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Abstract

This paper presents a novel data-driven framework for process monitoring in batch processes, a 

critical task in industry to attain a safe operability and minimize loss of productivity and profit. We 

exploit high dimensional process data with nonlinear Support Vector Machine-based feature 

selection algorithm, where we aim to retrieve the most informative process measurements for 

accurate and simultaneous fault detection and diagnosis. The proposed framework is applied to an 

extensive benchmark dataset which includes process data describing 22,200 batches with 15 faults. 

We train fault and time-specific models on the prealigned batch data trajectories via three distinct 

time horizon approaches: one-step rolling, two-step rolling, and evolving which varies the amount 

of data incorporation during modeling. The results show that two-step rolling and evolving time 

horizon approaches perform superior to the other. Regardless of the approach, proposed 

framework provides a promising decision support tool for online simultaneous fault detection and 

diagnosis for batch processes.
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1 Introduction

Simultaneous achievement of high process efficiency, safety, and profitability is of utmost 

interest in modern manufacturing and process industries, yet a challenging one1. Meeting the 

growing demand for higher product quality and process efficiency at minimum cost while 

overcoming the stringency of environmental and safety regulations is crucial and necessary2. 

This need has urged industry to adopt and automatize novel process technologies and 

methodologies that can optimize their process, in other words to pursue ”Smart 
Manufacturing”3. Recently, smart manufacturing, which integrates automated, digital 

technologies with advanced manufacturing capabilities throughout the product life-cycle4, 

has gained significant interest from academia, industry and government, encouraging 

advancements in information, characterization, process, and sensing technology. As a result, 

large amounts of process data – often referred as ”Big Data” – collection in real time has 

been expedited. This has given birth to emergence of industrial Internet of Things (IoT), 

which refers to the network of inter-connected industrial equipments and systems that can 

exchange and process the collected high dimensional data. In 2012, the potential of Big Data 

for decision-making in industry was recognized by President Obama with the start of 

the ”Big Data Research and Development Initiative”. This has launched the Big Data era in 

numerous fields, including process monitoring5–7.

Today, as the modern process industry aims for smarter, safer, and more efficient operation, 

more operating variables are integrated under closed loop control. Although this results in 

increased process structure complexity, which obfuscates process control, the Big Data 

outbreak in industry immensely facilitates process monitoring. Today, by using industrial 

Big Data, we can detect faults, diagnose them from key process variables, predict future 

state of process variables, and prevent any undesired conditions6.

A process fault occurs when there is an unpermitted deviation in at least one observed 

variable or computed parameter of the system and controllers cannot reverse it8. Early and 

rapid detection and diagnosis of process faults is one of the top major challenges of industry 

in order to sustain a safe operation and minimize losses in productivity9. These issues are 

addressed via process monitoring. The process monitoring techniques can be classified into 

three categories: model-based, knowledge-based and data-based methods8. Model-based 

methods10 are based on first-principles which uses of a priori physical and mathematical 

knowledge of the process. Therefore they are apt to yield more accurate solutions than the 

other techniques. However, the success of model-based methods heavily depend on the 

process model accuracy, which is significantly challenging to guarantee as the modern 

industrial processes are becoming increasingly complex in structure. Knowledge-based 

methods gather the available information on the process performance and develop qualitative 

or semi-quantitative relations via causal analysis with signed directed graphs11,12, decision 

trees13, pattern recognition techniques like artificial neural networks and self-organizing 

maps14–16. The major drawback of these techniques is their dependency on human insight 

which may produce solutions that are vulnerable to change17,18. On the other hand, data-

driven process monitoring methods do not involve any prior knowledge, since models for 

fault detection and diagnosis are constructed solely on data.
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Today, data-driven or statistical process monitoring (SPM) techniques2,17,19 are providing 

promising results due to the availability of large amounts of recorded process data. These 

techniques exploit multivariate statistical analysis and machine learning algorithms to build 

data-driven models that can determine deviations from normal operation, and partition high 

dimensional data space into distinct fault regions for diagnosis. To this end, dimensionality 

reduction via feature extraction techniques is the common first step8. The most prevalent and 

popular SPM techniques utilize Principal Component Analysis (PCA)20–25, Partial Least 

Squares (PLS)26–29, Independent Component Analysis30, Fisher Discriminant Analysis 

(FDA)31, Correspondence Analysis32,33 and their extensions for fault detection and 

diagnosis. However, these dimensionality reduction methods transfer input variables 

(features) into a new space, and alters the original representation34. Therefore, when a fault 

occurs, models developed with these techniques do not identify the original set of process 

variables for the root-cause of the detected fault, which is essential for accurate diagnosis 

and further corrective actions.

On the other hand, despite the wide use of batch reactor processes in chemical, food, and 

pharmaceutical industries, most novel techniques for fault detection and diagnosis have 

focused on continuous processes. The main reason for this is the challenging characteristics 

of batch process data35,36 such as (i) involvement of a considerable number of 

interconnected variables, (ii) inherent non-stationarity, (iii) finite duration, (iv) nonlinear 

response, and (v) batch-to-batch variability. Additionally, the dimensionality of batch 

process data further obstructs and complicates the monitoring. Therefore, there is an 

extensive need for novel monitoring framework development for batch processes.

In this paper, we present a novel data-driven framework for simultaneous fault detection and 

diagnosis for batch processes that uses a well-known, powerful machine learning algorithm 

formulation: Support Vector Machines (SVM)37. Central to the framework is the 

implementation of novel theoretical and algorithmic developments in nonlinear support 

vector machine-based feature selection which encapsulates highly nonlinear relationships 

between features in their original space, thus improving the fault detection model accuracy 

and simultaneously guiding fault diagnosis. The rest of this paper is organized as follows: 

Section 2 introduces the Support Vector Machine algorithm. Section 3 presents the proposed 

theoretical and algorithmic developments in feature selection using a nonlinear SVM 

formulation which can be implemented in various engineering problems. In Section 4, we 

adopt a recent extensive benchmark, simulation dataset on penicillin production process 

model, PenSim model,35,38. Section 5 presents the step by step implementation of the 

developed nonlinear SVM-based feature selection algorithm in the fault detection and 

diagnosis of batch process setting. Finally, in Section 6, we present the results for the 

penicillin production process data consisting of 22,200 batches with numerous and diverse 

fault types. The developed framework aims for early detection of faults, which would enable 

early intervention to reduce loss of profit in batch processes.

