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Abstract

Cardiovascular disease is a leading cause of death worldwide and accounts for greater than 17.3 

million deaths per year, with an estimated increase in incidence to 23.6 million by 2030 1. 

Cardiovascular death represents 31% of all global deaths 2 - with stroke, heart attack, and ruptured 

aneurysms predominantly contributing to these high mortality rates. A key risk factor for 

cardiovascular disease is hypertension. Although treatment or reduction in hypertension can 

prevent the onset of cardiovascular events, existing therapies are only partially effective. A key 

pathological hallmark of hypertension is increased peripheral vascular resistance due to structural 

and functional changes in large (conductive) and small (resistance) arteries. In this review, we 

discuss the clinical implications of vascular remodeling, compare the differences between vascular 

smooth muscle cell (VSMC) remodeling in conductive and resistance arteries, discuss the genetic 

factors associated with VSMC function in hypertensive patients, and provide a prospective 

assessment of current and future research and pharmacological targets for the treatment of 

hypertension.
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I. Introduction

The arterial vascular wall contains multiple cellular components including endothelial cells, 

layers of vascular smooth muscle cells (VSMCs) and an extracellular matrix, and can be 

subdivided into three distinct layers or tunics: the tunica intima, tunica media and tunica 

externa. The innermost tunica intima is comprised of a single layer of endothelial cells, 

while the tunica externa is the outermost layer of the vessel wall and forms a sheath of 

connective tissue primarily comprised of collagen and elastin fibers. Between the intima and 

externa is the tunica media - the largest of the three layers and the site of key differences as 

we move down the arterial tree from large conducting vessels, to medium sized distributing 

vessels, and finally to resistance arteries. Conducting or elastic arteries (e.g. the aorta or 

carotid) have a tunica media with greater elastic than smooth muscle content, which 

facilitates vascular compliance in response to high pressure blood flow from the heart. In 

comparison, muscular distributing arteries such as the radial artery have decreased elastic 

material but higher smooth muscle content with contribute to increased contractility in these 

vessels 3,4. Lastly, in resistance arteries, the tunica media lacks elastin and is made up of one 

to two layers of VSMCs.

In the healthy artery, changes in the extravascular environment, local signaling molecules, or 

hemodynamic demands, initiate structural and functional adaptations within the different 

cell types and layers of the vessel wall designed for blood pressure homeostasis. However, in 

disease states, these adaptive changes do not return to baseline levels but instead initiate 

pathological vascular alterations observed with cardiovascular disease. This maladaptive 

change is defined as “vascular remodeling”.

In hypertension, vascular remodeling involves changes to VSMCs in the vessel wall of both 

large and small arteries, as well as other cellular components of the vascular wall including 

endothelial cells 5,6, and elastin and collagen content 7,8. Vascular remodeling is a 

heterogeneous process and differs depending on the vessel type and specific disease state or 

progression (Figure 1). For example, vascular remodeling may increase or decrease the 

arterial lumen diameter in processes defined as outward and inward remodeling respectively. 

Vessels that undergo eutrophic remodeling have no net change in vessel wall material or 

media cross-sectional area. Conversely, hypo- and hypertrophic remodeling result in a net 

decrease or increase in vessel cellular material, respectively. In larger conductive vessels, 

VSMCs primarily undergo hypertrophy, which results in an increased intima-media 

thickness and contributes to increased arterial stiffness and blood pulse wave pressure. By 

comparison, small resistance vessel remodeling may present as either eutrophic or 

hypertrophic remodeling, depending on the form of hypertension.

Mechanical forces on the blood vessel wall also greatly contribute to hypertensive vascular 

remodeling. Blood vessels respond to altered fluid shear stress and circumferential strain 
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through changes in vascular extracellular matrix composition, cellular secretion of 

endogenous growth factors and cytokines, and vascular sensitivity to circulating humoral 

factors. These dynamic changes are further regulated by temporal variables such as force 

duration, load, and force traits (e.g. cyclic stretch versus static strain) which cause 

differential responses on the vasculature. Disruption of the vascular-mechanical homeostasis 

may in fact initiate early pathways involved in pathological remodeling. The 

mechanobiological mechanisms that govern organ, tissue, and cell level changes in 

organisms, and how these structures adapt to mechanical insults, is an area of intense 

research interest and is too large for the scope of this vascular specific review. Extensive data 

exists and is expertly reviewed by others 9,10.

In this review article, we discuss the clinical relevance of vascular remodeling, emphasizing 

the relationship between current hypertensive drugs and the reversal of remodeling. Next, we 

outline the functional and structural alterations to VSMCs in both large and small arteries, 

highlighting similarities and differences in the pattern and mechanisms of remodeling. We 

examine genome-wide association data to address the genomic underpinnings of VSMC 

remodeling in hypertension, and lastly, assess future research areas and drug targets for 

treating hypertension.

II. Clinical Relevance

Clinical studies in patients with cardiovascular diseases find correlations between vascular 

remodeling and cardiovascular disease progression 11–13. These findings extend from 

cardiovascular disease in general, to hypertension specifically, as vascular remodeling, 

particularly in the small arteries, is a hallmark of disease progression in hypertension and is 

highly correlated with disease severity 14,15. Therefore, improved understanding of the 

pathological mechanisms of vascular remodeling holds high relevance for the clinical 

consequences and treatment of hypertension. In Table 1, we provide a comprehensive 

summary of the features of a number of clinical studies that investigate the clinical 

relationship between hypertension and vascular remodeling.

a. Conductive Artery Remodeling in Clinical Hypertension

In larger conductive arteries, vessel remodeling in hypertension is characterized by increased 

intima-media thickness, which contributes to overall increased vessel wall thickness 16. 

Conductive wall thickening and hypertrophy during hypertension ultimately lead to 

increased vessel stiffness and decreased arterial compliance, which could negatively impact 

myocardial work capacity and coronary perfusion 17. The changes observed in large arteries 

during hypertension are similar to those seen as a consequence of physiological aging in 

elderly patients 18,19 leading to one theory that increased blood pressure accelerates age-

related alterations to large arteries 20–22.

