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The chiral Majorana fermion is a massless self-conjugate fermion
which can arise as the edge state of certain 2D topological
matters. It has been theoretically predicted and experimentally
observed in a hybrid device of a quantum anomalous Hall
insulator and a conventional superconductor. Its closely related
cousin, the Majorana zero mode in the bulk of the correspond-
ing topological matter, is known to be applicable in topological
quantum computations. Here we show that the propagation of
chiral Majorana fermions leads to the same unitary transfor-
mation as that in the braiding of Majorana zero modes and
propose a platform to perform quantum computation with chi-
ral Majorana fermions. A Corbino ring junction of the hybrid
device can use quantum coherent chiral Majorana fermions
to implement the Hadamard gate and the phase gate, and
the junction conductance yields a natural readout for the
qubit state.
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The chiral Majorana fermion, also known as the Majorana–
Weyl fermion, is a massless fermionic particle being its own

antiparticle proposed long ago in theoretical physics. The sim-
plest chiral Majorana fermion is predicted in 1D space, where
it propagates unidirectionally. In condensed-matter physics, 1D
chiral Majorana fermions can be realized as quasiparticle edge
states of a 2D topological state of matter (1). A celebrated
example is the p + ip chiral topological superconductor (TSC),
which carries a Bogoliubov–de Gennes (BdG) Chern num-
ber N = 1 and can be realized from a quantum anomalous
Hall insulator (QAHI) with Chern number C= 1 in proxim-
ity with an s-wave superconductor (2–5). A QAHI–TSC–QAHI
junction implemented this way is predicted to exhibit a half-
quantized conductance plateau induced by chiral Majorana
fermions (3, 4), which has been recently observed in the Cr-
doped (Bi,Sb)2Te3 thin-film QAHI system in proximity with
the Nb superconductor (6). The chiral Majorana fermion could
also arise in the Moore–Read state of the fractional quan-
tum Hall effect (7) and topologically ordered states of spin
systems (8).

A closely related concept, Majorana zero modes (MZMs),
which emerge in the bulk vortices of a p + ip TSC (9) or at
the endpoints of a 1D p-wave TSC (10, 11), are known to obey
non-Abelian braiding statistics and can be used in fault-tolerant
topological quantum computations (12–17). Despite the theo-
retical progress made during the past decade on using MZMs
in universal quantum computation (14–17), due to the localized
and point-like nature of MZMs, all existing proposed archi-
tectures inevitably require nanoscale design and control of the
coupling among MZMs. As an essential step toward topologi-
cal quantum computing, the braiding of MZMs has not yet been
experimentally demonstrated.

In this paper, we propose a platform to implement topologi-
cally protected quantum gates at mesoscopic scales, which uses
propagation of chiral Majorana fermions with purely electrical
manipulations instead of MZMs.

Chiral Majorana Fermion Qubits
The main goal of our proposal is to show that the chiral Majorana
fermion edge state of the TSC can be used to realize non-Abelian
quantum gate operations on electron states, even if there is no
non-Abelian anyon traveling along the edge. Since our proposal
is closely related to the braiding of MZMs in vortices of the
p + ip TSC, we begin by reviewing this process, as illustrated in
Fig. 1A. Each vortex supports a single MZM γi , and thus two vor-
tices together define two quantum states of a fermion degree of
freedom. The MZM operators satisfy the anticommutation rela-
tion {γi , γj}= δij . If we define f12 = 1

2
(γ1 + iγ2) as a complex

fermion number, the two states are labeled by f †12f12 = 0, 1, which
corresponds to iγ1γ2 =−1, +1, respectively. When two vortices
are exchanged, the corresponding MZMs also are exchanged.
In the process in Fig. 1A, we have γ2→ γ3, γ3→−γ2. The
relative minus sign is necessary to preserve the fermion num-
ber parity iγ2γ3 of this pair. As a consequence, the eigenstates
of iγ1γ2 and iγ3γ4 evolve to eigenstates of iγ1γ3 and −iγ2γ4,
which are entangled states when written in the original basis of
iγ1γ2 and iγ3γ4. For example, the state |1〉12|0〉34 evolves into
1√
2