2 Support Vector Machines

Support Vector Machines (SVM) is a widely-used machine learning algorithm that has 

produced significantly successful results in extensive set of supervised learning problems (i.e 
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classification, regression, and outlier detection) from various fields. Specifically, the main 

idea behind SVM classification is to transform training data into a higher dimension via 

nonlinear Kernel functions, where a linear hyperplane in the mapped space (nonlinear in the 

original domain) can separate the data by class. SVMs are formulated as convex 

optimization problems which enable them to be solved to global optimality. Therefore, with 

an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes 

can always be separated optimally (Figure 1). Although training SVM models is 

computationally demanding, SVMs produce highly accurate models due to their ability to 

resolve complex nonlinear decision boundaries with globally optimum parameters. They are 

also less prone to most data-driven modeling pitfalls (e.g. over-fitting, multicollinearity), 

which make them popular among myriad of research fields.

In this study, fault detection is formulated as a supervised learning problem (i.e. 

classification) with l training instances correspond to batches, where xi ∊ ℝn. Indices i, j = 

1,2,…, l belong to batches, whereas indices k, k′ = 1,2,…, n correspond to input process 

data features (i.e. process measurements at specific time points). To determine whether an 

ongoing batch is faulty or normal, we utilize the C-parameterized SVM (C-SVM) 

classification formulation with nonlinear Kernel functions. The basic C-SVM formulation 

with hinge loss, ℓ2-norm penalty, and linear kernel37,39 is written as:

min
w, b, ξ

1
2 w 2

2
+ C ∑

i = 1

l
ξi

s . t . yi w ⋅ xi + b ≥ 1 − ξi i = 1, …, l

ξi ≥ 0 i = 1, …, l
(1)

where w is the weight vector of features (process measurements). ξi are slack variables for 

each instance (i.e. batch) i that are misclassified. C is a regularization parameter and controls 

the level of training error to be introduced in the cost function for the sake of creating more 

generalizable models. yi ∊ {−1,1} denotes the group label of batch i, as normal or faulty, 

respectively. Finally, b represents the bias parameter. When model 1 is solved to global 

optimality, resulted optimal solution (w*, b*, ξ*) yields linear decision function (w*, b*, 

ξ*) whose sign predicts the group membership of the new batch x:

w∗ = ∑
i = 1

l
αi

∗yixi (2)

f x = w∗ ⋅ x + b∗ (3)
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where αi are dual variables. Here, due to the nonlinear nature of batch process data, C-SVM 

with linear kernel may not provide accurate and robust solutions for batch process 

monitoring. Therefore, we exploit nonlinear Kernel functions, K(xi,xj), within the C-SVM 

formulation which provides us to train nonlinear decision functions in the input (original) 

space which implicitly map the data to a different, possibly infinite dimensional feature 

space where a linear decision function can separate the mapped data40. This is also known as 

Kernel trick (Figure 1). Kernel functions are introduced in the Lagrange dual formulation of 

model 1, which is written as:

max
α ∑

i = 1

l
αi − 1

2 ∑
i = 1

l
∑

j = 1

l
αiα jyiy jK xi, x j

s . t . ∑
i = 1

l
αiyi = 0

αi ∈ 0, C i = 1, ⋯, l
(4)

The resulting linear decision function consisting the optimal dual solution α* becomes:

f x = w∗ ⋅ ϕ x + b∗

= ∑
i = 1

l
αi

∗yiK xi, x + b∗

where ϕ(x) is the function providing Kernel-induced implicit mapping. Here, w* may no 

longer belong to ℝn and is possibly of infinite dimension.

The interested reader in the derivation of the Lagrange dual problem and resulting decision 

functions can refer to the key references37,39,40.

3 Feature Selection Algorithm based on Nonlinear Support Vector 

Machines

Here, feature selection algorithm based on nonlinear Support Vector Machines is formulated 

to attain the most descriptive original process measurements. Elimination of redundant 

measurements is highly valuable for high-performance model development for batch process 

monitoring. It significantly reduces probability of over-fitting in the built data-driven models 

detecting faults, where the size of unfolded and time-evolving batch process data grows 

significantly. Furthermore, performing dimensionality reduction while protecting the 

original feature space is highly valuable for rigorous fault diagnosis, where the selected top 

descriptive features yield the major causes of the detected fault. Below, we present brief 

theoretical background of the adopted feature selection algorithm which is based on 

nonlinear Support Vector Machines.
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In order to perform model-informed feature selection, we introduce binary variables z ∊ 
{0,1}n in the Lagrange dual formulation with nonlinear Kernel functions (model 4), where 

zk = 1 corresponds to the selection of feature k as being one of features in the optimal subset 

and zk = 0 corresponds to the elimination of feature k. The resulting model becomes:

min
z

max
α ∑

i = 1

l
αi − 1

2 ∑
i = 1

l
∑

j = 1

l
αiα jyiy jK xi ○ z, x j ○ z

s . t . ∑
i = 1

l
αiyi = 0

αi ∈ 0, C i = 1, …, l

∑
k

zk = m

zk ∈ 0, 1 k = 1, …, n

(5)

where m represents the size of the optimally reduced subset of input features and operator ○ 
is the Hadamard product operator for component-wise multiplication.

Model 5 delineates the explicit formulation of the feature selection problem via nonlinear 

Support Vector Machines, which results in a challenging bi-level problem. Solving model 5 

to global optimality is highly challenging and impractical in real-life applications41, hence 

we propose to utilize sensitivity of the inner objective function provided in model 5 with 

respect to zk at the optimal solution of the inner maximization problem (α*; z). Here, zk is 

treated as a fixed parameter. In order to attain the first-order sensitivity of a model at an 

optimal solution with respect to a parameter, which is located in the objective function and 

constraints, we use the partial derivative of the Lagrange function of the model42–44:

∂
∂zk

∑
i = 1

l
αi

∗ − 1
2 ∑

i = 1

l
∑

j = 1

l
αi

∗α j
∗yiy jK xi ○ z, x j ○ z + λ ∑

i = 1

l
αi

∗yi − ∑
i = 1

l
μi

1 αi
∗ + ∑

i = 1

l
μi

2 αi
∗ − C

z = z∗

= − 1
2 ∑

i = 1

l
∑

j = 1

l
αi

∗α j
∗yiy j

∂K xi ○ z, x j ○ z

∂zk
z = z∗

where λ ∊ ℝ,μ(1),μ(2) ∊ [0, ∞)n are Lagrange multipliers. Lagrangian sensitivity allows us 

to guide the perturbations on element zk. The formulation yields the perturbation criterion 

for feature k as follows:

critk = = − 1
2 ∑

i = 1

l
∑
j = 1

l
αi

∗α j
∗yiy j

∂K xi ○ z, x j ○ z
∂zk z = z∗

(6)
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kwrost = argmax
k

critk (7)

Using the criterion given in model 6, we eliminate features one at a time (feature worsening 

the inner objective of model 5 the most, kworst) as we build nonlinear C-SVM models. This 

yields a greedy reductive algorithm for model-informed feature ranking. The iterative 

procedure allows us to perform simultaneous modeling and model-informed feature 

elimination via C-SVMs. Here, one can also eliminate features in blocks (i.e as % of total 

features). The presented feature selection algorithm based on nonlinear SVMs is 

summarized in Figure 2.

Of note, the algorithm provided here is equivalent to recursive feature elimination (RFE)-

SVM classification algorithm45 when performing linear classification. The algorithm has 

been implemented in C++/Python environment using the LibSVM library46. In our previous 

work, we have successfully applied the presented feature selection algorithm in 

bioinformatics setting where we achieved profoundly accurate predictions HIV-1 co-receptor 

usage47.

4 Batch Process Benchmark Model & Data Set

The batch process data is adopted from an extensive simulation dataset35 based on penicillin 

production, PenSim benchmark model38, where the model is expanded with sensor noise 

(Table 1). The process operates in two modes. It starts in the batch mode with high substrate 

(glucose) con-centrations that stimulates biomass growth. Then it switches to fed-batch 

mode with the depletion of glucose where penicillin production is triggered by biomass due 

to low glucose content in the bioreactor38. pH and temperature of the process is monitored 

via closed-loop PID controllers, where aeration rate, agitator power, feed rate, feed 

temperature, hot and cold water temperatures are in open loop. Schematic diagram of the 

fed-batch penicillin production is given in Figure 3.

In this paper, we use the aligned, base case simulation data introduced in Van Impe et. al 
where the initial fermenter volume, biomass concentration, and substrate concentration are 

independently sampled from normal distributions providing batch-to-batch variability35. The 

alignment is done by bringing all simulated batches to equal length via indicator variables as 

described in Birol et. al38. The data set includes 400 normal and between 1000-2000 batches 

per 15 different simulated process faults yielding 22,200 faulty batches in total. Table 2 

tabulates 15 different fault types and corresponding number of batches simulated for each of 

them.

We have considered 13 process variables (5 state and 8 manipulated) that can be measured 

online (Table 1). In this work, we use cumulative acid/base flows [mL] instead of 

instantaneous flow rates as they are suggested to be relatively more informative35. Each 

batch is completed in about 460 h where the sensors are sampled in every 0.02 h. When 

aligned, this corresponds to a total batch length of 1201 samples which results in 3-
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dimensional (3D) batch process dataset of size 1400-2400 batch × 13 variable × 1201 

sample (time point).

5 Proposed Framework for Simultaneous Fault Detection & Diagnosis in 

Batch Processes

The proposed framework consists of two phases: (i) Offline phase includes the formulation 

of the fault and time-specific models for fault detection and diagnosis via historical signal 

process data where the novel optimization-backed feature selection algorithm is used; (ii) 

Online phase monitors ongoing batches in real-time by using the fault and time-specific 

models. Prior to both phases, data needs to be re-organized and/or processed.

5.1 Data Preprocessing

Here, we (i) divide the time horizon into intervals of fixed size which we refer as sample 

bins, (ii) unfold 3-dimensional batch process data into 2-dimension via batch-wise 

unfolding48, (iii) incorporate additional informative features (feature extraction) from 

sample bins, (iv) normalize the obtained 2-dimensional data, and (v) eliminate the features 

having less than 10−8 standard deviation, respectively.

Step-1: Creating Sample Bins—Batch process data is 3 dimensional. For each batch at 

each specific time point, it includes a process variable measurement. This initial step of data 

preprocessing slightly differs for offline and online phase.

In the offline phase, the motivation is to produce an online fault detection & diagnosis 

decision support tool for end-users, therefore we need to develop time-specific models for 

each fault. To do this, first, we partition the time horizon into intervals of fixed size and 

group the process variable measurements of batches at particular time periods. We refer 

these time periods as sample bins. Next, we train models for fault detection and diagnosis 

for each sample bin to obtain time-specific models. Here, the size of sample bins is a user-

defined parameter. Selection of smaller bin size implicitly increases the number of checks on 

an ongoing batch, thus accelerates the detection of possible fault occurrences, yet increasing 

the number of models to be developed. In this study, we have selected the sample bin size as 

10 which has resulted in total of 120 sample bins spanning the entire time horizon.

In the online phase, data is continuously collected. In order to analyze the incoming 3-

dimensional data with the developed time-specific models, we need to gather the batch 

process measurements from the relevant time points and form the sample bins for further 

analysis.

Step-2: Unfolding 3D Batch Process Data into 2D—In order to train models with 3-

dimensional batch process data, we need to unfold it into a 2-dimensional matrix via one of 

the three possible ways: (i) batches, (ii) process variable measurements, or (iii) time points. 

In this paper, we adopt batch-wise unfolding approach48. The batch-wise data unfolding 

yields batches as the incidents (rows), and process variables at specific time points as the 

features (columns) of the 2-dimensional dataset. Of note, while we are unfolding the 3-

dimensional data in each sample bin, we solely include the relevant (observed) process 
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variable measurements. This data re-configuration enables inspection of batches in regular 

periods via time-specific models that use historical and most recent process signal data to 

determine whether the batch is performing well or not while the batch is still ongoing. The 

illustration of data structure preprocessing, that involves Step 1 and 2, is shown in Figure 4.

Step-3: Extracting Additional Features—In order to improve the data-driven modeling 

accuracy, we extract and incorporate additional features that can characterize process 

behavior of each batch at each sample bin. In this study, in addition to the historical and 

most recent process variable measurements, we have utilized slope, standard deviation, and 

mean of 13 process variables (referred as process behavior features) within each sample bin. 

