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Perceptual decisions are better when they take uncertainty into
account. Uncertainty arises not only from the properties of sen-
sory input but also from cognitive sources, such as different
levels of attention. However, it is unknown whether humans
appropriately adjust for such cognitive sources of uncertainty
during perceptual decision-making. Here we show that, in a
task in which uncertainty is relevant for performance, human
categorization and confidence decisions take into account uncer-
tainty related to attention. We manipulated uncertainty in an
orientation categorization task from trial to trial using only an
attentional cue. The categorization task was designed to disam-
biguate decision rules that did or did not depend on attention.
Using formal model comparison to evaluate decision behav-
ior, we found that category and confidence decision bound-
aries shifted as a function of attention in an approximately
Bayesian fashion. This means that the observer’s attentional
state on each trial contributed probabilistically to the decision
computation. This responsiveness of an observer’s decisions to
attention-dependent uncertainty should improve perceptual deci-
sions in natural vision, in which attention is unevenly distributed
across a scene.
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Sensory representations are inherently noisy. In vision, stim-
ulus factors such as low contrast, blur, and visual noise can

increase an observer’s uncertainty about a visual stimulus. Opti-
mal perceptual decision-making requires taking into account
both the sensory measurements and their associated uncertainty
(1). When driving on a foggy day, for example, you may be more
uncertain about the distance between your car and the car in
front of you than you would be on a clear day and try to keep
further back. Humans often respond to sensory uncertainty in
this way (2, 3), adjusting their choice (4) behavior as well as
their confidence (5). Confidence is a metacognitive measure that
reflects the observer’s degree of certainty about a perceptual
decision (6, 7).

Uncertainty arises not only from the external world but also
from one’s internal state. Attention is a key internal state vari-
able that governs the uncertainty of visual representations (8,
9); it modulates basic perceptual properties like contrast sen-
sitivity (10, 11) and spatial resolution (12). Surprisingly, it has
been suggested that, unlike for external sources of uncertainty,
people fail to take attention into account during perceptual
decision-making (13–15), leading to inaccurate decisions and
overconfidence—a risk in attentionally demanding situations like
driving a car.

However, this proposal has never been tested using a per-
ceptual task designed to distinguish fixed from flexible decision
rules, nor has it been subjected to formal model comparison.
Critically, as we show in SI Appendix, section S1, the standard
signal detection tasks used previously cannot, in principle, test
the fixed decision rule proposal. In standard tasks, the abso-
lute internal decision rule cannot be uniquely recovered, making
it impossible to distinguish between fixed and flexible decision
rules (SI Appendix, Fig. S1A).

Testing whether observers take attention-dependent uncer-
tainty into account for both choice and confidence also requires
a task in which such decision flexibility stands to improve cate-
gorization performance. This condition is not met by traditional
left versus right categorization tasks, in which the optimal choice
boundary is the same (halfway between the means of the left and
right category distributions) regardless of the level of uncertainty
(SI Appendix, Fig. S1B). Optimal performance can be achieved
simply by taking the difference between the evidence for left
and the evidence for right, with no need to take uncertainty
into account. The same principle applies to present versus absent
detection tasks.

To overcome these limitations, we used a categorization
task—which we call the embedded category task—specifically
designed to test whether decision rules depend on uncertainty.
Observers categorized stimuli as belonging to one of two distri-
butions, which had the same mean but different variances (Fig.
1A). The task requires distinguishing a more specific from a
more general perceptual category (4, 5), which is typical of object
recognition (16, 17) (e.g., distinguishing a beagle from other
dogs) and perceptual grouping (e.g., distinguishing collinear line
segments from other line segment configurations) (18). In the
embedded category task, the optimal choice boundaries shift as
uncertainty increases, which allowed us to determine whether
observers’ behavior tracked these shifts, along with analogous
shifts in confidence boundaries.