In this regard, a cross-sectional study of elderly patients with at least one risk factor for 

cardiovascular disease showed an association between carotid arterial stiffness, high average 

systolic blood pressures and high visit-to-visit systolic blood pressure 23. In another clinical 

study, increased aortic stiffness (measured by pulse wave velocity) correlated significantly 

with negative end organ effects in the heart and kidney in patients with mild hypertension 24. 
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Specifically, pulse wave velocity correlated with changes in left ventricular mass and wall 

thickness, left atrial diameter, and negatively with creatinine clearance, indicative of renal 

function decline. These findings have been reported in several other studies investigating 

structural and functional changes in the heart 25–27 and kidney 28 of hypertensive patients 

with increased arterial stiffness.

b. Resistance Artery Remodeling in Clinical Hypertension

The smaller diameter arteries of the resistance vasculature play a vital role in the control of 

systemic blood pressure. As such, resistance arteries are particularly vulnerable to vascular 

remodeling during hypertension and small artery changes have been well-correlated with 

clinical disease progression and severity 29. Numerous groups report an increased media-to-

lumen (M/L) ratio in small subcutaneous resistance arteries collected during a gluteal biopsy 
30,31. More recently developed non-invasive techniques, including microscopic and clinical 

analysis of the retinal vascular bed, confirm findings of increased M/L ratio and highlight 

novel non-invasive tools for diagnosing pathophysiological vascular changes in hypertension 
32,33.

Hypertensive patients have significantly increased wall-to-lumen ratio in retinal arterioles 

compared to normotensive controls as measured using scanning laser Doppler flowmetry 32. 

Similarly, hypertensive patients with advanced microvascular retinal damage (retinopathy) 

have a higher incidence of left atrial enlargement, reduced left ventricular ejection fraction, 

and consequently congestive heart failure 33. Comparison of resistance arteries from the 

forearm and coronary microvasculatures suggests that these two parameters are remodeled in 

parallel in untreated patients with mild hypertension 34. These findings provide examples of 

non-invasive determination of changes to resistance arteries in hypertension and support the 

clinical significance of small artery remodeling in hypertension. These techniques may also 

be useful to clinically assess whether vascular remodeling can be reversed by effective 

treatment of hypertension.

c. Clinical Interventions and Vascular Remodeling

Treatment for individuals with hypertension currently includes a multipronged approach 

including pharmacological antihypertensive agents and/or lifestyle changes in both diet and 

exercise. The five major classes of antihypertensive drugs (β-blockers, diuretics, 

angiotensin-converting enzyme (ACE) inhibitors, angiotensin II (Ang II) receptor blockers 

(ARB) and calcium-channel blockers (CCBs)) 35 all promote blood pressure lowering, but 

have different effects on vascular remodeling depending on their mechanisms of action. 

Specifically, a comprehensive review of the literature shows that drugs that target vessel 

dilation are typically more successful in correcting resistance artery remodeling than those 

that primarily manipulate cardiac output 36–39.

Clinical studies have shown that drugs targeting the renin-angiotensin-aldosterone system 

(RAAS), specifically the synthesis of Ang II (ACE inhibitors) or the binding of the ligand to 

its receptor (ARBs), are beneficial in reversing conductive vascular remodeling due to 

hypertension. For example, the ACE inhibitor (ACE-I) perindopril significantly decreases 

vessel thickness in the conductive radial artery in hypertensive patients after 9 months of 
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treatment 40. In another randomized cross-over study, patients were treated with the ARB 

valsartan, the ACE inhibitor captopril or a combination of both 41. Both single and 

combination treatments decreased brachial artery pulse wave velocity, an indirect measure of 

arterial wall stiffness 41. An 8 week treatment with the ARB irbesartan decreased radial, but 

not carotid, artery wall thickness with no correlation to degree of blood pressure lowering or 

the levels of circulating RAAS circulating hormones 42. In support of a role for VSMC 

remodeling, the authors hypothesize that these heterogeneous findings are due to differences 

in vessel wall structure as the radial artery has a higher proportion of VSMCs to 

extracellular matrix than the carotid 42

Pharmacological agents blocking the RAAS have similar beneficial effects on remodeling in 

the resistance vasculature. Treatment with the direct renin inhibitor aliskiren, in concert with 

the ARB valsartan, significantly improved small artery remodeling in hypertensive patients, 

as assessed by retinal arteriole structure 43. The works of Thybo et al. and Schiffrin and 

colleagues similarly report that in clinical studies ACE-Is 38,44,45 and ARBs 46,47, but not β-

blockers, improved resistance vasculature structure. These data support the notion that the 

RAAS is a relevant and important clinical target for reversing vascular remodeling in the 

conductive and resistance vasculature. Many of these studies show a 2–3 mmHg lowering of 

systolic blood pressure in patients treated with ACE-Is or ARBs compared to those treated 

with β-blockers or other classes, raising the question of whether a direct effect of RAAS or 

the level of blood pressure (with implied direct effect of mechanical stretch) is responsible 

for vascular remodeling.

The beneficial effects of RAAS blockade in reversing large and small artery vascular 

remodeling are recapitulated in animal models of hypertension. Treatment with the ACE-I 

perindopril decreased aortic wall thickness in two-kidney, one-clip hypertensive rats, by 

reversing VSMC hypertrophy without altering vessel collagen content 48. In a comparison 

between low dose or high dose ACE-I quinapril versus hydralazine, both doses of quinapril 

was more effective in lowering aortic collagen content in the spontaneously hypertensive rats 

(SHRs), despite less effective blood pressure lowing with low dose quinapril compared to 

hydralazine 49. Lastly, the ARB losartan is superior to the CCB amlodipine at improving 

vascular remodeling in prehypertensive stroke-prone spontaneously hypertensive (SHRSP) 

rats 50. Taken together, these studies suggest a dominant role of the RAAS in vascular 

remodeling in hypertension.

Cardiovascular training is also an effective treatment against hypertension and vascular 

remodeling, likely attributable in part to attenuating the RAAS. Spontaneously hypertensive 

rats (SHRs) that engaged in moderate exercise training over 12 weeks had lower blood 

pressure and ACE expression, and attenuated aortic remodeling 51. Hypertensive patients 

with decreased capillary area and capillary lumen area had an improvement in both 

parameters following aerobic exercise training 52. The beneficial effects of aerobic exercise 

training and pharmaceutical interventions on remodeling demonstrate a clinical relevance of 

vascular remodeling in the pathology and cardiovascular consequences of hypertension.
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III. Conductive Artery Remodeling

Vascular smooth muscle cells (VSMC) in conductive arteries maintain vessel tone and 

structure by balancing forces between vasoconstrictive and vasodilatory signals, and regulate 

the production of extracellular matrix. Yet, the adaptations of conductive arterial VSMCs to 

rising intravascular pressure have not been particularly well studied in the literature. 

Included in this section are several seminal works that have expanded our current 

understanding of the structural changes and signaling pathways involved in vascular 

remodeling in large conductive arteries during hypertension.

a. Structural and Functional Changes of Large Arteries and VSMCs in Hypertension

The conductive (or elastic) arteries of the vascular system are critically important in 

regulating pulse wave pressures generated by the left ventricle during a heart cycle. 