The case-specific addition of the features is given in Section 6. Here, we would like to 

highlight that the end-users of the presented framework will be allowed to include/exclude 

any type of process behavior features during the model development phase. In case of highly 

noisy plant data, one can always smoothen the data by using filters (i.e Kalman filter), and 

extract features from the filtered data to further use in the model building phase.

Step-4&5: Data Normalization & Reduction—Finally, we normalize the re-configured 

and extended 2-dimensional matrix within each sample bin and perform a priori dimension 

reduction by eliminating the features (process variable measurements at specific time points 

and extracted features describing process behavior) with less than 10−8 standard deviation.

5.2 Offline Phase: Model Building

In offline phase, we build fault and time-specific nonlinear Support Vector Machine 

classification models by using historical and/or simulation-based batch process signal data. 

Particularly, we train and test 15 separate C-SVM classification models per sample bin for 

detection and diagnosis of 15 distinct faults. To do this, we (i) select the preprocessed data of 

faulty and normal batches that have been observed within the selected time period (i.e. 

sample bin), (ii) create balanced training and test sets with 20 runs of 5-fold cross-validation, 

(iii) tune the hyperparameters C and γ of the (C-SVM) classification models, (iv) perform 

simultaneous feature selection and model building via nonlinear Support Vector Machines, 

(v) build C-SVM classification models with average feature rank list, and (vi) test model 

accuracies to determine the end-model to be implemented in the online phase, respectively.

Step-1: Collecting Preprocessed Batch Process Data—In the first step of the 

offline model building, we retrieve the preprocessed 2-dimensional process data of faulty 

and normal batches that have been observed within the time period of the selected sample 

bin (Figure 5).

Step-2: Generating Train and Test Data Sets—In order to have accurate and robust 

models, we need to balance the number of batches that belong to different class labels. In 

other words, we need to have equal amount of faulty and normal batches in training and test 

sets. Therefore, the next step in offline model building phase is to determine the number of 

faulty and normal batches within the observed sample bin period separately, include the 

limiting number of batches of one class label, and randomly select the same number of 

batches from the pool of batches with the other class label that have been observed within 
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the specified time period. Then, we perform 5-fold cross-validation with 20 runs to create 

training-testing datasets in order to minimize generalization error and avoid over-fitting. 

This results in 100 training-testing dataset pair generation.

Step-3: Tuning Hyperparameters for C-SVM Models—Next, we tune the 

hyperparameters C and γ of the C-SVM (two-class) classification models by using Gaussian 

radial basis function (RBF),

K xi, x j = exp −γ xi − x j
2 , (8)

as the nonlinear Kernel function. The appropriate selection of hyperparameters is necessary 

for the sake of generalization error minimization. The density of the data is a critical factor 

in the selection of hyperparameter γ to avoid over-fitting in the resulted separating decision 

function model. The default value for RBF kernel hyperparameter, γ, used by LIBSVM is 

1/n, where n is the number of features. Therefore, we tune parameter γ where

γ = 2γ
n . (9)

Similarly, we tune parameter C, where the relation between C and C is:

C = 2C . (10)

According to the described iterative feature selection algorithm in Section 3, γ can be 

updated in each iteration with the available set of features:

γ = 2γ

z⊤1
(11)

In this work, tuning is performed for parameters C, and γ via a grid search for all value 

combinations between −10: 10. We train and test models using all features of 100 training-

testing dataset pairs with every combination of C and γ parameters. Here, instead of 

repeating grid search for hyperparameters tuning after each iteration of feature elimination, 

which would be ideal but inefficient, we perform tuning at first iteration where we include 

the whole set of features. Then, the hyperparameters with the highest average testing 

accuracy are chosen for the next steps.

Step-4: Simultaneous Model-informed Feature Selection and Classification—
The tuned hyperparameters are incorporated into simultaneous model-informed feature 

selection and classification algorithm via C-SVMs which is described in Section 3. Here, we 

iteratively build C-SVM binary classification models with Gaussian radial basis function 

(RBF) kernel starting from the complete set of features until we are left with the last feature 
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in the data set. In each iteration, we eliminate features based on the Lagrangian sensitivity of 

the dual objective function of the built C-SVM model (specifically, the inner objective 

function of Model 5) with respect to the feature subset size. This iterative procedure is 

performed with each of the 100 training and testing data set pairs which creates 100 feature 

rankings for each fault class at each sample bin. Subsequently, one average feature ranking 

list is created for each fault and sample bin combination according to the statistical 

distribution of the feature ranks across 100 individual ranking lists.

Step-5: Building C-SVM Models with Average Feature Rank Lists—At this stage, 

we train C-SVM classification models with Gaussian RBF kernel with the same 100 training 

and testing data set pairs by using the fault and time-specific average feature ranking lists. 

Starting from the entire feature set and eliminating one feature at a time according to the 

average fault and time specific feature rank list, we train 100 C-SVM classification models 

for each feature subset. The model performances are then evaluated via several metrics, and 

averaged for each feature subset. These metrics are fault detection rate (recall), accuracy, 

area under the receiver operator curve (AUC), and false alarm rate. Thus, we obtain one fault 

and time-specific C-SVM model per each feature subset.

Step-6: Choosing the End-models for Online Phase—In the last stage of the offline 

phase, we determine the end-models (fault and time-specific C-SVM models). Among the 

all developed fault and time-specific C-SVM models for each feature subset, the ones 

yielding the highest fault detection rate are selected. These are referred as the end-models. 

The end-models, that have the optimal feature subset for maximum fault detection rate, are 

aimed to be further implemented in the online phase. The overall framework of offline phase 

is summarized in Figure 5.

5.3 Online Phase: Fault Detection & Diagnosis

In this phase, we implement the fault and time specific end-models to create a decision 

support tool for online fault detection & diagnosis. These are selected binary classifiers, the 

optimal decision functions, which will evaluate the incoming preprocessed online batch 

process data and produce a binary answer for fault occurrence. The fault and time-specific 

classifier models inherently include the optimal set of features, which are the most 

informative process measurements/characteristics, to diagnose the detected fault at the time 

period of interest. Therefore, the end-models are able to provide instantaneous rank-ordered 

root-cause analysis when a fault occurs, which enables them to be employed as an online 

simultaneous fault detection & diagnosis tool. The end-user can further interpret and link the 

rank-ordered fault diagnosis to corrective actions to reverse the fault. The schematic 

representation of the implementation of the models for online phase is shown in Figure 6.