Significance

We must routinely make decisions based on uncertain sensory
information. Sometimes that uncertainty is related to our own
cognitive state, such as when we are not paying attention.
Do our decisions about what we perceive take into account
our attentional state? Or are we blind to such internal sources
of uncertainty, leading to poor decisions and overconfidence?
We found that human observers take attention-dependent
uncertainty into account when categorizing visual stimuli and
reporting their confidence in a task in which uncertainty is
relevant for performance. Moreover, they do so in an approx-
imately Bayesian fashion. Human perceptual decision-making
can therefore, at least in some cases, adjust in a statisti-
cally appropriate way to external and internal sources of
uncertainty.
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Fig. 1. Stimuli and task. (A) Stimulus orientation distributions for each cat-
egory. (B) Trial sequence. Cue validity, the likelihood that a nonneutral cue
would match the response cue, was 80%. Each button corresponds to a
category choice and confidence rating.

Results
Observers performed the embedded category task in which they
categorized drifting grating stimuli as drawn from either a nar-
row distribution around horizontal (SD=3◦, category 1) or a
wide distribution around horizontal (SD=12◦, category 2) (Fig.
1A) (4). Because the category distributions overlap, maximum
accuracy on the task is ∼80%. We trained observers on the cat-
egory distributions in category training trials, in which a single
stimulus was presented at the fovea, before the main experiment
and in short, top-up blocks interleaved with the test blocks (see
Materials and Methods). Accuracy on category training trials in
test sessions was 71.9% ± 4.0%, indicating that observers knew
the category distributions and could perform the task well.

Four stimuli were briefly presented on each trial, and a
response cue indicated which stimulus to report. Observers
reported both their category choice (category 1 vs. 2) and their
degree of confidence on a 4-point scale using one of eight but-
tons, ranging from high-confidence category 1 to high-confidence
category 2 (Fig. 1B). Using a single button press for choice
and confidence prevented postchoice influences on the confi-
dence judgment (19) and emphasized that confidence should

reflect the observer’s perception rather than a preceding motor
response. We manipulated voluntary (i.e., endogenous) attention
on a trial-to-trial basis using a spatial cue that pointed to either
one stimulus location (valid condition: the response cue matched
the cue, 66.7% of trials; and invalid condition: it did not match,
16.7% of trials) or all four locations (neutral condition: 16.7% of
trials) (Fig. 1B). Twelve observers participated, with about 2,000
trials per observer.

Cue validity increased categorization accuracy, one-way
repeated-measures ANOVA, F (2, 11)= 95.88, P < 10−10, with
higher accuracy following valid cues, two-tailed paired t test,
t(11)= 7.92, P < 10−5, and lower accuracy following invalid
cues, t(11)= 4.62, P < 10−3, relative to neutral cues (Fig. 2A,
Top). This pattern confirms that attention increased orientation
sensitivity (e.g., refs. 11 and 20). Attention also increased con-
fidence ratings, F (2, 11)= 13.35, P < 10−3, and decreased reac-
tion time, F (2, 11)= 28.76, P < 10−6, ruling out speed–accuracy
tradeoffs as underlying the effect of attention on accuracy (Fig.
2A, Center and Bottom).

Decision rules in this task are defined by how they map stim-
ulus orientation and attention condition onto a response. We
therefore plotted behavior as a function of these two variables.
Overall performance was a “W”-shaped function of stimulus
orientation (Fig. 2B, Top), reflecting the greater difficulty in cat-
egorizing a stimulus when its orientation was near the optimal
category boundaries (at ∼5◦ with no noise). Attention increased
the sensitivity of responses to the stimulus orientation (Fig. 2B).