Conductive arteries are located closest to the heart and their large lumen, high content of 

elastic fibers, and low compliance allows for regulation of the pulse wave pressures 

generated by the contractile motions of the heart, a feature known as the Windkessel effect. 

During hypertension, large elastic artery remodeling is characterized by a decrease in arterial 

compliance and an increase in wall thickness, due to an increase in intima-media thickness 

in the range of 15–40% 3.

Studies in patients with untreated essential hypertension show that local pulse pressure is 

correlated with overall wall thickening and increased intima-media thickness in the common 

carotid artery, a representative conductive artery 53. Similarly, aortic stiffening is associated 

with increased blood pressure in a longitudinal community-based cohort study of the 

relationship between arterial stiffening and incidence of hypertension 54. Medium sized 

distal muscular arteries are also remodeled during hypertension, and present with increased 

intima-media thickness but no overall changes in vessel or lumen diameter 53,55. In contrast 

to the correlation in conductive arteries, there is no significant relationship between local 

pulse pressure and intima-media thickness in the distal radial artery 3,53. This highlights a 

key difference in remodeling in proximal elastic arteries (such as the carotid) compared to 

distal medium sized arteries like the radial artery, likely due to differences in their structural 

composition as briefly discussed earlier in this review.

The increased lumen in proximal elastic arteries during hypertension is typically attributed 

to the breakdown of elastin fibers in response to increased pulsatile strength 56. 

Simultaneously, hypertension is also thought to increase collagen deposition in large vessels 

and it is hypothesized that the alteration of the elastin/collagen ratio is a significant 

contributor to increased arterial stiffness. However, data from patients with essential 

hypertension, as well as rodent models of hypertension, show conflicting findings where 

arterial wall thickening does not always result in enhanced arterial stiffness or a change in 

elastin/collagen ratio 55,57–60. This suggests that remodeling is not uniform in all large 

vessels and that other variables are at play. For example, other extracellular matrix proteins 

such as fibronectin and integrins may be involved in the structural changes in conductive 

arteries in hypertension 58,59. This demonstrates that our current understanding of potential 

(mal)adaptive cellular and molecular mechanisms that contribute to essential hypertension 
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are limited by the relatively small cohorts of human studies and the inherent limitations of 

animal models.

In light of this, new tools are being applied to the field to better understand the cellular 

mechanisms contributing to hypertension. For example, Sehgel et al. measured stiffness of 

aortic VSMCs using atomic force microscopy and an in vitro reconstituted aortic tissue 

model in SHRs that have increased blood pressure and aortic stiffness and in normotensive 

Wistar Kyoto rats (WKYs), to define the direct contribution of VSMCs to increased 

conductive artery stiffness 61. The authors also show that SHR aortic VSMCs exhibit 

increased cellular stiffness due to the increased expression of contractile proteins including 

phosphorylated myosin light chain and myosin light chain kinase. These alterations in 

VSMC stiffness are also present due to physiological aging, and vessel and cell stiffness are 

amplified when hypertension and aging are both present 62. Researchers have also identified 

a role for apoptosis or programmed cell death in hypertension-induced remodeling in 

conductive vessels. SHRs 63 and deoxycorticosterone acetate–salt induced hypertensive rats 
64 have increased apoptosis in the aorta or isolated aortic VSMCs compared to control 

animals/cells. Sharifi et al. hypothesize that increased apoptosis may be a countermeasure 

against cellular hypertrophy during hypertension 64.The molecular mechanisms responsible 

for these cellular changes are not yet fully defined but the findings presented above begin to 

provide evidence for direct changes in VSMCs in conductive arteries during hypertension.

Further evidence for direct changes to VSMCs is presented in the in vitro culture system 

studies by Leung et al. (1976) where cells are plated on matrix and exposed to cyclic stretch 
65. Rabbit aortic VSMCs, cultured on elastin membranes, increased their production of 

collagen after exposure to a cyclic stretch paradigm65. Cyclic stretch also induces significant 

changes in smooth muscle myosin protein and mRNA expression 66. This effect appeared to 

be dependent on the extracellular matrix as stretch-induced myosin expression was only 

present when VSMCs were plated on collagen type 1 or laminin, but not when cells were 

plated on fibronectin. Thus, cyclic stretch combined with signals from the extracellular 

matrix seems critical for the regulation of smooth muscle myosin activity 66. Although these 

studies do not address the molecular pathways between cyclical stretch and protein 

synthesis, they begin to address the effects of mechanical strain on conductive VSMCs and 

highlight the need for further investigation in the area of VSMC-extracellular matrix 

interaction.

Recently, a relationship between senescence (aging) of VSMCs and hypertension has 

emerged. Klotho is a recently discovered anti-aging gene and its expression typically 

decreases with age. However, a study of elderly hypertensive, elderly non-hypertensive and 

non-elderly hypertensive patients by Su et al. showed that non-elderly hypertensive patients 

had lower circulating levels of Klotho protein than elderly non-hypertensive patients 67. 

Further, Klotho protein in elderly hypertensive patients was the lowest among all groups 67. 

The decreased circulating levels of Klotho in non-elderly hypertensive patients suggest a 

role of cell senescence in vascular remodeling in hypertension. In support of this, middle-

aged heterozygous Klotho+/− mice have increased aortic stiffness (measured by pulse wave 

velocity) and aldosterone levels compared to age-match wild-type littermate controls 68. Hu 

et al. have proposed that Klotho decreases phosphate uptake in VSMCs, thus decreasing 
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vascular calcification 69. Additional studies modulating Klotho protein levels show positive 

effects with increased Klotho (or negative effects with decreased Klotho) but do not 

specifically investigate changes to VSMCs 70–73.

b. Signaling and Neurohumoral Pathways

VSMC and vessel function in conductive arteries are typically self-regulated via internal 

signaling pathways. In addition, conductive arteries are subject to peripheral nervous system 

oversight via well-defined neurohumoral pathways. In this section, we will discuss 

alterations in intrinsic signaling pathways related to VSMC function, as well as changes in 

the peripheral nervous system regulation of conductive artery function, during hypertension.

As previously mentioned, the RAAS is a major therapeutic target for reducing blood 

pressure and reversing vascular remodeling in hypertension. This is partially because 

VSMCs in conductive arteries have altered reactivity to RAAS signaling components during 

hypertension. For example, cultured aortic VSMCs from SHRs have enhanced activation of 

MAP kinase in response to Ang II, compared to normotensive WKYs 74. Treatment of 

cultured VSMCs from the pulmonary artery of hypertensive patients with Ang II also 

induces cell proliferation via the Ang II Type 1 receptor (AT1R) 75. Several studies have 

shown that the interaction of aldosterone with the VSMC-mineralocorticoid receptor (MR) 

promotes pathways that contribute to development of large artery stiffness 76–79. In patients 

with primary hyperaldosteronism, arterial wall stiffness is increased as measured by pulse 

wave velocity 78 and ultrasonography 79. Supporting this, Galmiche et al. show that VSMC-

MR knockout mice are protected against changes in arterial stiffness following aldosterone/

salt challenge, by preventing the induction of changes in extracellular matrix proteins such 

as fibronectin and α5-integrin 76.