6 Case Studies

We have performed three sets of experiments to test the performance of the proposed data-

driven framework: (i) one-step rolling time horizon analysis, where fault detection and 

diagnosis models are built for each individual sample bin; (ii) two-step rolling time horizon 

analysis, in which models are developed for every two sliding sample bins; and (iii) evolving 
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time analysis, where we build models by using data within the selected sample bin and set of 

informative features from all previous sample bins. Below we describe each of the analysis, 

and provide corresponding results. The performance of the developed models is assessed via 

(i) fault detection rate (also known as true positive rate or recall), (ii) accuracy, (iii) false 

alarm rate, and (iv) Area Under the Receiver Operating Characteristic (ROC) Curve, (AUC). 

The ideal models would have perfect Area Under the ROC curve, accuracy, as well as fault 

detection rate being 1 with minimum False Alarm Rate (ideally, 0). The results of all fault & 

time-specific models with each time horizon approach is provided in the Supplementary 

material.

6.1 Fault Detection & Diagnosis with One-Step Rolling Time Horizon Approach

Here, we inspect the status of a given batch with a total of 1800 fault and time-specific end-

models, for 15 different faults (Table 2) at each of the 120 sample bins. We only consider the 

process data within each selected sample bin time period, and exclude any information from 

previous sample bins. Since, batch monitoring is performed within each sample bin 

individually, we refer this approach as one-step rolling time horizon approach.

Initial step in the one-step rolling time horizon approach is to gather the preprocessed data 

sets relevant to each sample bin. Here, the features of the data sets include the process 

variable measurements as well as slope, standard deviation and mean of each 13 process 

variables within each sample bin of size 10. This results in 169 features per bin, where 130 

of them belong to actual measurements and 39 characterizes the process behavior. On the 

other hand, the number of instances, which is the number of normal and faulty batches, 

varies along the time horizon. In each sample bin, we include only the normal and faulty 

batch data that have been observed between the time period of the selected sample bin. In 

particular, we have 400 normal and 1000-2000 faulty batches per fault (Table 2). When 

building models with one-step rolling time horizon approach, we select the faulty batches 

among the batches where the fault has already been introduced before the initial time point 

of the selected sample bin. Then, as mentioned in Section 5.2, we form balanced training 

and testing datasets including equal amount of normal and faulty batches for each model 

development. We have less faulty batches in the beginning of the process operation, 

therefore the dataset used to train a model for an early time period is smaller compared to 

later. In other words, the data set size changes as we move along the time horizon due to the 

change in the number of batches with varying fault onset time.

We have demonstrated 3 faults with varying level of difficulty in detection at the selected 

sample bins to evaluate the performance of the one-step rolling time horizon approach 

(Table 3). Fault 7 (change in feed temperature) is reported to be the easiest fault to detect 

due to the presence of feed temperature measurements in the batch process data set. Fault 8 

(pH sensor drift) poses moderate difficulty to be detected, whereas Fault 15 (contamination) 

is defined as one of the most challenging faults of the adopted dataset35. The complete set of 

fault and time-specific model results can be found in the Supplementary. Table 3 reports the 

selected fault and time specific models (end-models) with their corresponding optimal 

feature subset size, fault detection rate, model accuracy, AUC, and false alarm rate. When a 

fault is detected with these models, the corresponding optimal feature subset reveals the 
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explicit process measurements (and/or features describing process behavior) for diagnosis of 

the detected fault. For particular models, that are marked with asterisks, we have provided a 

second alternative model, where we are able to attain almost equivalent fault detection rate 

with significantly lower optimal feature subset size (Table 3). This consequently facilitates 

the isolation and correction of the detected fault by enabling optimal sensor placement (i.e. 

sensor network design). Furthermore, obtaining the maximum model performance with 

minimum number of features is favorable in terms of computational efficiency and 

simplicity. Figure 7 shows an example for such cases through Fault 8 at Sample Bin 12.

The models built via one-step rolling time horizon approach reveals perfect detection rate, 

and accuracy for Fault 7 with zero false alarm rate and small optimal feature subset size. As 

the detection difficulty increases (from Fault 7 to Fault 15), we observe that the early time-

specific models (prior to Sample bin 20) have shown relatively high false alarm rates. This 

may stem from the relatively low number of faulty batches in the early periods of the process 

simulation, and can be overcome by simulating additional batches with earlier fault onset 

time. On the other hand, the performance of the models of the later sample bins improve 

with the inclusion of more batch data. False alarm rates immediately become ideal by 

approaching to 0 later in the batch process regardless of the difficulty level of the fault 

detection.

Another observation is that the increase in the fault complexity is reflected with an increase 

in the average feature subset size across the all time-specific models of each fault.

Figure 8 depicts the fault detection rate of all fault and time-specific models built for each 

feature subset. Among them, the end-model is the one yielding the highest fault detection 

rate, highlighted with a red line, where corresponding feature subset size, model accuracy 

and false alarm rate are reported. As mentioned before, the results with asterisks imply the 

existence of an alternative model with almost equivalent fault detection rate with 

considerably lower feature subset size, which are listed in Table 3.

6.2 Fault Detection & Diagnosis with Multi-Step Rolling Time Horizon Approach

In this approach, we monitor a given batch with a total of 1785 fault and time-specific end-

models throughout the process. The models examine for 15 separate faults at every two 

successive sample bins in a sliding manner which corresponds to 119 checks. In addition to 

the process variable measurements of the later sample bin, we consider set of features from 

the former sample bin that characterize process behavior. In this case, we have exploited data 

of one previous sample bin in addition to the selected sample bin for each time-specific 

model development. This has enabled us to analyze the 3-dimensional batch process data via 

two-step rolling time horizon approach. Particularly, this approach can be extended with 

addition of further previous sample bins, therefore we call it as multi-step rolling time 

horizon approach.

In this case, similar to one-step rolling time horizon approach, initial step is to arrange two-

step sample bins and collect the preprocessed data sets. We have two-fold feature subsets in 

this approach, one set identifying the former sample bin, and later defining the recent 

process progress. The former feature subset contains solely the process behavior 
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characterizing features; slope, standard deviation and mean of 13 process variable 

measurements within that previous sample bin, resulting in 39 features. The later feature 

subset consists of the process measurements as well as slope, standard deviation and mean 

of each 13 process variables within the latest sample bin, resulting in an additional 169 

features per bin. As a result, we incorporate 208 features in each time-specific model 

development with two-step rolling time horizon approach. Here, similar to the one-step 

rolling time horizon approach, the number of batches involved during model development 

changes according to time due to the variation in fault onset time.