To assess whether observers changed their category and confi-
dence decision boundaries to account for attention-dependent
orientation uncertainty, we fit two main models. In one,
the Bayesian model, decisions take uncertainty into account,
whereas in the other, the Fixed model, decisions are insensi-
tive to uncertainty. Both models assume that, for the stimulus
of interest, the observer draws a noisy orientation measure-
ment from a normal distribution centered on the true stimulus
value with SD (i.e., uncertainty) dependent on attention. In the
Bayesian model, decisions depend on the relative posterior prob-
abilities of the two categories, leading the observer to shift his
or her decision boundaries in measurement space, based on the
attention condition (4, 5) (Fig. 3 A and B; SI Appendix, Fig.
S2). The Bayesian model maximizes accuracy and produces con-
fidence reports that are a function of the posterior probability
of being correct. Note that observers could take uncertainty
into account in other ways, but here we began with a norma-
tive approach by using a Bayesian model. In the Fixed model,
observers use the same decision criteria, regardless of the atten-
tion condition (13, 15, 21–27) (i.e., they are fixed in measurement
space; Fig. 3 A and B). We used Markov chain Monte Carlo
(MCMC) sampling to fit the models to raw, trial-to-trial cat-
egory and confidence responses from each observer separately
(Materials and Methods and SI Appendix, Table S1).

Observers’ decisions took attention-dependent uncertainty
into account. The Bayesian model captured the data well
(Fig. 3C) and substantially outperformed the Fixed model (Fig. 3
C and D), which had systematic deviations from the data.
Although the fit depended on the full dataset, note deviations
of the Fixed fit from the data near zero tilt and at large tilts
in Fig. 3C, including failure to reproduce the cross-over pat-
tern of the three attention condition curves that is present in
the data and the Bayesian fit. To compare models, we used an
approximation of leave-one-out cross-validated log likelihood
that uses Pareto-smoothed importance sampling (PSIS-LOO;
henceforth LOO) (29). Bayesian outperformed Fixed by an
LOO difference (median and 95% CI of bootstrapped mean dif-
ferences across observers) of 102 [45, 167]. This implies that
the attentional state is available to the decision process and
is incorporated into probabilistic representations used to make
the decision.
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Fig. 2. Behavioral data. n = 12 observers. Error bars show trial-weighted
mean and SEM across observers. (A) Accuracy, confidence ratings, and reac-
tion time as a function of cue validity. (B) As in A but as a function of
cue validity and stimulus orientation. Stimulus orientation is binned to
approximately equate the number of trials per bin. SI Appendix, Fig. S5
shows proportion category 1 choice data, and SI Appendix, Fig. S6 shows
confidence and reaction time data in more detail.

Although our main question was whether observers’ decisions
took uncertainty into account, our methods also allowed us to
determine whether Bayesian computations were necessary to
produce the behavioral data or whether heuristic strategies of
accounting for uncertainty would suffice. We tested two mod-
els with heuristic decision rules in which the decision boundaries
vary as linear or quadratic functions of uncertainty, approxi-
mating the Bayesian boundaries (SI Appendix, Fig. S3A). The
Linear and Quadratic models both outperformed the Fixed
model (LOO differences of 124 [77, 177] and 129 [65, 198],
respectively; SI Appendix, Fig. S3 B and C). The best model,
quantitatively, was Quadratic, similar to previous findings with
contrast-dependent uncertainty (4, 5). SI Appendix, Table S2
shows all pairwise comparisons of the models. Model recov-
ery showed that our models were meaningfully distinguishable
(SI Appendix, Fig. S4). Decision rules therefore changed with
attention without requiring Bayesian computations.

We next asked whether category decision boundaries—regard-
less of confidence—shift to account for attention-dependent
uncertainty. Perhaps, for example, performance of the Bayesian
model was superior not because observers changed their catego-
rization behavior but because they rated their confidence based
on the attention condition, which they knew explicitly. Given
the mixed findings on the relation between attention and con-
fidence (30–33) and the proposal that perceptual decisions do
not account for attention (13), such a finding would not be trivial

