
Time-varying coefficient of determination to quantify the 
explanatory power of biomarkers on longitudinal GFR among 
children with chronic kidney disease

Derek K Ng1, Anthony A Portale2, Susan L Furth3,4, Bradley A Warady5, and Alvaro Muñoz1

1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, 
Maryland 2Division of Nephrology, Department of Pediatrics, University of California, San 
Francisco, California 3Division of Nephrology, Department of Pediatrics, Children’s Hospital of 
Philadelphia, Philadelphia, Pennsylvania 4Center for Clinical Epidemiology and Biostatistics, 
University of Pennsylvania, Philadelphia, Pennsylvania 5Division of Nephrology, Department of 
Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri

Abstract

Purpose: Coefficients of determination (R2) for continuous longitudinal data are typically 

reported as time-constant, if they are reported at all. The widely used mixed model with random 

intercepts and slopes yields the total outcome variance as a time-varying function. We propose a 

generalized and intuitive approach based on this variance function to estimate the time-varying 

predictive power (R2) of a variable on outcome levels and changes.

Methods: Using longitudinal estimated glomerular filtration rate (eGFR) from the Chronic 

Kidney Disease in Children Study, linear mixed models characterized the R2 for two chronic 

kidney disease (CKD) risk factors measured at baseline: a traditional marker (proteinuria) and a 

novel marker (fibroblast growth factor 23; FGF23).

Results: Time-varying R2 divulged different disease processes by risk factor and diagnoses. 

Among children with glomerular CKD, time-varying R2 for proteinuria had significant upward 

trends, suggesting increasing power to predict eGFR change, but crossed with FGF23, which was 

higher up to 2.5 years from baseline. In contrast, among those with non-glomerular CKD, 

proteinuria explained more than FGF23 at all times, and time-varying R2 for each risk factor was 

not substantially different from time-constant estimates.

Conclusions: Proteinuria and FGF23 explained substantial eGFR variability over time. Time-

varying R2 can characterize predictive roles of risk factors on disease progression, overcome 

limitations of time-constant estimates and are easily derived from mixed effects models.
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BACKGROUND

Clinical epidemiologists are often interested in the prospective predictive power of 

biomarkers. Determining how much variability of an outcome is explained by the level of a 

predictive biomarker over time provides an important epidemiological characterization of 

disease progression. Several methods have been proposed that summarize predictive power 

by the coefficient of determination (referred to as R2) in the setting of longitudinal data: 

typically this is a single fixed value that describes the proportion of variability of the 

outcome of interest over time explained by an exposure [1–8]. However, there is a 

reasonable biological expectation that in some settings, the predictive power of a biomarker 

on an outcome is time-varying and the assumption that R2 is constant over time may not be 

appropriate. To our knowledge, few studies have quantified this type of dynamic 

relationship.

Linear mixed effects models are commonly used as conventional tools to parametrically 

characterize longitudinal changes of a continuous outcome and how these are modified by an 

exposure [9–14]. In addition to providing estimates of outcome levels and changes, the 

variance components serve to characterize the behavior of the outcome variance over time, 

enabling the calculation of R2. For the simpler case of random intercepts only, it is well 

known that the variance of the outcome is simply the sum of the between individuals’ 

variance and the within individuals’ variance. Hence, the associated R2 is time-constant 

[2,5,7]. In contrast, in the more common case of allowing random intercepts and slopes, the 

variance of the outcome is time-varying and so is the associated R2.

The purpose of the present study was to construct and compare time-fixed and time-varying 

R2 values in the context of pediatric chronic kidney disease (CKD) progression. 

Methodologically, we show cases where the time-constant R2 oversimplifies the behavior of 

the data and discuss the need to enrich models to ensure that the proposed model of random 

intercepts and slopes suffice. Epidemiologically, we aimed to compare separately and 

combined the baseline levels of urine protein (a marker of kidney injury [15–20]), and 

baseline levels of fibroblast growth factor 23 (FGF23; a bone-derived hormone and a novel 

CKD risk factor associated with mineral metabolism [21–23]). Urine protein is a ubiquitous 

clinical measurement; in contrast, FGF23 is currently not a clinical biomarker. Lastly, we 

sought to demonstrate how heterogeneity of effects by underlying CKD diagnoses can 

improve epidemiologic understanding of these conditions. This applied example seeks to 

highlight the utility of time-varying explained variability, the parameters of which are easily 

obtained in widely used linear mixed models.