Table 4 tabulates the selected fault and time specific models (end-models) with the 

corresponding performance. Similarly, the alternative model results are listed in Table 4.

Similar to the previous approach, we observe that fault detection rates improve with time for 

all faults, and the optimal feature subset size increases as the faults become more 

challenging to detect. Finally, we notice a significant improvement in the fault detection rate 

of Fault 15 time-specific models after Sample Bins 18-20 compared to the models obtained 

via one-step rolling time horizon approach, which indicates that the added features have 

helped models to gain more insight to detect this challenging fault.

Figure 9 demonstrates the fault detection rate of the entire fault and time specific models 

built for each feature subset. The end-models are shown with red-dashed lines.

6.3 Fault Detection & Diagnosis with Evolving Time Horizon Approach

As a third and final case study, we adopt evolving time horizon approach, where we build 

models by making use of the entire historical process data until the last time point of the 

selected sample bin for analysis. Here, we monitor a given batch with a total of 1800 fault 

and time-specific end-models where the given batch is scanned for 15 different faults (Table 

2) at each of the 120 sample bins. We train models by exploiting the entire historical batch 

process data at each sample bin, therefore we refer this approach as evolving time horizon 

approach.

This approach is equivalent to the multi-step rolling time horizon approach, when one 

incorporates the process behavior features from the entire previous sample bins, instead of 

only one. This corresponds to the collection of slope, standard deviation and mean of 13 

process variable measurements from all previous and the most recent sample bins as well as 

the actual process measurements observed within the latest sample bin. Consequently, the 

data set size grows significantly as we move along the time horizon, where the number of 

features range between ~ 170–4400.

Table 5 exhibits the chosen fault and time specific models for the online phase (end-models) 

obtained via evolving time horizon based analysis. Compared to the other time horizon 

approaches, the fault detection rates attained with this approach for Fault 8 and 15 either 

remain same or slightly improve. On the other hand, the model performances for Fault 7 

time-specific models significantly deteriorate. This may be an indicator of the increased 

noise level in the data. In other words, aggregation of the entire historic process data has 

possibly elevated the amount of redundant features, consequently deteriorated the 
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performance of the models for Fault 7 (the easiest fault to detect). Another remarkable 

observation is the significant increase in the optimal feature subset sizes for Fault 7 and 15, 

which makes the evolving time horizon approach not preferable compared to the other two 

approaches.

Figure 10 shows the fault detection rate of all fault and time specific models built for each 

feature subset. The end-models are highlighted with red dashed lines.

6.4 Comparison

Here, we compare the performance of the fault and time-specific models built via three 

distinct time horizon approaches through Fault 7,8, and 15 (three faults with varying level of 

difficulty to detect). Figure 11 depicts the variation of fault detection rate with respect to 

time (i.e. sample bin) for one-step rolling, two-step rolling, and evolving time horizon 

approaches. The fault detection rate versus time plots for all faults are provided in Figure 

A1.

As one can notice, performance of different time horizon approaches are not consistent 

across the all faults; they are fault-specific. However, it is evident that as the detection 

difficulty level increases, two-step rolling and evolving time horizon analysis performs better 

than the other approach, which prevails the increasing significance of historical data usage 

for more challenging faults.

One major observation is the relatively low fault detection rate and accuracy in early time 

models among all time horizon approaches. This is mainly due to the faulty batch data 

scarcity in early time models (until sample bin 30), which implies low number of simulated 

batches with fault in early periods of the process due to varying fault onset times. Such 

scarcity affects the number of batches included during the model development in the offline 

phase. In early time models, the number of faulty batches is limiting case. However, the 

situation is reversed as we move along the time horizon. The number of simulated batches, 

in which fault has been introduced by then, exceed the number of simulated batches under 

normal conditions. In order to be consistent during model development and learn both class 

equally, we equate the number of normal and faulty batches before we train our fault 

detection and diagnosis models. This leads us to use of datasets with varying sizes along the 

process for different time-specific models. The size of the adopted dataset changes in two 

ways: (i) number of batches involved, and (ii) number of extracted features. The afore-

mentioned fluctuation in the number of simulated faulty batches along the simulation alters 

the dataset dimension by changing the number of batches involved. On the other hand, the 

number of features changes with the adopted time horizon approach. Particularly, the 

smallest dataset used for model development belongs to the first sample bin of one-step 

rolling time horizon analysis (Sample Bin 2), where we train our fault-specific models with 

12 faulty and 400 normal batches, and 142 features (after eliminating the ones with less than 

10−8 standard deviation among 169 features). Whereas the largest data set is observed at the 

final sample bin of the evolving time horizon approach, where we have 2000 faulty and 400 

normal batches, and 4381 features (after the aforementioned elimination based on the 

standard deviation threshold).
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Another possible reason for relatively lower performance of the models in early time of the 

process is the change in the operation mode. The process begins in a batch mode and 

switches to fed-batch mode once the substrate (i.e. glucose) concentration is nearly depleted. 

Since we have no flows into the bioreactor, thus no information of feed flow rate in batch 

mode as we do in fed-batch mode, the number of features contributing model development 

during that period decreases. This may have also caused the decrease in model performance 

in early time of the process.

During the detection of a moderate fault, Fault 8, we observe that all three time horizon 

approaches perform similar in early time models, where two-step rolling time horizon 

technique becomes superior in later stages. Whereas for the detection of a challenging fault, 

Fault 15, evolving time horizon approach competes with two-step rolling time horizon, and 

indeed dominates it in early time models in terms of the fault detection rate. Yet, for the sake 

of computational efficiency and simplicity, selection of the end-models via two-step rolling 

time horizon approach would be favorable over the end-models assessed by the evolving 

time horizon approach. Regardless of the fault and the time horizon approach, fault detection 

rates of early time models need to be improved and this can be achieved with further set of 

simulations where faults can be introduced earlier.