(
|0〉12|1〉34 + |1〉12|0〉34

)
. Since the vortices have long-range

interaction, the Abelian phase during the braiding may not be
well defined, but the non-Abelian unitary operation is robust
(12). From the reasoning presented above, one can see that the
non-Abelian gate during MZM braiding is a direct consequence
of exchanging MZMs γ2, γ3. The resulting gate must be non-
Abelian because iγ1γ2 anticommutes with iγ1γ3. Therefore, the
same non-Abelian gate can be realized by another physical pro-
cess that exchanges Majorana fermions, even if no braiding of the
non-Abelian anyon is involved. In the following, we show how
to obtain a realization of the same gate by making use of chi-
ral Majorana fermion edge states of the TSC and complex chiral
fermion edge states of the QAHI.

Significance

We propose a platform of quantum computation using the
chiral Majorana fermions on the edges of topological mate-
rials. The quantum gates are naturally accomplished by the
propagation of chiral Majorana fermions. If realized, its com-
putation speed can be 103 faster than the currently existing
quantum computation schemes.
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Fig. 1. (A) The braiding of vortices in the p + ip TSC. Each pair of vortices
supports two states of a single fermion, and the braiding leads to a non-
Abelian operation and maps a product state of vortices 12 and 34 into an
entangled state, as a consequence of exchanging MZMs γ2, γ3. (B) Our pro-
posed device of QAHI–TSC–QAHI junction. The same partner switch as in A
occurs between incoming electrons from leads A and B and outgoing elec-
trons in leads C and D. (C) Such an exchange leads to a non-Abelian gate
that is equivalent to a Hadamard gate H followed by a Pauli-Z gate Z.

The device we propose to study is a 2D QAHI–TSC–QAHI
junction predicted in refs. 3 and 4. As shown in Fig. 1B, the
junction consists of two QAHIs (18–20) of Chern number C=
1 and a chiral TSC of BdG Chern number N = 1. The con-
ductance σ12 is measured between metallic leads 1 and 2 by
driving a current I , where no current flows through lead 3 which
grounds the TSC. Each edge between the chiral TSC and the
vacuum or a QAHI hosts a chiral Majorana fermion edge mode
governed by a Hamiltonian HM (x ) =−i~vFγ(x )∂xγ(x ), where
γ(x ) is the Majorana operator satisfying γ(x ) = γ†(x ) and the
anticommutation relation {γ(x ), γ(x ′)}= δ(x − x ′)/2, vF is the
Fermi velocity, and x is the coordinate of the 1D edge. In
contrast, each edge between a QAHI and the vacuum hosts a
charged chiral fermion (electron) edge mode with a Hamilto-
nian HF (x ) =−i~vFψ†(x )∂xψ(x ), where ψ(x ) and ψ†(x ) are
the annihilation and creation operators of the edge fermion,
and we have assumed chemical potential µ= 0 for the moment.
By defining two Majorana operators γ1 = (ψ+ψ†)/2 and γ2 =
(ψ−ψ†)/2i [hereafter γi = γi(x ) is short for chiral Majorana
fermion], one can rewrite HF (x ) as HF (x ) =−i~vF (γ1∂xγ1 +
γ2∂xγ2), which implies a charged chiral fermion mode is equiv-
alent to two chiral Majorana fermion modes. As a result, the
edge states of the junction consist of four chiral Majorana
fermion modes γi (1≤ i ≤ 4) as shown in Fig. 1B, which are
related to the charged chiral fermion modes on the QAHI
edges as ψA = γ1 + iγ2, ψB = γ4 + iγ3, ψC = γ1− iγ3, and
ψD = γ4 + iγ2 (3).