METHODS

Study population

The Chronic Kidney Disease in Children (CKiD) Cohort—The CKiD study is an 

ongoing pediatric cohort study of CKD who were enrolled between 1 to 16 years of age at 

54 pediatric nephrology centers from the United States and Canada. Eligibility included a 

diagnosis of CKD and an estimated glomerular filtration rate (eGFR) between 30 and 90 ml/
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min|1.73m2 [24] with 891 children were enrolled prior to April 2014. Briefly, clinical and 

demographic information, including biological specimens for immediate analysis and for 

repository storage, were collected at annual study visits. All biological specimens were 

analyzed at the CKiD central laboratory, with the exception of plasma C-terminal FGF23, 

which was measured using repository specimens at the University of California, San 

Francisco [23]. Full details of the study protocol have been previously published [25].

Outcome

At annual study visits, the primary outcome was eGFR based on the 2012 CKiD equation 

which utilized serum creatinine, cystatin c, blood urea nitrogen, as well as sex and height 

data [24]. Participants who contributed at least two visits with eGFR data were included.

Exposures

The time origin for this analysis was the first visit when the two predictors of interest were 

measured: proteinuria (i.e., urine protein to creatinine ratio, mgP/mgCr) and plasma FGF23 

(RU/ml). This first visit was considered the baseline, or index visit and the primary objective 

was to determine how these two markers explained the variability of eGFR at the index visit 

and variability of trajectories. The inter- and-intra assay coefficients of variation (CVs) for 

creatinine was 2.1% and 0.8%, respectively; and for proteinuria was 3.8% and 5.2% (Roche 

Diagnostics, Indianapolis, IN). For FGF23, the inter- and intra-assay CVs were 11.5% and 

5.7%, respectively (Immutopics Int., San Clemente, CA).

All analyses were stratified by underlying CKD diagnosis, classified as either non-

glomerular (largely congenital kidney abnormalities) or glomerular (mostly non-congenital 

diseases) [26]. Previous studies have described the heterogeneity of disease progression by 

the glomerular and non-glomerular classifications [11,14,19,27–29]. In addition, those with 

glomerular diagnoses were enrolled with higher eGFR than children with non-glomerular 

CKD.

Statistical methods

Four linear mixed models (random intercepts and slopes) were fit: the null (or reference) 

model included only time as the independent variable; the second model included baseline 

proteinuria as the independent variable; the third model included baseline FGF23 as the 

independent variable; and the fourth model included both baseline proteinuria and FGF23 as 

independent variables, allowing both to modify the intercepts and the effects of time. To 

make the outcome closer to a Gaussian distribution, eGFR was converted to the natural log 

scale while proteinuria and FGF23 were log2 transformed so that the regression coefficients 

could be interpreted as the effect of doubling the levels of each of the predictors.

At the jth visit of the ith participant occurring tij years from baseline, the mixed models were 

of the form:

log eGFRi j = αZ + ai + βZ + bi ti j + ei j [1]
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where Z = [1], [1, log2(proteinuriai0)], Z = [1, log2(FGF23i0)] , and Z = [1, 

log2(protenuriai0), log(FGF23i0)] for models 1 to 4, respectively, and the number of α and β 
coefficients for each corresponding model were 2, 4, 4 and 6.

The between-subject deviations from the population intercept and slope were distributed as:

ai
bi

N
0
0 ,

σ1
2 σ12

σ12 σ2
2

The within-subject deviations were assumed to be independent from the between-subject 

deviations and distributed as:

ei j N 0,  σ2

Therefore, the total variance of eGFR (in the log scale) at t years from baseline is 

determined by:

Var log eGFR = σ1
2 + 2σ12t + σ2

2t2 + σ2 [2]

Biomarkers as independent variables may explain (reduce) any of the components of the 

total variance (from the between individual variability of initial values, σ1
2, and slopes, σ2

2, to 

the within individual variance, σ2). Separate comparisons of the three components of 

variance may yield the inadmissible result of negative R2 and fails to incorporate the 

expected covariance between the random intercepts and slopes (σ12). Combining the 

components to describe the total variance of the outcome over time overcomes these 

limitations.

The R2 corresponds to the ratios of total variance from models 2 to 4 to that of model 1 (i.e., 

null). In particular, for the fourth model with the two biomarkers, this is formally expressed 

as:

R2 = 1 −
Var log GFR

Z = 1, log2 proteinuria , log2 FGF23

Var log GFR Z = 1
× 100 [3]

The R2 values are the proportions of total eGFR variability explained by a risk factor(s) that 

is not explained by passage of time alone.