Finally, we present a comparative analysis for fault diagnosis through Fault 8. The diagnosis 

is provided for the Sample Bin 40, 80, and 120 models formed via one-step rolling (12), 

two-step rolling (13), and evolving (14) time horizon approaches. The color codes represent 

the Sample Bin index in Figures 8, 9, and 10, where cyan, green and blue represents Sample 

Bin 40, 80, and 120 models, respectively. Of note, for the cases where we have superior 

alternative models, we have adopted their optimal feature subset for fault diagnosis. The 

explicit list of features (process measurements and/or process behavior describing features) 

for fault diagnosis with the three time horizon approaches are given in Tables 6, 7, and 8, 

respectively.

7 Conclusions

In this paper, we have presented a novel feature selection algorithm based on nonlinear 

Support Vector Machine formulations and applied it for fault detection and diagnosis in 

batch processes. The proposed framework can easily be implemented as an online decision 

support tool. We have performed 3 sets of experiment to assess the performance of the 

proposed framework: (i) one-step rolling time horizon basis analysis, (ii) two-step rolling 

time horizon basis analysis, and (iii) evolving time horizon analysis, in which we change the 

amount of historical data incorporation during the offline (model development) phase. The 

results show that the selection of time horizon approach is specific to fault characteristics; 

whereas, for moderate and challenging faults, two-step rolling or evolving time horizon 

based analysis is favorable. Specifically, evolving time horizon based analysis has degraded 

the detection rates of Fault 7, which is a fault reported to be the easiest to detect. This shows 

that the inclusion of additional historical process information during model development 

does not necessarily improve accuracy of the fault detection models. On the contrary, the 

additional features may become redundant and increase the amount of noisy data, which 

subsequently deteriorate the model performance. Furthermore, even evolving time horizon 
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based analysis have produced slightly better performance for Fault 15, one of the most 

challenging faults to detect, at specific sample bins, the increase in the optimal feature 

(process measurement) subset size may render them unfavorable for the sake of simplicity. 

Nevertheless, one can select and implement the fault and time-specific models from any of 

the three time horizon approaches that yields the highest fault detection rate with optimal 

number of features for simultaneous fault detection and diagnosis.

The major contribution of the proposed framework is the establishment of accurate and 

simultaneous fault detection and diagnosis in batch processes by virtue of a novel feature 

selection algorithm based on nonlinear SVM formulation backed by global optimization 

theory. Most of the existing prevalent data-driven methods for fault detection are based on 

feature extraction techniques which do not explicitly reveal the explicit process variables for 

fault diagnosis. With the proposed framework, we produce fault and time specific end-

models which enable not only accurate detection of the faults but also simultaneously 

provide diagnosis of the detected fault by listing the most informative process 

measurements. The implementation of the end-models as an online decision support tool can 

(i) enable early intervention to the process to reverse the detected fault, (ii) significantly 

reduce the number of sensor measurements to diagnose the detected fault, and (iii) possibly 

guide for the optimal sensor placement (i.e sensor network design). This subsequently may 

increase process efficiency, safety, and profitability, which is the ultimate goal of the modern 

process industry.

Finally, in this work, we have focused on training 2-class models where one can access 

historical and/or simulation-based process data. In future work, we aim to extend the 

presented framework by developing one-class and multi-class classification techniques with 

SVM formulations for simultaneous fault detection, and diagnosis. Specifically, one-class 

classification techniques with SVM formulations with the presented feature selection 

algorithm is expected to handle cases where the historical industry data is unbalanced with 

normal and faulty cases, and process simulations are computationally expensive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Appendix

Figure A1. 
Comparison of the Fault Detection Rates for All Faults along the Batch Process with respect 

to One-step Rolling, Two-step Rolling, and Evolving Time Horizon approaches
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Highlights

• A novel data-driven framework using nonlinear Support Vector Machine-

based feature selection is proposed for fault detection and diagnosis in batch 

processes.

• The proposed framework is applied on a comprehensive benchmark dataset 

comprising of 22,600 batches with 15 faults, and normal operation.

• Fault and time-specific models are trained for simultaneous fault detection 

and diagnosis with three distinct time horizon approaches: one-step rolling, 

two-step rolling and evolving.
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Figure 1. 
Nonlinear Kernel-induced implicit mapping to higher dimensional space in Support Vector 

Machine (SVM) modeling
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Figure 2. 
Greedy Reductive Algorithm for Simultaneous Modeling & Model-informed Feature 

Selection
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Figure 3. 
Fed-batch Penicillin Production Flow Diagram
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Figure 4. 
Data Preprocessing: Unfolding the Batch Process Data and Formation of Sample Bins
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Figure 5. 
Offline Phase of the Proposed Simultaneous Fault Detection & Diagnosis Framework
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Figure 6. 
Online Phase Implementation for Simultaneous Fault Detection & Diagnosis
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Figure 7. 
Selecting the Optimal Feature Subset for Detection & Diagnosis of Fault 8 at Sample Bin 

120. (FDR: Fault Detection Rate, Acc: Accuracy, FAR: False Alarm Rate)
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Figure 8. 
One-step Rolling Time Horizon Analysis: Detection Rates of 3 faults with increasing level 

of difficulty in detection; Fault 7,8, and 15 respectively. The optimal number of features, 

detection accuracy and false alarm rate are provided at the highest detection rate. The results 

with asterisks indicate the existence of an alternative model producing almost equivalent 

performance with less features. Alternative models are provided in Table 3.
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Figure 9. 
Two-step Rolling Time Horizon Analysis: Detection Rates of Fault 7,8, and 15. The optimal 

number of features, detection accuracy and false alarm rate are provided at the highest 

detection rate. The results with asterisks indicate the existence of an alternative model 

producing almost equivalent performance with less features. Alternative models are provided 

in Table 4.
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Figure 10. 
Evolving Time Horizon Analysis: Detection Rates of Fault 7,8, and 15. The optimal number 

of features, detection accuracy and false alarm rate are provided at the highest detection rate. 