The handling of intra and extracellular calcium (Ca2+) is an important mechanism by which 

VSMCs control arterial lumen diameter and blood flow. A clear dysfunction in Ca2+ 

handling during hypertension was established as early as the 1960s and 70s 80,81. Femoral 

artery strips collected from SHRs, renal hypertensive, and deoxycorticosterone acetate 

(DCA) hypertensive rats required higher concentrations of Ca2+ to produce a maximal 

vasoconstriction in response to KCl than normotensive rats 81. Since then, subsequent 

studies have firmly established that VSMCs in hypertensive patients have enhanced 

reactivity to Ca2+ compared to cells from normotensive human and animals 82–87. 

Interestingly, alterations in multiple intracellular signaling components are implicated in 

Ca2+ sensitivity in hypertensive VSMCs. These include increased expression and sensitivity 

of IP3 receptors 88,89, altered Rho-kinase signaling 90, enhanced phospholipase C activity 85, 

abnormal expression and function of plasma membrane Ca2+ 91,92 and K+ channels 93, and 

hypoxia 94.

Sympathetic nerve activity is long known to play a vital role in the regulation of 

cardiovascular function. Unsurprisingly, increased sympathetic nerve activity is associated 

with hypertension in animal models with increased blood pressure 95 and cellular changes in 

VSMCs response to neurohumoral factors have been reported. Isolated thoracic aorta from 

SHRs have an increased endothelium-independent contractile response to noradrenaline and 

phenylephrine, compared to normotensive controls 96. Further, cultured aortic VSMCs and 
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intact rat aorta are sensitive to noradrenergic-induced VSMC proliferation 97. 

Noradrenergic-induced cell proliferation, in conjunction with increased sympathetic nerve 

activity in hypertension, suggests that altered SNS activity may directly impact VSMCs 

structure and reactivity in hypertension.

Beyond the signaling pathways discussed above, transgenic mouse models with VSMC 

specific targeting have been used to identify additional signaling molecules and pathways 

that are critical to the proper regulation of blood pressure. In Table 2, we have summarized 

seminal studies describing gene targets that can increase or decrease blood pressure when 

specifically deleted from smooth muscle cells. Included among them are G12-G13 and their 

primary effector leukemia associated Rho-GEF (LARG) 98, the antioxidant/antiaging protein 

SIRT1 99, PPAR-γ 100,101 and the mineralocorticoid receptor (MR) 102.

c. Inflammatory Pathways

Vascular inflammation is a key feature in the development of cardiovascular diseases, 

including hypertension, and the infiltration of inflammatory cells such as T cells and 

macrophages into large conductive arteries is a hallmark feature of hypertension in animal 

models 103,104. A series of studies using genetic knockout animals and the adoptive transfer 

of immune cells provide compelling evidence for a role for vascular inflammation in the 

development of hypertension. For example, the injection of immunosuppressive regulatory T 

cells (Tregs) 105 or T and B cell deficiency (Rag−/−) 106 are both protective against Ang II 

induced hypertension, while the adoptive transfer of T cells into Rag−/− mice is sufficient to 

produce a full hypertensive response to Ang II 106. However, a more recent study reported 

that this Ang II resistance in Rag−/− mice has been lost, and is independent of T cells, 

suggesting genetic drift can influence the effect of vascular inflammation in hypertension 
107. The signaling of individual pro-inflammatory cytokines is also implicated in 

hypertension pathology where increased concentrations of the pro-inflammatory cytokine 

IL-17 is observed in hypertensive mice and in smooth muscle cells from hypertensive 

patients, and IL-17−/− mice are resistant to sustained hypertension following Ang II infusion 
108. Treatment with small hairpin RNA against interleukin-6 (IL-6) is protective against 

vascular inflammation, vascular remodeling and increased blood pressure in a model of 

cold-induced hypertension 109.

Atherosclerosis is another cardiovascular disease that is closely associated with hypertension 

incidence and severity 110, and is characterized by loss of vessel wall elasticity and plaque 

formation in the intima. Inflammatory signaling and inflammation-induced vascular 

remodeling are thought to be key players in the pathology of atherosclerosis. As in 

hypertension, Treg cells play a key role in disease progression as the depletion of Treg cells 

promotes the development of atherosclerosis 111–113. Important roles have also been 

identified for the cytokines IL-6 and IL-17 in the progression of atherosclerotic disease. 

IL-17/IL-17A/IL-17A receptor depletion in animals model of atherosclerosis decreased the 

systemic inflammation during disease progression but did not significantly decrease aortic 

plaque burden 114,115. Differential findings exist for the role of IL-6 in atherosclerosis. 

Animals genetically lacking IL-6 in combination with ApoE deficient (IL-6−/−ApoE−/−116 

and IL-6−/−AprE+/−117) had enhanced atherosclerotic lesion formation in a high fat and 
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pathogen induced atheroscelorsis respectively 116,117. Conversely, weekly IL-6 injections 

increased lesion size in both wild-type and ApoE−/− animals on high fat diet 118. Taken 

together, these data from both human and animal models impressively demonstrate the 

multiple functions inflammatory signaling molecules can play in large artery remodeling in 

both hypertension and atherosclerosis, perhaps playing a role in parallel in disease 

development.

IV. Resistance Artery Remodeling

Small diameter (<250 μm) arteries in the peripheral vasculature are traditionally responsible 

for the regulation of blood pressure by controlling peripheral vascular resistance and blood 

flow. Structural and functional changes in these resistance arteries are a classic measure of 

cardiovascular pathology and disease progression. In this section, we discuss an extensive 

body of literature focused on resistance arterial VSMC changes during hypertension.

a. Structural and Functional of Resistance Arteries and VSMCs in Hypertension

Structural remodeling in the small arteries of the resistance vasculature is a hallmark of 

hypertension pathophysiology and is associated with increased risks of cardiovascular events 
15. In essential (idiopathic) hypertension, resistance arteries undergo inward eutrophic 

remodeling, which significantly increases the media/lumen ratio without a change in the 

media cross-sectional area 3,14,15,30,119–121. In studies where resistance arteries were isolated 

from the subcutaneous fat of essential hypertensive patients, the rearrangement of VSMCs 

and extracellular matrix observed were characteristic of eutrophic remodeling, rather than 

VSMC hypertrophy and hyperplasia 15. Alternatively, resistance arteries can undergo 

differential patterns of structural remodeling, depending on causative or modifying factors 

for hypertension. In hypertensive patients with diabetes mellitus or patients diagnosed with 

pulmonary hypertension, resistance arteries (from the systemic and pulmonary circulations 

respectively) undergo inward hypertrophic remodeling, which results in an increased media 

cross-sectional area and media/lumen ratio, typically due to VSMC hypertrophy or 

hyperplasia 119,121,122.