(see Discussion), but it would warrant a different interpretation
than if category decision boundaries also depended on atten-
tion. We fit the four models to the category choice data only and
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Fig. 3. Model schematics, fits, and fit comparison. (A) Schematic of Bayesian
(Left) and Fixed (Right) models, which were fit separately for each observer.
As attention decreases, uncertainty (measurement noise SD) increases, and
orientation measurement likelihoods (blue and red curves) widen (28). In the
Bayesian model, choice and confidence boundaries change as a function of
uncertainty. In the Fixed model, boundaries do not depend on uncertainty.
Colors indicate category and confidence response (color code in Fig. 1B). (B)
Decision rules for Bayesian and Fixed models show the mappings from orien-
tation measurement and uncertainty to category and confidence responses.
Horizontal lines indicate the uncertainty levels used in A; the regions inter-
secting with a horizontal line match the regions in the corresponding plot
in A. (C) Model fits to response as a function of orientation and cue valid-
ity. Response is an 8-point scale ranging from high confidence category 1 to
high confidence category 2, with colors corresponding to those in Fig. 1B; only
the middle six responses are shown. Error bars show mean and SEM across
observers. Shaded regions are mean and SEM of model fits (see SI Appendix,
section S3.8). Although mean response is shown here, models were fit to raw,
trial-to-trial data. Stimulus orientation is binned to approximately equate the
number of trials per bin. (D) Model comparison. Black bars represent individ-
ual observer LOO differences of Bayesian from Fixed. Negative values indicate
that Bayesian had a higher (better) LOO score than Fixed. Blue line and shaded
region show median and 95% confidence interval (CI) of bootstrapped mean
differences across observers.
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again rejected the Fixed model (SI Appendix, Fig. S5 A and B and
Tables S3 and S4). Therefore, category criteria, independent of
confidence criteria, varied as a function of attention-dependent
uncertainty.

Finally, we directly tested for decision boundary shifts—the
key difference between the Bayesian and Fixed models—by
estimating each observer’s category decision boundaries non-
parametrically. To do so, we fit the category choice data with
a Free model in which the category decision boundaries var-
ied freely and independently for each attention condition. The
estimated boundaries differed between valid and invalid tri-
als (Fig. 4 and SI Appendix, Fig. S5C), with a mean differ-
ence of 7.5◦ (SD = 7.8◦), two-tailed paired t test, t(11)=
3.33, P < 10−2. Most observers showed a systematic outward
shift of category decision boundaries from valid to neutral to
invalid conditions, confirming that their choices accounted for
uncertainty.

Discussion
Using an embedded category task designed to distinguish fixed
from flexible decision rules, we found that human perceptual
decision-making takes into account uncertainty due to spatial
attention, when uncertainty is relevant for performance. These
findings indicate flexible decision behavior that is responsive
to attention—an internal factor that affects the uncertainty of
stimulus representations.

Our findings of flexible decision boundaries run counter to a
previous proposal that observers use a fixed decision rule under
varying attentional conditions (13–15, 21). This idea originated
from a more general “unified criterion” proposal (25, 26), which
asserts that in a display with multiple stimuli, observers adopt
a single, fixed decision boundary (the unified criterion) for all
items (22–27). The unified criterion proposal implies a rigid, sub-
optimal mechanism for perceptual decision-making in real-world
complex scenes, in which uncertainty can vary due to a variety of
factors.

Although the unified criterion proposal has served to explain
experimental findings (13–15, 21–27, 34), it is impossible to infer
decision boundaries from behavior in the signal detection theory
(SDT) tasks used previously (35). In theory, it is always possible
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Fig. 4. Free model analysis. Group mean MCMC parameter estimates
(crosses) show systematic changes in the category decision boundary across
attention conditions. The same pattern can be seen for individual observers:
Each gray line corresponds to a different observer, with connected points
representing the estimates for valid, neutral, and invalid attention condi-
tions. Each point represents a pair of parameter estimates: uncertainty and
category decision boundary for a specific attention condition.

to explain behavioral data from such tasks with a fixed decision
rule, as long as the means and variances of the internal measure-
ment distributions are free to vary (SI Appendix, section S1).