The results with asterisks indicate the existence of an alternative model producing almost 

equivalent performance with less features. Alternative models are provided in Table 5.
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Figure 11. 
Comparison of the Fault Detection Rates for Fault 7,8, and 15 along the Batch Process with 

respect to One-step Rolling, Two-step Rolling, and Evolving Time Horizon approaches
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Figure 12. 
Diagnosis of Fault 8 (pH sensor drift) with One-step Rolling Time Horizon based Approach 

at selected Sample Bins. TP represents Time Point. The color codes indicate the sample bin 

index which is compatible with the Figure 8. (Cyan: Sample Bin 40, Green: Sample Bin 80, 

Blue: Sample Bin 120).
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Figure 13. 
Diagnosis of Fault 8 (pH sensor drift) with Two-step Rolling Time Horizon based Approach 

at selected Sample Bins. TP represents Time Point. The color codes indicate the sample bin 

index which is compatible with the Figure 9. (Cyan: Sample Bin 40, Green: Sample Bin 80, 

Blue: Sample Bin 120).
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Figure 14. 
Diagnosis of Fault 8 (pH sensor drift) with Evolving Time Horizon based Approach at 

selected Sample Bins. TP represents Time Point. The color codes indicate the sample bin 

index which is compatible with the Figure 10. (Cyan: Sample Bin 40, Green: Sample Bin 

80, Blue: Sample Bin 120).
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Table 1

List of Online Measurements

Online Measured Variables Measurement Noise (σ)

1. Fermentation volume [m3] 0.002

2. Dissolved O2 concentration [mg/L] 0.004

3. Dissolved CO2 concentration [mg/L] 0.12

4. Reactor temperature [K] 0.1

5. pH[−] 0.02

6. Feed rate [L/h] 1%

7. Feed temperature [K] 0.1

8. Agitator power [W] 1%

9. Cooling/heating medium flow rate [L/h] 1%

10. Heating medium temperature [K] 0.1

11. Hot/cold switch [−] –

12. Base flow rate [mL/h] 1%

13. Acid flow rate [mL/h] 1%
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Table 2

Overview of Faults & Corresponding No of Batches in the Data Set

Fault No of Batches

1. Sudden change in feed substrate concentration 2000

2. Change in coolant temperature 2000

3. Agitator power drop 1600

4. Aearation rate drop 1600

5. Gradual change of feed rate 1200

6. Gradual dissolved oxygen sensor drift 2000

7. Feed temperature change 1600

8. pH sensor drift 1600

9. Non-functional pH control 1200

10. Reduced pH control 1200

11. Reactor temperature sensor bias 1200

12. Reactor temperature sensor drift 1600

13. Reduced temperature control 1200

14. Reduced temperature control - maximal flow not impacted 1200

15. Contamination 1000
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Table 6

Diagnosis of Fault 8 at Sample Bin 40 via One-step Rolling, Two-step Rolling, and Evolving Time Horizon 

based Analysis. (HPV: historic process variable, HPB: historic process behavior, CPV: current process 

variable)

Approach Sample Bin 40

Feature Rank Feature Type Corresponding Time Point Feature Name

One-step Rolling Time 
Horizon

1 HPB 391-400 Slope of Cumulative Acid Flow Rate

2 HPB 391-400 Standard deviation in Cumulative Acid 
Flow Rate

Two-step Rolling Time 
Horizon

1 HPB 381-390 Slope of Cumulative Acid Flow Rate

2 HPB 381-390 Standard deviation in Cumulative Acid 
Flow Rate

3 HPB 381-390 Mean of Cumulative Acid Flow Rate

4 CPV 400 Dissolved CO2 Concentration

Evolving Time Horizon

1 HPB 51-60 Mean of pH

2 HPB 31-40 Mean of pH

3 HPB 61-70 Mean of pH

4 HPB 71-80 Slope of Cumulative Acid Flow Rate

5 HPB 71-80 Standard deviation in Cumulative Acid 
Flow Rate

6 HPB 141-150 Mean of Cumulative Acid Flow Rate

7 HPB 151-160 Mean of Cumulative Acid Flow Rate

8 HPB 81-90 Slope of Cumulative Acid Flow Rate

9 HPB 161-170 Mean of Cumulative Acid Flow Rate

10 HPB 171-180 Mean of Cumulative Acid Flow Rate

11 HPB 131-140 Mean of Cumulative Acid Flow Rate

12 HPB 61-70 Slope of Cumulative Acid Flow Rate
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Table 7

Diagnosis of Fault 8 at Sample Bin 80 via One-step Rolling, Two-step Rolling, and Evolving Time Horizon 

based Analysis. (HPV: historic process variable, HPB: historic process behavior, CPV: current process 

variable)

Approach Sample Bin 80

Feature Rank Feature Type Corresponding Time Point Feature Name

One-step Rolling Time Horizon
1 HPB 791-800 Mean of pH

2 HPV 794 Hot/cold Switch

Two-step Rolling Time Horizon

1 HPB 781-790 Mean of pH

2 HPB 791-800 Mean of pH

3 HPV 787 Hot/cold Switch

4 HPV 787 Feed Rate

5 HPV 788 Fermentation Volume

6 HPV 788 Dissolved O2 Concentration

7 HPV 788 pH

8 HPV 787 Cumulative Base Flow Rate

9 HPV 787 Cooling/heating Medium Flow Rate

Evolving Time Horizon

1 HPB 301-310 Standard deviation in Cumulative Acid 
Flow Rate

2 HPB 301-310 Slope of Cumulative Acid Flow Rate

3 HPB 291-300 Standard deviation in Cumulative Acid 
Flow Rate

4 HPB 291-300 Slope of Cumulative Acid Flow Rate
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Table 8

Diagnosis of Fault 8 at Sample Bin 120 via One-step Rolling, Two-step Rolling, and Evolving Time Horizon 

based Analysis. (HPV: historic process variable, HPB: historic process behavior, CPV: current process 

variable)

Approach Sample Bin 120

Feature Rank Feature Type Corresponding Time Point Feature Name

One-step Rolling Time Horizon

1 HPB 1191-1200 Mean of pH

2 HPV 1194 Feed Rate

3 HPV 1194 Cooling/heating Medium Flow Rate

4 HPV 1194 Hot/cold Switch

5 HPV 1194 Dissolved O2 Concentration

6 HPV 1194 Heating Medium Temperature

Two-step Rolling Time Horizon 1 HPB 1191-1200 Mean of pH

Evolving Time Horizon

1 HPB 301-310 Standard deviation in Cumulative Acid 
Flow Rate

2 HPB 301-310 Slope of Cumulative Acid Flow Rate

3 HPB 291-300 Standard deviation in Cumulative Acid 
Flow Rate

4 HPB 291-300 Slope of Cumulative Acid Flow Rate

5 HPB 281-290 Standard deviation in Cumulative Acid 
Flow Rate
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