For biomarkers that only slightly modify σ2
2 and σ12, the R2 may be described by a constant 

value and conforms to the R2 from a linear mixed model with random intercepts only [5,7] 

(i.e., σ2
2 = 0 and σ12 = 0). Indeed, a mixed model with random intercepts only yields the total 
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variance as simply σ1
2 + σ2. The time-constant R2 is simply one minus the ratio of the 

constant variances from the explanatory and null models. To determine whether the 95% 

confidence interval for the time-constant R2 contained the dynamic nature of the time-

varying R2, bootstrap methods were used.

All analyses were performed using PROC MIXED in SAS, version 9.3 (SAS Institute, Inc., 

Cary, North Carolina). Graphical figures were conducted in S-PLUS version 8.2. All 

statistical significance was evaluated at the 5% level.

RESULTS

A total of 679 children contributed an index study visit with measurements of proteinuria 

and FGF23, and at least one measurement of eGFR after the index visit. Table 1 displays 

clinical and demographic characteristics of these 679 children stratified by glomerular (n= 

186) and non-glomerular (n= 493) diagnoses. Duration of CKD at the time of study entry 

was much longer among those with a non-glomerular diagnosis, consistent with kidney 

diseases primarily caused by congenital abnormalities. Table 2 summarizes the dates of 

enrollment and the longitudinal eGFR data used in the analysis. Based on the study 

recruitment design, children with a non-glomerular diagnosis were enrolled earlier and thus, 

were followed longer than those with a glomerular diagnosis, who were enrolled later.

Table 3 presents the results from the four models (Table 3a for children with glomerular 

CKD and Table 3b for children with non-glomerular CKD). The parameter estimates for the 

coefficients for the fixed effects are presented in the upper portion of the table; in the lower 

portion of the table, the variance parameters corresponding to the random effects are 

presented as standard deviations and correlations.

The coefficient parameters are presented in the log scale and can be re-expressed on the 

natural scale by taking antilogs of the parameter estimates for a more meaningful 

interpretation. For example, in Table 3a, the mean eGFR level at entry (approximately 4.5 

years after disease onset) was 61.1 ml/min|1.73m2 (= exp(4.113)). For the slope in this 

model, the average change per year can be expressed as −8.3% (= (exp(−0.087))-1 × 100). 

The parameters for log2(Proteinuria/0.45) and log2(FGF23/110) refer to the difference in 

GFR levels or slope (in the log scale) corresponding to a doubling of the level of the 

biomarker. In Table 3a, for the proteinuria only model, children with twice the level of 

proteinuria as a reference group (e.g., 0.90 vs. 0.45 mgP/mgCr) would have a 7.1% lower 

GFR at study entry (= [exp(−0.074) – 1] × 100). Likewise, the average GFR decline for 

children with proteinuria levels of 0.90 mgP/mgCr is estimated as −10.8% per year (= 

[exp(−0.082 – 0.033) – 1] × 100) compared to children with a level of 0.45 mgP/mgCr 

whose decline is estimated as −7.9% (= [exp(−0.082) – 1] × 100).

Among those with glomerular CKD (Table 3a) and relative to the reference model, for the 

proteinuria only model, the standard deviations of levels and slope and the correlation 

decreased. For the FGF23 only model, the standard deviation of level decreased more than 

the proteinuria only model, while the standard deviation of slopes was higher than the 

proteinuria only model. Lastly, when both proteinuria and FGF23 were included in the 
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model, the standard deviations were lowest for both the level and slope and the correlation 

was also diminished. The AIC of the model including both baseline proteinuria and FGF23 

was substantially lower than each of the two models containing one predictor.

For children with non-glomerular CKD (Table 3b) and relative to those with glomerular 

disease, there was less variability in the random slopes, suggesting a more homogeneous 

behavior of disease progression. While including both biomarkers as predictors offered the 

best model fit by AIC; in univariate models, baseline proteinuria had more predictive value 

than FGF23, in contrast to those with a glomerular diagnosis.