Our key observation is that the same kind of partner switch of
Majorana fermions as that of the vortex braiding occurs in this
device between incoming and outgoing electrons. An incoming
electron from lead A becomes a nonlocal fermion simultaneously
on the two edges of the TSC described by γ1 and γ2. If we mea-
sure the number of outgoing electrons in leads C and D , we find

that the outgoing states in the two leads are entangled, because
the number operators in these leads do not commute with those
of incoming electrons.

To be more specific and to make a connection with quantum
computation, consider the low-current limit I → 0 where elec-
trons are injected from lead 1 one by one, each of which occupies
a traveling-wave packet state of ψA. The occupation number 0 or
1 of such a fermion wave packet state then defines a qubit A
with basis |0A〉 and |1A〉. Similarly, we can define the qubits B ,
C , and D for ψB , ψC , and ψD , respectively. At each moment
of time, the real and imaginary parts of the fermionic annihila-
tion operator of each wave packet state define two self-conjugate
Majorana operators localized at the wave packet. When the wave
packets move out the superconducting region, they merge with
a different partner and form states of the outgoing qubits. In
the evolution of the incident electrons, qubits A and B span the
Hilbert space of the initial state |ψi〉, while qubits C and D form
the Hilbert space of the final state |ψf 〉. In the same way as the
MZM braiding case, the exchange of γ2 with γ3 then leads to a
unitary evolution |0C0D〉

|0C1D〉
|1C0D〉
|1C1D〉

=
1√
2

 1 0 0 1
0 1 1 0
0 −1 1 0
−1 0 0 1


 |0A0B 〉
|0A1B 〉
|1A0B 〉
|1A1B 〉

. [1]

This transformation should be viewed as an S matrix between
incoming and outgoing electron states. Note that the fermion
parity is conserved in the unitary evolution. If we define a
new qubit (|0〉, |1〉) in the odd fermion parity subspace as
(|0A1B 〉 , |1A0B 〉) initially and (|0C1D〉, |1C0D〉) at the final time,
the above unitary evolution is exactly a topologically protected
Hadamard gate H followed by a Pauli-Z gate Z as shown in Fig.
1C; namely, |ψf 〉=ZH |ψi〉, where

H =
1√
2

(
1 1
1 −1

)
, Z =

(
1 0
0 −1

)
. [2]

The same conclusion holds for the even fermion parity subspace.
Therefore, the two qubits A and B (C and D) behave effectively
as a single qubit, and we can regard qubit A (C) as the data qubit,
while qubit B (D) is a correlated ancilla qubit.

For an electron incident from lead 1 represented by ini-
tial state |ψi〉= |1A0B 〉, the junction turns it into a final state
|ψf 〉= (|0C1D〉+ |1C0D〉)/

√
2. This implies (SI Appendix) that

the entanglement entropy between left and right halves of the
junction divided by the dashed line in Fig. 2A increases by
log 2. Indeed, this is verified by our numerical calculation in
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Fig. 2. (A) The setup for numerical computation of entanglement entropy.
We use a lattice model of QAHI–TSC–QAHI junction, add an initial edge
wave packet on a QAHI edge, and then examine the time evolution of the
state and the entanglement entropy between the left and the right part
of the lattice separated by the dashed line. (B) Evolution of entanglement
entropy SE between left and right halves of the junction (divided by dashed
line in A) with time t (arbitrary unit) after an electron above the Fermi
sea is injected from lead 1, where SE0 is the entanglement entropy of the
Fermi sea.
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a lattice model of the junction (Fig. 2A), where the entangle-
ment entropy SE increases with time t as shown in Fig. 2B,
after an electron is injected from lead 1 above the Fermi sea.
More details of this calculation are provided in SI Appendix.
Since ψC and ψD propagate into leads 1 and 2, respectively,
the electron has r = 1/2 probability to return to lead 1 and
t = 1/2 probability to tunnel into lead 2. This yields (3) a half-
quantized two-terminal conductance σ12 = te2/h = e2/2h . Since
lead 1 (lead 2) connects ψA (ψB ) with ψC (ψD ) (Fig. 1B), we
are in fact identifying the charge basis of final qubit C (D)
with that of initial qubit A (B). Accordingly, the conductance
σ12 provides a natural measurement of the overlap probability
between |ψi〉 and |ψf 〉 under this common basis; namely, σ12 =