Hypertension-dependent structural changes in VSMCs are thought to have short-term 

protective, but long-term pathological, effects. For example, initial structural changes in 

forearm small arteries increased vascular resistance at maximal vasodilation in response to 

increased blood flow, so as to normalize wall stress 3. On the other hand, long-term increases 

in vascular resistance lead to reductions in maximal dilation over time (such as reduced 

coronary flow reserve), reduced vascular perfusion, and impaired capillary rarefaction 
3,15,123–125. Furthermore, increased collagen levels did not correlate with increased stiffness 

during early stages of hypertension; yet, in later stages the vascular wall continues to 

compensate for elevated blood pressures by depositing more collagen and increasing wall 

stiffness 125. These studies demonstrate that the temporal effects of vessel adaptations can 

differentially influence physiological outcomes.

Although intrinsic changes to the arterial wall influence blood pressure adaptation, 

circumferential wall stress (i.e. pressure forces) reciprocally impact vessel structure 126. In 

vein graft experiments, exposure to high arterial pressure induced hypertrophic remodeling 
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to a similar level as those observed in secondary forms of hypertension 127–129. This 

suggests a pressure dependent, but vessel independent contribution. These conclusions were 

reached when pressure reduction using antihypertensive drugs, such as β-blockers, failed to 

normalize artery structure or reduce peripheral resistance in humans 119,130. These data 

suggest two things: 1. targeted reversal of resistance artery remodeling by simply lowering 

blood pressure in essential hypertension may fail due to pressure independent mechanisms, 

and 2. different etiologies of hypertension, either primary or secondary, should be treated 

differently as the main drivers for structural vessel changes may come from different 

mechanisms 131. Importantly, the latter is a strategy that is already employed clinically.

Hypertensive patients, and animal models of essential hypertension, exhibit increased 

myogenic reactivity (the inherent constriction/dilation responses of VSMCs to changes in 

luminal pressure) which may contribute to inward remodeling in hypertension 3,132–134. In 

line with this, current evidence exploring the role of ion channels in myogenic tone points to 

an important new role for their regulation of myogenic constriction in the development of 

hypertension 135–138. Finally, the role of apoptosis in small artery remodeling is an emerging 

field of research where one hypothesis suggests that inward eutrophic remodeling is due to 

simultaneous inward growth of VSMC layers and cell death in the media periphery 139–141. 

However, Dickhout et al. report decreased levels of apoptotic markers in their study of 

young prehypertensive SHRs 142. These divergent findings demonstrate a need for further 

work to conclusively determine a role for apoptosis of VSMC in resistance artery 

remodeling.

Together, the structural and functional changes described above highlight the complex 

properties underlying vascular remodeling in the resistance vasculature in hypertension.

b. Signaling and Neurohumoral Pathways.

The cellular changes underlying differential VSMC remodeling patterns in hypertension 

(eutrophic or hypertrophic) have also been attributed to the differential activation of 

signaling pathways important for vasoconstriction, cellular migration, VSMC hypertrophy, 

apoptosis, and inflammation 3,15,143. Imbalances between vasoconstrictive and vasodilatory 

intracellular signaling, or altered sensitivity to these signaling molecules, may contribute to 

the development and/or progression of hypertension. Here, we examine a number of key 

signaling pathways that are altered in resistance arteries during hypertension.

Altered responses to neurohumoral vasopressors have been well documented in studies of 

hypertensive humans who show some degree of vascular remodeling. It is unclear whether 

VSMCs become more sensitive to vasoconstrictor molecules such as norepinephrine, or if 

vasoconstriction pathways remain activated due to increased sympathetic nerve activity, as 

both events have been observed in hypertensive humans 144–150. In humans, counter-

regulatory vasodilatory events have also been tested using endothelium-independent agents, 

such as sodium nitroprusside (SNP), and were not different between control and 

hypertensive subjects 149,151. Conversely, endothelial-dependent vasodilation by 

acetylcholine was impaired in hypertensive patients and animal models, but the amount of 

experimental variability in these observations may be a red-herring in interpreting the 

outcome of studies of VSMC function in hypertension 149,152,153. Nonetheless, it remains 
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critically important to test the complex signaling pathways used to balance vasoconstriction 

and counteracting vasodilatory forces, which, under pathological conditions cause 

hyperconstriction, increased vascular resistance, and high blood pressure.

The RAAS plays a key angioadaptive role during hypertension 154, in part through the 

binding of Ang II to the AT1R which results in vasoconstriction and the activation of cellular 

growth pathways mediated by tyrosine kinases 155. In particular, c-Src acts as both a 

regulator of vasoconstriction and growth through transactivation of receptor tyrosine kinases 
155–158, acting through mitogen activated protein kinases (MAPKs) which influence cell 

growth, apoptosis, and cell survival 154. Treatment with antihypertensive drugs targeting the 

RAAS reverse pathologic VSMC phenotypes in resistance arteries, indicating that 

alterations in this key pathway can influence structural remodeling of VSMCs in resistance 

arteries 42,44,46,145,159,160.

Other signaling mediators influencing VSMCs during hypertension include aldosterone, 

endothelin 1 (ET-1), and NADPH which regulate hypertrophy, fibrosis, and inflammation of 

small arteries. Aldosterone infusion increases expression of ET-1, which directly induces 

hypertrophic remodeling of VSMCs 161–163. These effects can be ameliorated by 

mineralocorticoid receptor antagonism 151,164. Moreover, both aldosterone and Ang II 

induce NADPH oxidase activity in VSMCs, which causes ROS generation and concomitant 

activation of MAPKs, redox sensitive transcription factors (i.e. AP-1), inflammatory 

mediators, and matrix remodeling enzymes 125,165,166. Because aldosterone is synthesized 

and secreted following Ang II stimulation of adrenal cortical cells via AT1 receptor, 

imbalances in RAAS activation may have compounded negative effects as both aldosterone 

and Ang II increase blood pressure systemically, while also having direct effects on the 

vascular wall.