Table 4 presents the variance parameters from random intercepts only models. The residual 

(or error) term variability was consistent across the null, proteinuria only, FGF23 only and 

proteinuria and FGF23 combined models. The standard deviations of the random intercepts 

decreased with the inclusion of the biomarkers for both children with glomerular and non-

glomerular CKD diagnoses. For children with glomerular CKD, the FGF23 only model had 

lower total variance (which is equal to the sum of the between and within individuals 

variances; Equation 2) compared to the proteinuria only model (0.153 vs. 0.172). In contrast, 

for children with non-glomerular CKD, the proteinuria only model had lower total variance 

compared with the FGF23 only model (0.138 vs. 0.153).

For children with glomerular CKD diagnoses and using Equation 2 (Methods), Figure 1a 

presents the total variance of eGFR (in the log scale) as a function of the model parameters 

of variability and correlation in Table 2a with time 0 corresponding to about 4.5 years after 

disease onset. When comparing the proteinuria only and FGF23 only models, the lines cross 

at about 2.5 years. In the combined model, the estimated total variance was lowest and 

incorporated the short-term explanatory power of FGF23 with the longer-term lower 

variability related to proteinuria. Figure 1b presents the R2 over time based on the estimates 

of variance in Figure 1a and Equation 3. The R2 for the FGF23 only model was relatively 

stable over time, while the R2 for the proteinuria only model increased from about 13% at 

baseline to 35% by 4 years after baseline. The R2 for the proteinuria only model surpassed 

the R2 for the FGF23 only model at about 2.7 years. This underscores the influence of 

baseline proteinuria on longer term levels of eGFR compared to the stronger short-term 

influences of FGF23. For the combined model, the baseline R2 was close to the R2 from the 

FGF23 only model (30% vs. 27%) and the shape of this function was more similar to the R2 

from the proteinuria only model. At 4 years, the R2 from this combined model was 47%.

The points on the right-most part of Figure 1b, depict the R2 derived from the parameters 

described in Table 3 based on the models with random intercepts only. Dashed horizontal 

lines reflect the assumption of constant R2 over time. Bootstrapped 95% confidence intervals 

are depicted by the vertical bounds. For FGF23, the estimated time-constant R2 was very 

similar to the time-varying R2 for the same model. However, for the proteinuria only and 

combined models, the time-constant R2 values were substantially different from the time-

varying R2 values.

Figure 2 presents the corresponding total variance and R2 over time for children with a non-

glomerular CKD, and based on parameters presented in Tables 2b and bottom of Table 3, 
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with time 0 corresponding to approximately 10.5 years after disease onset. The R2 for the 

FGF23 only model diminished over time, while the R2 for the proteinuria only model 

increased slightly over 3 years and then plateaued. The combined model offered the highest 

R2 value and increased from 41% at baseline to 44% about 2.5 years after baseline and 

diminished thereafter (40% at 7 years). All curves in this group were reasonably summarized 

by the time-constant R2 values from models based on random intercepts only and were 

contained in the bootstrapped 95% confidence intervals.

As an additional analysis, SBP z-score (based on the normal population) was investigated as 

another predictive biomarker. The main effects were minimal and this was consistent with 

previous publications [30]; the variance components were not different than the null model 

and it offered no additional predictive power (results not shown). This was likely explained 

by the close relationship between blood pressure and proteinuria.

DISCUSSION

Linear mixed effect models are commonly used in epidemiologic studies to quantify the 

effect of an exposure on a continuous outcome over time. While these models offer an 

appropriate approach to account for within-person repeated measurements to validly 

estimate population levels and changes, the variance and covariance parameters are likely 

overlooked in favor of reporting only coefficient estimates of fixed effects.

Characterizing time-varying variance has utility in describing different disease processes 

related to different risk factors. In our application, for children with glomerular CKD, 

baseline levels of FGF23 were more strongly associated with short-term variability (i.e., 

within 2 years of index visit) in eGFR compared to proteinuria. However, proteinuria 

measured at the same time was more strongly related to longer term outcomes (i.e., after 3 

years) than FGF23. There is biological support for these findings as proteinuria is a marker 

of and contributor to kidney injury. FGF23, a novel marker of CKD risk and kidney 

function, reflects dysregulation of phosphorus and vitamin D metabolism that is more 

related to concurrent CKD severity and eGFR level. Among those with a non-glomerular 

CKD diagnosis, proteinuria was more predictive of short-term and long-term eGFR 

outcomes than FGF23, but there was substantial benefit to including both in the model.

