affinity
when compared with rCD16a with complex-type N-glycans.
rCD16a-Man5 bound to afucosylated IgG1 Fc (GO, G2, and
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Figure 2. N-Glycan composition of the recombinant Fc y receptors. Elution pattern and glycan composition of N-glycans from recombinant Fc y receptors
using hydrophilicinteracting chromatography-LC/MS/MS are shown. A-D, expression of receptors using HEK293F cells provides primarily CT N-glycans (A and
B) and Man5 N-glycans (C and D) results from expression using HEK293S (Gnt1-) cells. The numbers in the pie charts indicate the percentages of the N-glycan
groups.
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Figure 3. Representative binding analysis for fucosylated IgG1-Fc (GOF) measured by SPR. The /eft column shows binding sensograms, and the right
column shows fits using response intensity values once a binding equilibrium is reached. Error bars for the binding fits are shown.

A2G2) with 41-51-fold greater affinity than rCD16a-CT, com- 16-fold, compared with a 1.2-2.4-fold increase for rCD16b,
pared with an increase of 0.7—3.1-fold for rCD16b, rCD32a,and  rCD32a, and rCD32b.

rCD32b (Table 1). The binding affinity to fucosylated IgG1 Fc The affinity of rCD16a-Man5 for afucosylated IgGl Fc
glycoforms (GOF, G2F, and A2G2F) increased between 10- and  (A2G2) is >400-fold tighter than the affinity of rCD16a-CT
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Figure 4. Representative binding analysis for fucosylated IgG1-Fc (GO) measured by SPR. The left column shows binding sensograms, and the right column
shows fits using response intensity values once a binding equilibrium is reached. Error bars for the binding fits are shown.

binding IgG1 Fc (GOF). This astonishing result indicates that an

enormous range

of binding affinities are achievable by modify-

ing only the N-glycan composition of the ligand and receptor.
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Furthermore, the 1.0 = 0.1 nm affinity measured for the IgG1 Fc
(A2G2)-rCD16a-Manb5 interaction is comparable with the 1-3
nM binding affinity of the high-affinity Fc y receptor CD64 (11,
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12, 24). Thus, rCD16a is unique among the low-affinity Fc vy
receptors with an unprecedented sensitivity to N-glycan com-
position and the capability to bind afucosylated IgG1 Fc in vitro
with affinities comparable to CD64. It is surprising that this
unique sensitivity is not shared by rCD16b, which differs by
only four amino acid residues in the extracellular antibody-
binding domains analyzed (Fig. S2).

The role of individual CD16a N-glycans

Previous reports indicated that two of the five potential
CD16a N-glycans contribute to IgG1 Fc-binding affinity (19,
25-27). Indeed, glycans at Asn*® and Asn'®* proved essential
for the high-affinity interactions described above. Removing
the Asn®®, Asn”*, and Asn'®® glycosylation sites through muta-
tion to Gln slightly increased the affinity (Fig. 5 and Table S1).
However, removing N-glycosylation sites by mutating either
Asn® or Asn'®* mostly reduced affinity. Although the N45Q
variant with complex-type N-glycans showed weaker affinity
for IgG1 Fc than the N162Q variant, the relative positions were
reversed when measuring the affinity of the Man5 receptor gly-
coforms. Surprisingly, binding affinity measured for the
rCD16a-N45Q variant still showed sensitivity to the receptor
glycoform: the Man5 glycoform bound more than 10-fold
tighter to IgG1 Fc than the CT glycoform. This sensitivity was
lost with the rCD16a-N162 variant, which showed comparable
binding in either glycoform to IgGl Fc. Thus, the rCD16a

N-Glycan composition impacts CD16a binding

Asn'®? glycan mediates high-affinity interactions with IgG1 Fc.
This result can be explained by the location of the Asn'®? glycan
at the interface formed by IgG1 Fc and rCD16 observed in high-
resolution structures determined by X-ray crystallography (Fig.
$3), although there is considerable disagreement related to the
nature of the interactions at this site (19, 28 -31).

The role of receptor fucosylation

Multiple laboratories previously demonstrated that fucosy-
lation of the IgG1 Fc core (1)GlcNAc residue reduced the affin-
ity for rCD16a from 4- to 50-fold (10, 12). One major difference
between rCD16a-Man5 and rCD16a-CT is that the former gly-
coform is not fucosylated. We assessed the role of receptor
fucosylation by comparing the binding of rCD16a displaying
complex-type glycans expressed with or without fucose to
determine whether the increased affinity of rCD16a-Man5
could be explained by the missing fucose residue (+fuc or —fuc,
respectively). The impact of receptor fucosylation proved min-
imal for three rCD16a amino acid variants analyzed, with most
interactions perturbed by less than a 2-fold change in affinity as
compared with a 10-51-fold change upon replacing complex-
type N-glycans with Man5 glycans (Fig. 6 and Table S1). One
exception to this conclusion is that rCD16a-CT(—fuc) binds
IgG1 Fc GO with 5-fold greater affinity than rCD16a-CT (+fuc),

1000
IgG1-Fc glycoform C]GOF [G2F GO
Table 1
Receptor and IgG1 Fc N-glycan composition impacts binding affinity 100l s
IgG1 Fe GOF IgG1 Fe GO 5
Receptor Receptor N-glycans K,(mM) | zerr | K, (mM) | err E;
rCD16a-Man5 : 25 %3 | 25 | 10 x
1CD16b-Man5 2 3300 | 3300 | 590 80 10}-
1CD32a-Man5 720 720 870 80
1CD32b-Man$ 3000 | 3000 | 3000 | 500
1CD16a-CT* ¢ C 409 32 101 12
1CD16b-CT g 6250 300 757 21 1
1CD32a-CT & 1230 110 | 1370 70 S
rCD32b-CT 3740 260 1980 200 rCD16a &
fold K, increase by limiting glycoform ¢
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1CD32a 17 1.6 Figure 6. The effect of receptor fucosylation on binding affinity. rCD16a
1CD32b 12 07 was expressed in the absence (CT + fuc) or presence (CT — fuc) of 2-doexy-2-
fluoro-I-fucose. Error bars represent the error of the dissociation constant fit
* CT values from Ref. 12. from equilibrium intensity data.
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Figure 5. rCD16a amino acid substitutions and N-glycan composition affects IgG1 Fc binding affinity. Errors of fit for the dissociation constants are

shown.
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but this affinity increase is still far below the 40-fold increase
upon comparing rCD16a-CT and rCD16a-Man5 binding IgG1
Fc GO. Thus, it is unlikely that the predominant contribution to
the increased affinity of rCD16a-Man5 for IgG1 Fc can be
explained by a lack of CD16a fucose.

Discussion

These experiments demonstrate CD16a is uniquely sensitive
to the composition of its covalently attached N-glycans, as well
as the ligand N-glycans in vitro. Of the five possible CD16a
N-glycans, Asn'®* appears to be primarily responsible for this
behavior, and the Asn'®* glycan was previously implicated as
the primary moiety sensing antibody fucosylation (30, 31). It is
remarkable that protein function can be modified by N-glycan
composition; however, IgG1 Fc N-glycan composition is a well-
described modifier of CD16a binding (5, 6, 12). The surprising
aspects of these findings are the magnitude of the modulation
and that the sensitivity to N-glycan composition is restricted to
a single low-affinity FcyR.

Modifying the biantennary complex-type IgG1 Fc N-glycan
with fucose, galactose, and N-acetylneuraminic acid generates
an 8-fold range of affinities for rCD16a (12). Modifying receptor
N-glycan composition impacts rCD16a-binding affinity by up
to 51-fold. These effects combined provide a 400-fold range of
affinities for rCD16a, with the predominant impact from recep-
tor N-glycan composition. This wide range of affinities poten-
tially provides the body an opportunity to tune the immune
system by modifying N-glycans. A significant amount of evi-
dence indicates IgG1 Fc N-glycans change in response to mul-
tiple stressors, including age and disease (including but not lim-
ited to Refs. 32—38), but there are very few reports of FcyR
glycosylation in native human tissues because of the difficulty
in obtaining sufficient material for analysis (20, 21).

It would be appropriate to assume that the low-affinity
FcyRs, which share a high degree of structural and sequence
homology, share similar functional profiles; however, rCD16a is
by far the most sensitive to the composition of its attached
N-glycans with up to a 51-fold change in binding affinity, but
the highly related rCD16b is only impacted by a 3.1-fold change.
This is even more surprising considering that rCD16b shares a
similar sensitivity to IgG1 Fc N-glycan composition with an
observed 16-fold range of affinities as compared with 8-fold for
rCD164a, 1.8-fold for rCD32a, and 2.2-fold for rCD32b (12).

One weakness of this present study is related to the reduc-
tionist approach measuring monovalent interactions of the sol-
uble extracellular domains with the IgG1 Fc in vitro. It is
unknown how these observed changes in monovalent binding
affinity impact the multivalent interactions that hold an
opsonized target to the surface of an immune cell; it is likely that
the raw affinities measured in this study do not accurately reca-
pitulate affinities for similar interactions in the complex milieu
of the serum or peripheral tissues that contain a multitude of
factors including 5—-15 mg/ml competing antibody and occur at
a membrane. However, we expect that relative differences
between the receptors we identified are representative of the in
vivo activity. It is noteworthy that the modest 4-fold affinity
enhancement achieved by preventing antibody fucosylation or
the 5-fold increase in affinity observed for the CD16a-V158 v.
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CD16a-F158 allotype increases patient outcome with therapeu-
tic monoclonal antibodies (11, 39-42). Thus, if modest
changes in receptor—antibody interactions provide measurable
advantages in patient outcome, then the potential to exploit a
larger 51-fold enhancement is noteworthy.

This study highlights the critical need to determine the
N-glycan composition of FcyRs from primary, uncultured
human tissue and to develop recombinant systems that pro-
duce comparable material for in vitro binding studies. Although
substantial resources have been previously applied to analyze
N-glycans from recombinant receptors (43—45), it is evident
that even human cell-based recombinant protein expression
systems do not appropriately recapitulate receptor glycosyla-
tion because CD16a from primary human natural cells and
HEK293F expression are dramatically different (20). CD16a
isolated from natural killer cells donated by three older male
donors contained smaller complex type N-glycans plus a signif-
icant proportion of hybrid and oligomannose types, unlike
rCD16a from HEK293F or serum-borne CD16b that contained
predominantly large complex-type N-glycans and a small
amount of oligomannose forms (20, 21). Therefore, based on
these results, the rCD16a used to assess antibody binding
imperfectly represents the native CD16a glycoforms and is an
inaccurate model of antibody-binding affinities on immune cell
surfaces.

Engineering antibody N-glycan composition is proving to be
a powerful device to enhance the effector properties of thera-
peutic monoclonal antibodies (16, 17, 46, 47). Although it is
unclear whether the human body modifies antibody N-glycan
composition to directly tune sensitivity of the immune system
or whether antibody glycosylation changes result from change
in the immune system, the clinical evidence supporting the
enhanced efficacy of glycoengineered antibodies is substantial.
Changes in antibody glycosylation have a much smaller impact
on receptor-binding affinity than changes in the receptor gly-
cans and implicate receptor glycosylation as an unexplored
device to enhance drug efficacy.

Experimental procedures
Materials

Materials were purchased from Sigma—Aldrich unless other-
wise noted.

Protein expression and purification

A description of the preparation, purification, in vitro
remodeling, and analysis of the batch of human IgG1 Fc (resi-
dues 216 —447) glycovariants used in this study was published
previously because these glycovariants were previously used for
binding analyses (12). The low-affinity Fc +y receptors with
complex-type N-glycans including recombinant (r)CD16a and
associated variants (residues 19 -193, Val'*® allotype), rCD16b
(residues 19-193), rCD32a (residues 43-216, LR (H143) allo-
type), and rCD32b (residues 43-216) were expressed with
HEK293F cells as previously described (12, 48, 49). rCD16a and
related variants were also expressed with HEK293F cells in the
presence of 250 um 2-deoxy-2-fluoro-1-fucose (Santa Cruz Bio-
technology) to prevent fucosylation (50). Receptors with Man5
oligomannose N-glycans were expressed using HEK293S
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(Gnt1-) (51). N-Glycans from the low-affinity Fc vy receptors
were released, purified, conjugated to procainamide, and ana-
lyzed using hydrophilic interacting chromatography—MS on a
Q-Exactive mass spectrometer (ThermoFisher) as described
previously (20). The spectra were analyzed using Byonic (Pro-
tein Metrics) to identify singly, doubly, or triply charged N-gly-
can species. Each identification was manually validated by ana-
lyzing retention time and MS2 spectra using Xcaliber (Thermo
Fisher).

Binding-affinity measurements

Fc was coupled onto a CM5 sensor chip on a Biacore T100
instrument (GE Life Sciences). Fc y receptors were flowed over
the Fc-coupled chip as previously described (12). A minimum
of two experiments for each receptor/Fc pair was collected on
at least two different days, and representative data are reported.
Dissociation constants for each experiment were determined
by fitting the equilibrium response values at each receptor con-
centration to the Hill equation. All binding experiments using
WT FcyRs with oligomannose-type N-glycans were collected at
the same time as the previously reported binding affinity mea-
surements for the WT FcyRs with complex-type N-glycans and
are thus directly comparable (12).
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