This issue is particularly thorny for attention studies: SDT
works with arbitrary, internal units of “evidence” for one choice
or another, and attention could change the means, the vari-
ances, or both properties of the internal evidence distributions
(10, 11, 36). As a result, the decision boundaries are under-
constrained: A fixed decision boundary could be mistaken for a
flexible one, and vice versa (Fig. 5). Relatedly, in a perceptual
averaging task, confidence data apparently generated by a fixed
decision rule can also be explained by a Bayesian decision rule
with small underestimations of the internal measurement noise
(37). These considerations underscore the importance of doing
model comparison even for relatively simple decision models. It
may be, then, that decision boundaries did change with atten-
tion in previous studies, but these changes were not inferred for
methodological reasons.

Alternatively, it may be that decision boundaries truly did not
change in previous studies, and task differences underlie our dif-
fering results. Studies supporting the unified criterion proposal
used either detection or orthogonal discrimination (13, 15, 21–
27, 34), which is often used as a proxy for detection (10, 38). In
these tasks, the stimuli are low contrast relative to either a blank
screen or a noisy background, and performance is limited by low
signal-to-noise ratio. In our categorization task, by comparison,
although maximum performance is capped due to overlap of the
category-conditioned stimulus distributions, variations in perfor-
mance depend on the precision of orientation representations,
just as in a left vs. right fine discrimination task. Therefore, it
may be that observers adjust decision boundaries defined with
respect to precise features (e.g., What is the exact orientation?)
but not boundaries defined with respect to signal strength (e.g.,
Is anything present at all?).

Other task differences could play a role as well. Some exper-
iments matched perceptual sensitivity d ′ for different attention
conditions by changing stimulus contrast, so attention and phys-
ical stimulus properties covaried (13, 15). For the metacognitive
report, we asked for confidence rather than visibility (13); these
subjective measures are known to differ (39). Finally, one study
(15) using a signal detection approach suggested that observers
rely insufficiently on an instructed prior, especially for unat-
tended stimuli. The question of how attention affects the use of
a prior is different from the current question, as incorporating
a prior requires a cognitive step beyond accounting for uncer-
tainty in the perceptual representation. In the future, it will be
interesting to examine how decision boundaries relate to priors,
attention, and uncertainty more generally in this task and other
tasks in which absolute decision boundaries can be uniquely
inferred.

Despite attention’s large influence on visual perception (8),
only a handful of studies have examined its influence on visual
confidence, with mixed results. Two studies found that voluntary
attention increased confidence (30, 31), one found that volun-
tary but not involuntary attention increased confidence (33),
and another found no effect of voluntary attention on confi-
dence (32). This last result has been attributed to response speed
pressures (30, 33). Three other studies suggested an inverse
relation between attention and confidence, though these used
rather different attention manipulations and measures. One
study reported higher confidence for uncued compared with
cued error trials (40), one found higher confidence for stimuli
with incongruent compared with congruent flankers (41), and
a third found that lower fMRI BOLD activation in the dorsal
attention network correlated with higher confidence (21). Here,
experimentally manipulating spatial attention without response
speed pressure revealed a positive, approximately Bayesian,
relation between attention and confidence.

Denison et al. PNAS | October 23, 2018 | vol. 115 | no. 43 | 11093

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1717720115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1717720115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1717720115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1717720115/-/DCSupplemental


A

B

Fig. 5. Limitations of standard SDT tasks. SDT tasks such as the detection
task illustrated here cannot distinguish fixed from flexible decision rules
when the means and variances of internal measurement distributions can
also vary across conditions. (A) Fixed and (B) flexible decision rules give
the same behavioral data (perceptual sensitivity, d′, and criterion, c) in
the two depicted scenarios, in which attention affects the measurement
distributions differently (compare the invalid distributions in A and B).
An experimenter could not infer from the behavioral data which scenario
occurred.

The mechanisms for decision adjustment under attention-
dependent uncertainty could be mediated by effective contrast
(10, 42, 43). Alternatively, attention-dependent decision-making
may rely on higher order monitoring of attentional state.
For example, the observer could consciously adjust a decision
depending on whether he or she was paying attention. Future
studies will be required to distinguish between these more
bottom-up or top-down mechanisms.

Our finding that human observers incorporate attention-
dependent uncertainty into perceptual categorization and con-
fidence reports in a statistically appropriate fashion points to the
question of what other kinds of internal states can be incorpo-
rated into perceptual decision-making. There is no indication, for
example, that direct stimulation of sensory cortical areas leads
to adjustments of confidence and visibility reports (21, 44, 45),
suggesting that the system is not responsive to every change to
internal noise. It may be that the system is more responsive to
states that are internally generated or that have consistent behav-
ioral relevance. Attention is typically spread unevenly across
multiple objects in a visual scene, so the ability to account for
attention likely improves perceptual decisions in natural vision.
It remains to be seen whether the perceptual decision-making
system is responsive to other cognitive or motivational states.

Materials and Methods
Extended materials and methods are available in SI Appendix.

Observers. Twelve observers (seven female) participated in the study.
Observers received $10 per 40- to 60-min session, plus a completion bonus of
$25. The experiments were approved by the University Committee on Activi-
ties Involving Human Subjects of New York University. Informed consent was
given by each observer before the experiment. All observers were naı̈ve to
the purpose of the experiment, and none were experienced psychophysical
observers.

Apparatus, Stimuli, and Task. Observers were seated in a dark room, at a
viewing distance of 57 cm from the screen, with their head stabilized by a
chin-and-head rest. Stimuli were presented on a gamma-corrected 100 Hz,
21-inch display (Model Sony GDM-5402) with a gray background (60 cd/m2).
Stimuli were drifting Gabors with spatial frequency of 0.8 cycles per degree
of visual angle (dva), speed of 6 cycles per second, Gaussian envelope with
SD 0.8 dva, and randomized starting phase. In category training, the stimuli

were positioned at fixation. In all other blocks, one stimulus was positioned
in each of the four quadrants of the screen (45, 135, 225, 315◦), 5 dva from
fixation. On each trial, each of the four stimuli was drawn independently
and with equal probability from one of the two category distributions. The
main task is shown in Fig. 1 and described in Results. Online eye tracking
(Eyelink 1000) was used to ensure fixation.

Experimental Procedure. Each observer completed seven sessions: two stair-
case sessions (training, contrast staircase, prescreening) followed by five test
sessions (main experiment). Observers received instructions and training for
each task (see SI Appendix).

Staircase Sessions. Each staircase session consisted of three category train-
ing blocks (72 trials each) and three category/attention testing-with-stair-
case blocks (144 trials each), in alternation.

In category training blocks, observers learned the stimulus distributions.
On each trial, category 1 or 2 was selected with equal probability, the stim-
ulus orientation was drawn from the corresponding stimulus distribution,
and the stimulus appeared at fixation for 300 ms at 35% contrast. Observers
reported category 1 or 2 and received accuracy feedback after each trial.

In category/attention testing-with-staircase blocks, the trial sequence was
identical to the main task (Fig. 1B), except observers reported only cate-
gory choice. There was no trial-to-trial feedback on this or any other type of
attention block.

We used an adaptive staircase procedure (46, 47) to estimate psychomet-
ric functions for performance accuracy as a function of contrast, separately
for valid, neutral, and invalid trials. Simulations we conducted before start-
ing the study showed that without a sufficiently large accuracy difference
between valid and invalid trials, our models would be indistinguishable.
Therefore, we used the psychometric function posteriors to determine
whether the observer was eligible for the test sessions and, if so, to deter-
mine the stimulus contrast for that observer (see SI Appendix). Twenty-eight
observers were prescreened, 13 were invited to participate in the main
study, and 1 dropped out, leaving 12 observers, our target.

Test Sessions. Each test session consisted of three category training blocks
(identical to staircase sessions but with observer-specific stimulus contrast)
and three confidence/attention testing blocks (144 trials each), in alter-
nation. These testing blocks were the main experimental blocks; the trial
sequence is shown in Fig. 1B.