Sympathetic nerve innervation and purinergic signaling also have profound effects on 

VSMCs during hypertension. Neural-derived purinergic stimuli (ATP) regulate the beneficial 

short-term control of vascular tone, but may also drive long-term negative changes during 

small artery remodeling 167–169. Clinical cases of hypertension typically present with 

enhanced sympathetic nerve activation 170, which has been shown to result in hypertrophic 

VSMC remodeling 169,171,172. Moreover, local extracellular release of ATP and other purine 

nucleotides, which are derived from sympathetic nerve terminals, local immune cells, and 

adjacent VSMCs, can exert direct pathogenic changes on VSMCs 173–175 despite their 

normal functionality of coordinating minute-to-minute vasoconstriction events. In one study, 

sympathetic-driven vasoconstriction was increased in SHR, which was dependent upon ATP 

activation of purinergic receptors 176. Further, mesenteric beds of SHR show potentiated 

responses to ATP compared to controls 177. These observations demonstrate that hyper-

stimulation of resistance arteries, due to increased sympathetic drive and purinergic 

signaling, directly promotes the progression of VSMCs remodeling changes observed in 

hypertension.

In contrast to the direct constrictive effects of neural-purinergic stimuli on vasoconstriction, 

ATP can also act as a mitogenic signal, stimulating both VSMC growth and proliferation in 

hypertensive models 178,179. The effects of ATP and its metabolic breakdown products are 

Brown et al. Page 12

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mediated by the direct binding of ligand to a diverse class of ionotropic and metabotropic 

cell surface receptors (e.g. G-protein coupled P2Y or cation channel P2X) 160. Alterations in 

purinergic receptor subtypes, expression pattern, or abundance might also influence VSMC 

phenotypes during hypertension. In one study, proliferative VSMCs were correlated with 

increased expression of P2Y receptors, while differentiated contractile VSMCs primarily 

express P2X1 receptors 180. Together, this evidence establishes a novel neural-purinergic 

signaling nexus, which acts synergistically with other angioadaptive cellular pathways.

Phosphodiesterase 1 (PDE1) is a calcium/calmodulin dependent enzyme that hydrolyzes 

cyclic nucleotides such as cGMP and cAMP when intracellular Ca2+ is high 181. These 

cyclic nucleotides play important secondary messenger roles in the vasodilatory effect of 

nitric oxide (NO) and impairment of their actions enables VSMC constriction. PDE1A is 

upregulated in VSMCs following stimulation with Ang II and transforming growth factor 

beta-1 (TGF-β1) 181,182, and is increased in animal models of pulmonary hypertension 183. 

Treatment with PDE1 specific inhibitors improved endpoint measurements in animal models 

of cardiovascular disease 181–185. Similarly, inhibition of PDE1A halted the progression of 

pulmonary arterial hypertension and reversed pulmonary artery remodeling and right heart 

hypertrophy 183.

Increased blood pressure in essential hypertension is often associated with obesity and 

increased whole body adiposity. Adipose tissue has gained recognition as an important 

endocrine organ, and adipokines (the primary signaling molecules released from adipocytes) 

have varying and important effects on VSMC function. Adiponectin is protective in the 

vasculature in part due to its anti-proliferative and anti-migratory effects on VSMCs 186. In 

fact, hypoadiponectinemia (reduced circulating levels of adiponectin) is considered a risk 

factor for the development of hypertension and its consequent vascular remodeling 187. 

Conversely, adipokines such as resistin 188,189, or treatment of VSMCs with adipocyte-

conditioned media 190,191, promote the migration and/or proliferation of VSMCs in both 

human and animal models. Through the release of adipokines, and their direct signaling on 

VSMCs, the perivascular adipose tissue that is in direct contact with the vasculature can 

have significant effects on vascular remodeling during hypertension.

Here, we provided a comprehensive, but not exhaustive, examination of key pathways whose 

signaling is dysregulated in resistance arteries during hypertension (Figure 1).

V. Genetic Factors Underlying the Hypertensive Phenotype in VSMC

Adaptive changes in VSMCs resulting from high blood pressure are often underwritten by 

genetic factors 3,192,193. The heritability of blood pressure phenotypes and the regulation of 

blood pressure by polygenic and monogenic traits reveal a strong influence of genetics on 

hypertension pathophysiology 194–197. For example, offspring from hypertensive patients 

already have increased renal vascular resistance at an early age 14. These changes influence 

the long-term maintenance of blood flow and cardiovascular homeostasis by VSMCs.

Genome wide association studies (GWAS) have become increasingly important in 

discerning candidate genes involved in modulating VSMC function during hypertension. 
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Within large hypertensive cohorts, GWAS have identified ATP2B1, a vascular calcium/

calmodulin-dependent membrane ATPase, as a gene of interest in hypertension 198–202. 

Atp2b1 mRNA expression levels were elevated in aortic VSMCs of SHRs compared to the 

normotensive WKYs, suggesting that changes in Atp2b influence cellular calcium 

homeostasis 203. Similarly, the CSK gene reached genome wide significance in hypertensive 

cohorts 199–202. CSK encodes a cytoplasmic tyrosine kinase, which is directly involved in 

Ang II-dependent VSMC proliferation 204. In another study, gene variants near the GNAS-
EDN3 alleles also reached genome wide significance in hypertensive cohorts 201,202. GNAS-
EDN3 encodes the G-alpha subunit of G-protein receptor complexes and the vasoactive 

peptide endothelin 3, two proteins involved in vasoconstriction signaling pathways. Risk 

association scores for essential hypertension was found to be associated with SNPs in TRIC-
A, a gene that encodes an intracellular monovalent cation channel involved in myogenic tone 

regulation 136.

Another gene family found to be involved in hypertension and playing a role in the VSMC 

are the phosphodiesterases (PDEs), discussed earlier in this review. In an Ang II rat model of 

hypertension, higher expression levels of PDE1A were correlated with decreased cyclic 

guanosine monophosphate homeostasis, which is associated with vasodilatory signaling 

pathways 181. Further, PDE1A single nucleotide polymorphisms in humans were 

significantly associated with increased diastolic blood pressure and carotid intima-media 

thickening in genome-wide associated studies 184. Recently, single gene variants in the 

PDE3A were identified as the primary cause of a rare autosomal dominant form of 

hypertension 205. These gene variants encoded missense mutations in PDE3A resulting in 

gain of function mutations in protein kinase A/cyclic AMP signaling, increased cAMP-

hydrolytic activity, and enhanced VSMC proliferation 206.