Clinically, these results underscore the importance of proteinuria and FGF23 as therapeutic 

targets for both diagnosis groups. The use of an angiotensin converting enzyme inhibitor or 

an angiotensin receptor blocker is an effective intervention to reduce proteinuria [31] and a 

standard approach to pediatric CKD management. There is currently no therapy approved 

for FGF23 management in pediatric CKD; thus, there is a need for clinical trials to 

investigate potential interventions targeting dietary phosphorus management [32] or bone 

disorders or growth retardation [33]. Interestingly, the effect of FGF23 on eGFR level at 

entry and change was much stronger among those with glomerular diagnoses compared to 

the non-glomerular group (−0.219 vs. −0.049 for level, respectively; −0.044 vs. −0.016 for 

change, respectively; Tables 3a and 3b). These results suggest that children with glomerular 

CKD are an important target population for exploring FGF23 therapies.
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Zheng et al. [1] proposed a simple and intuitive method to calculate R2 values from 

generalized linear mixed models (with random intercepts and slopes) as the square of the 

correlation of observed and predicted outcomes. This model assumes a time-constant R2 and 

the results were inferentially similar to the R2 values determined by the random intercept 

only models. Specifically, among the children with glomerular CKD, the proteinuria only, 

FGF23 only and combined model R2 values were 16%, 28% and 32%. Among the children 

with non-glomerular CKD, these R2 values were 23%, 16% and 31%, respectively. While 

this method offered consistent inferences and an appealing intuitive approach, it lacks a 

depiction of the dynamic nature of the exposure-outcome relationship.

There are limitations in deriving time-varying R2 from these models. First, a characterization 

of total variance and R2 values (time-varying or time-constant) is not an indicator of correct 

model specification or model fit. Indeed, these parameters assume correct specification and 

have the same assumption when linear mixed models are used to summarize longitudinal 

data. Second, the estimate of time-varying total variance is influenced by non-sparse data. It 

is common for longitudinal cohort studies to have more data in the early years of the study, 

with less later on due to delayed enrollment or drop out, and confidence in the estimated 

total variance should be commensurate to the presence of data (i.e., the confidence intervals 

of the time-varying R2 will increase over time, in general). Third, longitudinal measurement 

of predictive biomarkers are ideal for characterizing disease progression, however, 

longitudinal FGF23 was not available. Therefore, these models may be interpreted from a 

clinically meaningful perspective as the predictive power after biomarker measurements.

It should be noted that in four of the six instances in our application, time-varying R2 values 

(from random intercepts and slopes) were reasonably similar to their corresponding time-

constant R2 (from random intercepts only). While the best model fit by AIC in all cases 

included random intercepts and slopes (compared to random intercepts only), these results 

show that for coefficients of determination, there may not be substantial departures from the 

time-constant R2 of the random intercepts only model. The time-constant R2 assumption 

was sufficient in four instances, but there was important information obtained in the other 

two when allowing the R2 to vary by time.

It is also possible that the relationship between the outcome and time is not linear (as was 

assumed in the present analysis). Indeed, eGFR decline in CKD populations, particularly 

those with glomerular CKD, is often not linear. If so, then time-varying R2 as based on a 

quadratic polynomial of the total variance may oversimplify the heterogeneity over time. To 

address this, we explored a quadratic random effect of time as a sensitivity analysis. Using 

the same general approach, the total variance for this model is a quartic polynomial. In our 

application, for the two instances in which time-varying R2 was identified, we fit models 

with a quadratic random effect of time. For the quadratic term in each model, the fixed effect 

was not significant, the variance of the random effect was negligible (i.e., no randomness) 

and the model AIC values were higher than the models specifying a linear effect of time. 

While we did not find evidence of non-linear effects of time, we recommend investigating 

more complex models of the outcome over time for a complete assessment of different 

potential shapes of time-varying R2 functions with consideration of model fit parameters 

(e.g., AIC values).
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The correlation between the intercept and the slope was positive indicating that lower eGFR 

at baseline was associated with faster eGFR decline (Tables 3a and 3b). The square of this 

correlation provided an estimate of the proportion of variability in the random (individual) 

slopes that was explained by the baseline eGFR level (random intercept). For the children 

with glomerular CKD, these R2 values ranged from 14% in the null model to 3% in the 

model including proteinuria and FGF23. For the non-glomerular group, this ranged from 

22% and 11%, respectively. It is intuitive that the predictive power of baseline eGFR on 

changes over time diminishes as biomarkers of risk are included in the model. However, 

within the non-glomerular group, there remained substantial explanatory power of baseline 

eGFR on slopes (11%) in the presence of both proteinuria and FGF23.

In the present analysis, children with glomerular CKD had shorter follow-up time than 

children with non-glomerular CKD. These differences in observed study time were largely 

due to the recruitment design of CKiD. It is possible that with longer duration of follow-up 

time among the glomerular CKD group, the disposition of the time-varying R2 may differ. If 

differential drop-out were an issue, implementation of joint longitudinal and survival models 

with random intercepts and slopes is one method to control for this bias [34]. Furthermore, 

the variance-covariance estimates of the random effects in a joint model can determine the 

R2 measure proposed here. Indeed, our approach can be readily applied to this setting as 

well.

In summary, linear mixed models are commonly used in epidemiologic analyses to describe 

the effect of an exposure on an outcome in a longitudinal setting. While interpretation of 

fixed effect coefficients from these models are likely to provide primary inferences, we 

believe that investigation of variance parameters can provide important epidemiologic 

insight into disease processes or novel risk factors. Importantly, these parameters and the 

assumptions of time-varying variance are explicitly embedded within this commonly used 

model structure. This approach extends these assumptions to calculate R2 values that can 

demonstrate heterogeneity over time. Deriving these estimates is simple and accessible and 

uses parameters that are standard output in statistical software. These results should 

encourage epidemiologists to explore time-varying coefficients of determination in these 

settings as these may yield important insights.
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Figure 1. 
Total variance and R-square as a function of time for mixed effects models for children with 

a glomerular CKD diagnosis. Figure 1a presents estimates of total eGFR variance for four 

mixed models in Table 2a. Figure 1b presents time-varying R-square values for mixed 

models (random intercepts and slopes; Table 2a) and time-constant R-square values based on 

mixed models with random intercepts only in Table 3.
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Figure 2. 
Total variance and R-square as a function of time for mixed effects models for children with 

a non-glomerular CKD diagnosis. Figure 2a presents estimates of total eGFR variance for 

four mixed models in Table 3a. Figure 2b presents time-varying R-square values for mixed 

models (random intercepts and slopes; Table 2b) and time-constant R-square values based 

on mixed models with random intercepts only in Table 3.
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Table 1.

Baseline Characteristics of Children with Underlying Glomerular (n= 186) and Non-Glomerular (n= 493) 

Chronic Kidney Disease. % (N) or Median [25th percentile, 75th percentile]

Glomerular CKD
n= 186 (27%)

Non-glomerular CKD
n= 493 (73%)

Age, years 15 [12, 17] 11 [8, 15]

Female sex 48.4% (90) 35.1% (173)

Race

 Caucasian 55.9% (104) 73.2% (361)

 Black 28.5% ( 53) 16.6% ( 82)

 Other 15.6% ( 29) 10.1% ( 50)

Hispanic ethnicity 15.8% ( 29) 13.9% ( 68)

Duration of CKD, years 4.5 [2.5, 8.8] 10.4 [7.2, 14.2]

SBP z-score

Proteinuria, mg/mgCr 0.45 [0.20, 1.17] 0.25 [0.10, 0.61]

FGF23, RU/mL 106 [76, 169] 112 [78, 171]

eGFR level, ml/min|1.73m2 63 [48, 82] 52 [38, 64]
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Table 2.

Description of longitudinal GFR data available. Median [interquartile range] and % (n).

Glomerular CKD
n= 186 (27%)

Non-glomerular CKD
n= 493 (73%)

Year of study entry September 2012
[July 2008, January 2014]

August 2008
[August 2007, June 2012]

Number of eGFR measurements

 2 to 3 56.5% (105) 29.8% (147)

 4 to 5 27.4% ( 51) 34.9% (172)

 6 to 7 8.1% ( 15) 17.4% ( 86)

 8 or more 8.1% ( 15) 17.8% ( 88)

Years of follow-up 2.2 [1.2, 3.3] 3.5 [2.2, 6.0]
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Table 3a.

Results from Linear Mixed Effects Models for Log-Transformed eGFR with Random Intercepts and Slopes 

among Children with a Glomerular CKD Diagnosis.