Modeling Procedures. The modeling procedures were similar to those used
by Adler and Ma (5).

We used free parameters to characterize σ, the SD of orientation mea-
surement noise, for all three attention conditions: σvalid,σneutral and σinvalid.
We added orientation-dependent noise (48).

We coded all responses as r ∈{1, 2, . . . , 8}, with each value indicating
category and confidence, as in Fig. 1B. The probability of a single trial i
is equal to the probability mass of the internal measurement distribution
p(x | si) =N (x; si ,σ

2
i ) in a range corresponding to the observer’s response ri .

We find the boundaries (bri−1(σi), bri (σi)) in measurement space, as defined
by the fitting model m and parameters θ, and then compute the probability
mass of the measurement distribution between the boundaries:

pm,θ(ri | si ,σi) =
∫ −bri−1

−bri

N (x; si ,σ
2
i ) dx +

∫ bri

bri−1

N (x; si ,σ
2
i ) dx, [1]

where b0 = 0◦ and b8 =∞◦.
To obtain the log likelihood of the dataset, given a model with parame-

ters θ, we compute the sum of the log probability for every trial i, where t
is the total number of trials:

log p(data | θ) =
t∑

i=1

log p(ri | θ) =
t∑

i=1

log pθ(ri | si ,σi). [2]

To fit the model, we sampled from the posterior distribution over parame-
ters, p(θ | data). To sample from the posterior, we use an expression for the
log posterior

log p(θ | data) = log p(data | θ) + log p(θ) + constant, [3]

where log p(data | θ) is given in Eq. 2. We took uniform (or, for param-
eters that were standard deviations, log-uniform) priors over reasonable,
sufficiently large ranges (49), which we chose before fitting any models.
We sampled from the probability distribution using a MCMC method, slice
sampling (50) (see SI Appendix).
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To compare model fits while accounting for the complexity of each
model, we computed the LOO (29). A bootstrapping procedure was used
to compute the group mean with CIs for LOO score differences between
models.

Bayesian Model. The Bayesian model generates category and confidence
responses based on the log posterior ratio, d, of the two categories:

d = log
p(C = 1 | x)

p(C = 2 | x)
= log

p(x | C = 1)

p(x | C = 2)
+ log

p(C = 1)

p(C = 2)
. [4]

Given the orientation measurement likelihoods, p(x | C), and marginalizing
over the stimulus s, this is equivalent to

d =
1

2
log

σ2 +σ2
2

σ2 +σ2
1

−
σ2

2 −σ
2
1

2(σ2 +σ2
1 ) (σ2 +σ2

2 )
x2

+ log
p(C = 1)

p(C = 2)
. [5]

The observer compares d to a set of decision boundaries (k0, k1, . . . , k8),
which define the eight possible category and confidence responses. k4 is
the category boundary and captures possible category bias, and it is the
only boundary parameter in models of category choice only. k0 is fixed
at −∞ and k8 is fixed at ∞, leaving seven free boundary parameters:
(k1, k2, . . . , k7) = k.

In the Bayesian models with d noise, we assume that, for each trial, there
is an added Gaussian noise term on d, ηd ∼ p(ηd), where p(ηd) =N (0,σ2

d)
and σd is a free parameter.

Fixed Model. The observer compares the measurement to a set of bound-
aries that are not dependent on σ. We fit free parameters k and use
measurement boundaries br = kr .

Linear and Quadratic Models. The observer compares the measurement to a
set of boundaries that are linear or quadratic functions of σ. We fit free
parameters k and m and use measurement boundaries br (σ) = kr + mrσ

(Linear) or br (σ) = kr + mrσ
2 (Quadratic).

Free Model. To estimate the category boundaries with minimal assumptions,
we fit free parameters k4, valid, k4, neutral, and k4, invalid and used measurement
boundaries b4, attention condition = k4, attention condition.

Data and Code Availability. All data and code used for running experi-
ments, model fitting, and plotting are available at https://doi.org/10.5281/
zenodo.1422804.
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