Non-coding genetic alterations (e.g. microRNAs) have also been shown to modulate VSMC 

function in hypertension. Mice lacking miR-143 and miR-145 exhibit reduced blood 

pressure, reduced VSMC migration, disorganized VSMC actin stress fibers, and reduced 

vascular tone 207. In SHRs, up regulation of miR-130a was detected in remodeled superior 

mesenteric arteries and inhibition of miR-130a reduced VSMC proliferation in vitro 208. 

Additionally, miR-133 expression was found to repress VSMC differentiation and 

proliferation by silencing the transcription factor SP-1 209. Lastly, the down regulation of 

Krüppel-like factor 4 (KLF4) by miR-146a was found to promote VSMC proliferation and 

neointimal hyperplasia in VSMCs 210. These experiments focus on effects in large arteries 

and require validation in VSMCs of resistance arteries. Taken together, these studies 

highlight the importance of genetic factors in regulating VSMC remodeling and vascular 

homeostasis in hypertension 211.

VI. Look to the Future

Hypertension is a strong and independent predictor of risk and future incidence of 

cardiovascular events (e.g. stroke, myocardial infarction, end-organ damage) 15. In 

particular, resistant hypertension pathologies are a persistent and growing problem, with an 

increasing number of patients unable to achieve adequate control their blood pressure 

despite taking three or more anti-hypertensive drugs, 212,213. Thus, finding ways to prevent 
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hypertension progression by reversing vascular remodeling associated with hypertension is 

vital for global health. As discussed in this review, distinct hypertension etiologies cause 

differential vascular remodeling which depend on the type of pathology/origin, disease 

progression, and vessel type/size. An important goal for future research in vascular 

remodeling would be to find ways to more accurately characterize different classes of 

vascular remodeling phenotypes as defined above. Current research primarily focuses on 

remodeling within the resistance vasculature, since changes to resistance arteries are highly 

predictive of disease progression. However, the field would benefit from more detailed 

research on hypertension-dependent remodeling in the larger conductive arteries since 

maladaptive changes in conductive arteries (changes in vessel stiffness and increased pulse 

wave pressure/velocity) influence resistance vessels. Briefly alluded to earlier in this review, 

changes in medium-sized muscular arteries (skeletal and cardiac) in hypertension are also 

vastly understudied and may present a novel area for research in vascular remodeling in 

hypertension. Lastly, sex differences in regards to hypertension are becoming more apparent 

(as reviewed in 214); it is likely that with further work, our view of SMC biology may 

change as research progresses in this area.

Although beyond the scope of this review, VSMC remodeling may be therapeutically 

targeted through improved endothelial cell function. Endothelial cells and VSMCs closely 

interact through direct cell-to-cell contact, and via soluble signaling molecules. Endothelial-

dependent vasodilation is significantly impaired in hypertension and may contribute to 

VSMC remodeling. Thus, improvement of hypertensive-dependent endothelial dysfunction 

may in turn have beneficial effects on the VSMC. Vascular remodeling in hypertension 

involves changes in a wide host of signaling molecules and pathways (see Table 2). Thus, 

researchers have opportunities to target different pathways to reverse pathological vascular 

remodeling. The most effective therapeutic strategy likely requires a multivariable approach.

Lastly, reducing aberrant inflammatory and neurohumoral pathways to homeostatic levels in 

hypertension may also prove effective in reversing pathological VSMC remodeling, while 

simultaneously improving overall disease pathology. For example, therapeutic alterations in 

purinergic signaling would improve both inflammatory and neurohumoral pathways 148. 

One interesting and potential novel target of the neural-purinergic axis in the peripheral 

vasculature is the ATP release channel Pannexin1 (Panx1). Panx1 has been shown to 

regulate small arterial VSMC constriction responses to NE and α1-adrenergic receptor 

stimulation with the NE mimetic phenylephrine. Recent evidence shows that inhibition of 

Panx1, either pharmacologically or genetically, significantly blunts adrenergic induced 

vasoconstriction and significantly reduces blood pressure in mice 175,215. Another potential 

target is the gene collectrin (Tmem27), an amino acid transport regulator. Deletion of 

collectrin results in hypertension, augmented salt-sensitivity, and vascular remodeling 216. 

Further evaluation of these and other targets may prove beneficial for treating essential 

hypertension and progression into resistant hypertension made worse by pathological 

vascular remodeling.
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Refer to Web version on PubMed Central for supplementary material.
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Ang II Angiotensin II

ACE Angiotensin converting enzyme

ACE-I ACE inhibitor

ARB Angiotensin receptor blocker/antagonist

CCB Calcium channel blocker

ECM Extracellular matrix

HT Hypertension

RAAS renin-angiotensin-aldosterone system

SHR Spontaneously hypertensive rat

Panx Pannexin

VSMCs Vascular smooth muscle cells

WKY Wistar Kyoto rat
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Highlights

• Structural and functional changes in large (conductive) and small (resistance) 

arteries accompany hypertension.

• There are important clinical implications of smooth muscle remodeling that 

are different in conductive and resistance arteries.

• This review discusses current and future research in smooth muscle 

remodeling, and how it could be a target for treatment of hypertension.
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Figure 1: 
Differential physiological effects on smooth muscle based arterial remodeling (conductive 

and resistance).
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Table 1:

Basic properties of clinical studies referenced in manuscript

Age Sex Race Cohort Size Type of Hypertension Reference

≥65 Female & Male 88.4% White, 
11.6% Black

4476 65 years of age or older without 
known clinical cardiovascular 
disease; 40% with essential 
hypertension

11

54 (SD 5.8) 56.6% Female, 43.4% 
Male

74.5% White, 
25.5% Black

12576 Normotensives from 
Atherosclerosis Risk in 
Communities (ARIC) Cohort

12

40–66 35% Female, 65% 
Male

Patients: 81% 
White, 19% 
Black; Controls: 
74% White, 26% 
Black

86 (43 hypertensive, 
43 normotensive)

Asymptomatic Hypertension 16

30–59 & 57–80 Undisclosed Undisclosed Undisclosed Isolated Systolic Hypertension 17

40–75 55.9% Female, 44.1 
Male

78% White, 22% 
Nonwhite

2845 Essential Hypertension 18

18–60+ 51.5% Female, 48.5% 
Male

72.2% Non-
Hispanic White, 
10.9% Non-
Hispanic Black, 
7.2% Mexican 
American, 9.7% 
Other

14653 Essential Hypertension 21

≥70 74.7% Female, 25.3% 
Male

Japanese 164 Essential Hypertension 23

52±12.7 47.2% Female, 52.8% 
Male

Chinese 644 Mild Hypertension 24

74±9 56% Female, 44% 
Male

Japanese 211 (161 
Hypertensive, 50 
normotensive)

Essential Hypertension 25

42–74 38.2% Female, 61.8% 
Male

Undisclosed 424 (314 
Hypertensive, 110 
Normotensive)