Model

Parameter Null Proteinuria only FGF23 only Proteinuria and FGF23

Fixed effect level

 Constant (Proteinuria= 0.45, FGF23= 110) 4.113 ± 0.029 4.117 ± 0.027 4.14 ± 0.025 4.138 ± 0.024

 log2(Proteinuria/0.45) 0 −0.074 ± 0.014 0 −0.039 ± 0.013

 log2(FGF23 / 110) 0 0 −0.219 ± 0.026 −0.187 ± 0.027

Fixed effect slope (years from baseline)

 Constant (Proteinuria= 0.45, FGF23= 110) −0.087 ± 0.010 −0.082 ± 0.009 −0.082 ± 0.010 −0.080 ± 0.009

 log2(Proteinuria/0.45) 0 −0.033 ± 0.005 0 −0.029 ± 0.005

 log2(FGF23 / 110) 0 0 −0.044 ± 0.011 −0.022 ± 0.010

Random effects

 S.D. (level) [σ1] 0.379 0.349 0.316 0.308

 S.D. (slope) [σ2] 0.111 0.084 0.103 0.082

 Correlation [
σ12

σ1σ2
] 0.377 0.262 0.221 0.173

 S.D. residual [σ] 0.139 0.141 0.139 0.141

AIC 91.109 39.553 32.108 5.383

Bold indicates p<0.05 for fixed effects. Estimates ± Standard errors. Corresponding 95% confidence intervals may be calculated as ± 1.96 × 
Standard errors.

Abbreviations: S.D., standard deviation; SBP z-score, systolic blood pressure z-scores based on the normal population adjusted for age, gender and 
height; FGF23, fibroblast growth factor 23; AIC, Akaike’s information criterion
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Table 3b.

Results from Linear Mixed Effects Models for Log-Transformed eGFR with Random Intercepts and Slopes 

among Children with a Non-Glomerular CKD diagnosis.

Model

Parameter Null Proteinuria only FGF23 only Proteinuria and FGF23

Level

 Constant (Proteinuria= 0.45, FGF23= 110) 3.892 ± 0.017 3.906 ± 0.014 3.920 ± 0.015 3.926 ± 0.013

 log2(Proteinuria/0.45) 0 −0.113 ± 0.008 0 −0.093 ± 0.008

 log2(FGF23 / 110) 0 0 −0.188 ± 0.015 −0.149 ± 0.013

Slope (years from baseline)

 Constant (Proteinuria= 0.45, FGF23= 110) −0.051 ± 0.003 −0.048 ± 0.003 −0.049 ± 0.003 −0.048 ± 0.003

 log2(Proteinuria/0.45) 0 −0.016 ± 0.002 0 −0.015 ± 0.002

 log2(FGF23 / 110) 0 0 −0.015 ± 0.004 −0.008 ± 0.003

Random effects

 S.D. (level) [σ1] 0.368 0.310 0.317 0.274

 S.D. (slope) [σ2] 0.061 0.054 0.060 0.054

 Correlation [
σ12

σ1σ2
]

0.477 0.310 0.427 0.283

 S.D. residual [σ] 0.111 0.111 0.111 0.111

AIC −1239.604 −1418.868 −1363.118 −1513.796

Bold indicates p<0.05 for fixed effects. Estimates ± Standard errors. Corresponding 95% confidence intervals may be calculated as ±1.96 × 
Standard errors.

Abbreviations: S.D., standard deviation; FGF23, fibroblast growth factor 23; AIC, Akaike’s information criterion.
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Table 3.

Random Effects Parameters from Linear Mixed Effects Models with Random Intercepts Only Stratified by 

Glomerular and Non-Glomerular CKD Diagnoses.

Among children with glomerular CKD

Parameter Null Proteinuria only FGF23 only Proteinuria and FGF23

 S.D. (level) [σ1] 0.417 0.374 0.343 0.328

 S.D. (slope) [σ2] 0 0 0 0

 Correlation [
σ12

σ1σ2
] NA NA NA NA

 S.D. residual [σ] 0.192 0.180 0.188 0.179

AIC 221.760 132.725 145.526 90.566

Among children with non-glomerular CKD

Null Proteinuria only FGF23 only Proteinuria
and FGF23

 S.D. (level) [σ1] 0.412 0.342 0.361 0.308

 S.D. (slope) [σ2] 0 0 0 0

 Correlation [
σ12

σ1σ2
] NA NA NA NA

 S.D. residual [σ] 0.150 0.146 0.150 0.146

AIC −589.712 −854.061 −710.660 −936.368

Abbreviations: S.D., standard deviation; AIC, Akaike’s information criterion.
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