(1− |〈ψf |ψi〉|2)e2/h .
As we have discussed, the above process is topologically equiv-

alent to fusion and braiding of four vortex operators in the TSC
bulk (SI Appendix) (21, 22). More concretely, when the electron
of an incident state |1A0B 〉 reaches the boundary of the TSC,
one can imagine an operation of dragging the electron (fermion)
into the Hilbert space of two nearby vortices σ1 and σ2 in the
TSC bulk, after which σ1 and σ2 are in the fermionic fusion
channel. Meanwhile, one can create two more vortices σ3 and
σ4 in the bulk of the TSC in the vacuum fusion channel. Next,
one can braid the vortices, fuse σ1 with σ3, and fuse σ2 with
σ4. Finally, one can drag the state in the Hilbert space of σ1

and σ3 onto the QAH edge of ψC and that of σ2 and σ4 onto
the QAH edge of ψD . During such a vortex braiding and fusing
process, there is no Majorana fermion propagating on the TSC
edge. However, the initial state and the final state in this case
are the same as the above process of chiral Majorana fermion
propagation (SI Appendix), so the two processes are topologically
equivalent.

A Testable Quantum Gate
The conductance σ12 of the above junction, however, cannot
confirm whether chiral Majorana fermions γi are coherent or
not during the propagation and thus whether the process is a
coherent quantum gate. For instance, if a random phase factor
is introduced in the propagation of ψC and ψD , a pure initial
state |ψi〉= |1A0B 〉 will evolve into a mixed final state with a den-
sity matrix ρf = (|0C1D〉 〈0C1D |+ |1C0D〉 〈1C0D |)/2, while the
conductance remains σ12 = [1− tr(ρf |ψi〉 〈ψi |)]e2/h = e2/2h .

To confirm whether the system as a quantum gate is coherent,
we propose to implement a Corbino geometry QAHI–TSC–
QAHI–TSC junction as shown in Fig. 3A and measure the
conductance σ12 between lead 1 and lead 2. The junction can
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Fig. 3. Quantum interference in the QAHI–TSC–QAHI–TSC Corbino junc-
tion. (A) The Corbino junction consists of a Corbino QAHI ring with a
fan-shaped s-wave superconductor on top of it which drives regions II and
IV into the TSC, and a voltage gate VG is added at the bottom edge. (B) Such
a junction is equivalent to a series of single-qubit quantum gates ZHRφG ZH,
where RφG is a phase gate controlled by VG. (C and D) The MZM braiding
process that gives the same gates as the Corbino device with φG = 0 and
φG =π/2, respectively.

A B

Fig. 4. Numerically calculated σ12 oscillation for the Corbino junction. (A)
σ12 calculated for ∆p∆L/~≈ 0 and 18 as a function of VG, respectively. (B)
The peak-to-valley amplitude y of σ12 in units of e2/h with respect to η=

∆p∆L/~, which is roughly given by y = sin |η/2|/|η/2|.

be realized by attaching a fan-shaped s-wave superconductor on
top of a C= 1 QAHI Corbino ring, with a proper out-of-plane
magnetic field driving the two regions II and IV into the N = 1
TSC phase (4, 6). A voltage gate VG is added on the bottom
edge of QAHI region III covering a length lG of the edge. Lead 3
grounds the superconductor and has no current passing through.
At zero gate voltage, the edge states of the Corbino junction
are four chiral Majorana edge states γi (1≤ i ≤ 4) as shown
in Fig. 3A.

The gate voltage VG on the bottom edge of region III behaves
as a chemical potential term HG = eVGψ

†
DψD for ψD = γ4 + iγ2

in a length lG . In the language of quantum computation, this
induces a phase gate

RφG =

(
e−iφG 0
0 1

)
[3]

acting on the corresponding qubit D , where the phase shift φG =
eVG lG/~vF is tunable via VG . Accordingly, the fermion operator
ψD undergoes a unitary evolution ψD→ e iφGψD . In particular,
when φG =π/2, this is equivalent to an exchange of Majorana
modes γ2 and γ4; namely, γ4→ γ2, and γ2→−γ4.

If we regard the charged chiral edge modes of QAHI region
I (ψA and ψC ) as the data qubit and those of QAHI region III
(ψB and ψD ) as the ancilla qubit, the junction can be viewed as a
series of quantum gates as shown in Fig. 3B, with a total unitary
evolution |ψf 〉=ZHRφGZH |ψi〉. Fig. 3 C and D shows the MZM
braiding process that results in the same non-Abelian gate as the
φG = 0 case and the π/2 case, respectively. For an electron inci-
dent from lead 1 represented by the initial state |ψi〉= |1A0B 〉,
the finial state is

|ψf 〉= e−iφG/2

(
cos

φG

2
|0A1B 〉+ i sin

φG

2
|1A0B 〉

)
. [4]

Therefore, the two-terminal conductance of this Corbino junc-
tion is

σ12 = (1− |〈ψf |ψi〉|2)
e2

h
=

1 + cosφG

2

e2

h
, [5]

which oscillates as a function of VG with a peak-to-valley ampli-
tude e2/h . In contrast, if the system loses coherence completely,
the final state will be the maximally mixed state described by
density matrix ρf = (|0A1B 〉 〈0A1B |+ |1A0B 〉 〈1A0B |)/2, and the
conductance will constantly be σ12 = e2/2h . Therefore, the oscil-
lation amplitude of σ12 measures the coherence of the chiral
Majorana fermions in the junction.

So far we have assumed chemical potential µ= 0 on all QAHI
edges except the interval covered by voltage gate. In general, µ
is nonzero and is nonuniform along the QAHI edges when there
are disorders. Such a nonzero landscape of µ contributes an addi-
tional phase gate, which leads to a phase shift φG→φG +φ0,
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with φ0 being a fixed phase (SI Appendix). Experimentally, the
gate voltage VG and thus φG can be well controlled by current
techniques at a high precision level (23).

Decoherence
There are mainly two effects contributing to the decoherence
of chiral Majorana fermions. The first one is the nonmonochro-
maticity of the incident electron wave packet, which is charac-
terized by a momentum uncertainty ∆p≈ 2π~/lW for a wave
packet of width lW . In general, the (effective) path lengths of
the four chiral Majorana modes γi (1≤ i ≤ 4) in Fig. 3A may dif-
fer by a length scale ∆L, and the σ12 oscillation is sharp only if
∆p∆L< 2π~. As a demonstration, we numerically examine the
time evolution of an electron wave packet from lead 1 within
an energy window vF [−∆p/2, ∆p/2] on a lattice model of the
Corbino junction and calculate σ12 (SI Appendix). Fig. 4A shows
σ12 as a function of VG/Eg for ∆p∆L/~≈ 0 and 18, respectively,
where Eg is the QAHI bulk gap. The modulation of the σ12

amplitude by VG is due to the effective change of ∆L as a result
of the change in vF on the edge covered by voltage gate VG .
Fig. 4B shows the peak-to-valley amplitude y = ∆σ12/(e

2/h) as
a function of η= ∆p∆L/~, where we find the amplitude roughly
decays as y = | sin(η/2)/(η/2)|. In the experiments, the tempera-
ture T yields a momentum uncertainty ∆p≈ kBT/vF , where kB
is the Boltzmann constant. For the Cr-doped (Bi,Sb)2Te3 thin-
film QAHI with superconducting proximity studied in ref. 6, the
Fermi velocity is of order ~vF ∼ 3 eV·Å (24), and the temper-
ature T reaches as low as 20 mK. This requires a path-length
difference ∆L∼ 100 µm or smaller, which is experimentally
feasible (6, 25).

The second effect causing decoherence is the inelastic scatter-
ing. The inelastic scattering of charged chiral fermions ψi mainly
originates from the electron–phonon coupling, which yields an
inelastic scattering length lin ∝T−p/2 at temperature T (26–
28). For integer quantum Hall systems, lin exceeds 102µm at
T ∼ 20 mK (29), while lin is expected to be smaller for QAHI
(20). In contrast, since the electron–phonon coupling is odd
under charge conjugation, the neutral chiral Majorana fermions
γi are immune to phonon coupling. Instead, their lowest-order
local interaction is of the form γi∂xγi∂

2
xγi∂

3
xγi (30), which is

highly irrelevant. Therefore, lin of γi in TSCs should be much
longer than that of ψi in QAHIs. If the σ12 interference is to
be observed, the sizes of the QAHI and TSC regions in the
junction have to be within their inelastic scattering lengths lin ,
respectively.

Conclusion
In summary, we have introduced the appealing possibility of
performing topological quantum computations via propaga-
tions of 1D chiral Majorana fermion wave packets, which are
physically equivalent to the braiding of MZMs. The Corbino
junction above gives a minimal demonstration of single-qubit
quantum-gate operations with chiral Majorana fermions, and
the conductance of the junction provides a natural readout for
the final qubit states. Most importantly, this circumvents two
main experimental difficulties in quantum computations with
MZMs: the braiding operation of MZMs and the readout of the
qubit states. The high velocity of chiral Majorana edge modes
also makes the quantum gates 103 times faster than those of
other quantum computation schemes (31, 32). Furthermore, the
development of a single-electron source (33) makes the injec-
tion and detection of a single-electron wave packet qubit on
edges possible. Yet in the current stage we still face difficulties
which are also encountered by the MZM quantum computa-
tion scheme: the error correction of the phase gate RφG (34,
35) and nondemolitional four-Majorana implementation of the
controlled not gate (14, 35, 36). If one could overcome these
difficulties, one may in principle achieve universal quantum com-
putation using chiral Majorana fermion devices, which would
have a high computation speed. Finally, we remark that the
conductance oscillation in the Corbino junction, if observed,
will also unambiguously prove the existence of quantum coher-
ent chiral Majorana fermions in the experiment (6, 22, 30,
37–39).
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33. Fève G, et al. (2007) An on-demand coherent single-electron source. Science
316:1169–1172.

34. Bonderson P, Clarke DJ, Nayak C, Shtengel K (2010) Implementing arbitrary phase
gates with Ising anyons. Phys Rev Lett 104:180505.

35. Bravyi S, Kitaev A (2005) Universal quantum computation with ideal Clifford gates
and noisy ancillas. Phys Rev A 71:022316.

36. Bravyi S (2006) Universal quantum computation with the ν = 5/2 fractional quantum
Hall state. Phys Rev A 73:042313.

37. Akhmerov AR, Nilsson J, Beenakker CWJ (2009) Electrically detected interferometry
of Majorana fermions in a topological insulator. Phys Rev Lett 102:216404.

38. Stern A, Halperin BI (2006) Proposed experiments to probe the non-Abelian ν = 5/2
quantum Hall state. Phys Rev Lett 96:016802.

39. Nilsson J, Akhmerov AR (2010) Theory of non-Abelian Fabry-Perot interferometry in
topological insulators. Phys Rev B 81:205110.

10942 | www.pnas.org/cgi/doi/10.1073/pnas.1810003115 Lian et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1810003115