Essential Hypertension 26

40–99 67% Female, 33% 
Male

Undisclosed 212 Isolated Systolic Hypertension 28

20–81 42.4% Female, 57.6% 
Male

Undisclosed 151 (128 
Hypertensive, 23 
Normotensive)

Essential Hypertension, 
Renovascular Hypertension, 
Primary Aldosteronism, 
Pheochromocytoma, NIDDM

29

Mean 51±4 27% Female, 73% 
Male

Undisclosed 30 (15 Hypertensive, 
15 Normotensive)

Essential Hypertension 30

25–60 33% Female, 67% 
Male

Undisclosed 21 (14 Hypertensive, 
7 Normotensive)

Essential Hypertension 31

18–65 100% Male Undisclosed 50 (21 Hypertensive, 
29 Normotensive)

Essential Hypertension 32

46–72 35.6% Female, 64.4% 
Male

Undisclosed 500 Essential Hypertension 33

25–70 40% Female, 60% 
Male

Undisclosed 66 Mild Essential Hypertension 34

35–65 32% Female, 68% 
Male

Undisclosed 50 (25 Hypertensive, 
25 Normotensive)

Essential Hypertension 38

60–80 68.8% Female, 31.2% 
Male

Undisclosed 77 Essential Hypertension 40
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Age Sex Race Cohort Size Type of Hypertension Reference

27–72 Undisclosed White 12 Essential Hypertension 41

26–67 27% Female, 73% 
Male

Undisclosed 55 Essential Hypertension 42

18–75 21% Female, 79% 
Male

White 114 Essential Hypertension 43

25–50 100% Male Undisclosed 29 (17 Hypertensive, 
12 Normotensive)

Mild Essential Hypertension 44,45

30–65 43% Female, 57% 
Male

Undisclosed 28 (19 Hypertensive, 
9 Normotensive)

Mild Essential Hypertension 46

38–65 25% Female, 75% 
Male

Undisclosed 11 Essential Hypertension 47

Undisclosed Undisclosed Undisclosed 21 (10 Hypertensive, 
11 Normotensive)

Essential Hypertension 52
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Table 2:

Smooth muscle specific targeting of genes that regulate blood pressure in mice

Smooth muscle target 
protein

Cre or Promoter Knockout or Overexpression Hypertension or Hypotension Resistance or 
Conductive 
arteries analyzed

Reference

Ang II Type 1A receptors i) SM22-Cre
ii) KISM22-Cre

i) KO
ii) KO

i) No change
ii) Hypotension

Conductive and 
resistance – aorta 
and mesenteric 
arteries

217,218

Arhgef1 SMMHC-CreERT2 KO Attenuates Ang II hypertension Conductive – aorta 219

Atp2b1 SM22-Cre KO Hypertension Conductive – 
femoral artery

220

Connexin 43 SMMHC-CreERT2 KO No Change In vivo blood 
pressure only; 
carotid wire injury

221

COX2 SM22-Cre KO No change Conductive – aorta 222

Dicer SMMHC-CreERT2 KO Hypotension Resistance – 
saphenous and 
mesenteric arteries

223

EGFR SMMHC-CreERT2 KO Hypotension Conductive – aorta 224

EPHB4 SMMHC-Cre KO Hypotension Resistance – 
mesenteric arteries

225

Filamin A SMMHC-CreERT2 KO Hypotension Resistance arteries 
– caudal artery

226,137

G12-G13-LARG SMMHC-CreERT2 KO Attenuates salt-induced hypertension Conductive – aorta 98

Guanylyl cyclase-A SM22-Cre KO No Change Conductive and 
resistance – aorta, 
femoral, 
pulmonary, and 
renal arteries

227

NO-sensitive guanylyl cyclase SMMHC-CreERT2 KO Hypertension Conductive - aorta 228

IP3R1, IP3R2, IP3R3 SMMHC-CreERT2 KO (all 3 together) No Change in Basal BP
Attenuates Ang II hypertension

Conductive and 
resistance - aorta 
and mesenteric 
arteries

89

L-type Ca2+ channel Cav1.2 SM22-CreERT2 KO Hypotension Conductive and 
resistance – aorta 
and tibialis

229

Mineralocorticoid receptor SMactin-CreERT2 KO Hypotension Resistance – 
mesenteric arteries

102

Myosin Light Chain Kinase 
(MLCK)

SM22-Cre KO Hypotension Resistance – 
mesenteric arteries

230,231

Myosin phosphatase target 
subunit 1 (MYPT1)

SMα-actin promoter KO Hypertension Resistance – 
mesenteric arteries

232

Na+/Ca2+ exchanger SMMHC-Cre KO Hypotension Resistance – 
mesenteric arteries

233

Na+-K+-ATPase SMα-actin promoter OE Hypotension Conductive – aorta 234

Ndst1 SM22α-Cre KO No change Conductive and 
resistance – aorta 
and thoracodorsal 
arteries

235

Nox1 SMMHC-Cre OE Potentiates Ang II hypertension Conductive – aorta 236
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Smooth muscle target 
protein

Cre or Promoter Knockout or Overexpression Hypertension or Hypotension Resistance or 
Conductive 
arteries analyzed

Reference

Pannexin 1 SMMHC-CreERT2 KO Hypotension Resistance – 
thoracodorsal 
artery

175

Piezo1 SM22α-Cre KO No change Resistance arteries 
– caudal and 
rostral cerebellar 
artery

137

PPAR-γ i) SM22-Cre
ii) SMMHC 
promoter

i) KO
ii) OE of inactive mutation

i) Hypotension
ii) Hypertension

Conductive and 
resistance - aorta 
and cerebral

100,101

Rac1 SMMHC‐CreERT2 KO Hypertension Conductive and 
resistance – aorta 
and mesenteric 
arteries

237,238

SIRT1 SM22α promoter OE Attenuates hypertension Conductive – aorta 99

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2019 September 01.


	Abstract
	Introduction
	Clinical Relevance
	Conductive Artery Remodeling in Clinical Hypertension
	Resistance Artery Remodeling in Clinical Hypertension
	Clinical Interventions and Vascular Remodeling

	Conductive Artery Remodeling
	Structural and Functional Changes of Large Arteries and VSMCs in Hypertension
	Signaling and Neurohumoral Pathways
	Inflammatory Pathways

	Resistance Artery Remodeling
	Structural and Functional of Resistance Arteries and VSMCs in Hypertension
	Signaling and Neurohumoral Pathways.

	Genetic Factors Underlying the Hypertensive Phenotype in VSMC
	Look to the Future
	References
	Figure 1:
	Table 1:
	Table 2:

