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Abstract

We show that under the null, the 2 log(Bayes factor) is asymptotically distributed as a weighted 

sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-

linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-

prior, and the normal prior. Our results have three immediate impacts. First, we can compute 

analytically a p-value associated with a Bayes factor without the need of permutation. We provide 

a software package that can evaluate the p-value associated with Bayes factor efficiently and 

accurately. Second, the null distribution is illuminating to some intrinsic properties of Bayes 

factor, namely, how Bayes factor quantitatively depends on prior and the genesis of Bartlett's 

paradox. Third, enlightened by the null distribution of Bayes factor, we formulate a novel scaled 

Bayes factor that depends less on the prior and is immune to Bartlett's paradox. When two tests 

have an identical p-value, the test with a larger power tends to have a larger scaled Bayes factor, a 

desirable property that is missing for the (unscaled) Bayes factor.
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1 Introduction

Bayesian methods have been sidelined by most practitioners in genetic association studies. 

The main reason is that p-value, although often misinterpreted, is entrenched among 

practitioners [Sellke et al., 2001, Nuzzo, 2014]. A Bayesian method that performs genetic 

association tests, such as that of Guan and Stephens [2008], often faces an inconvenient 

demand to produce a p-value associated with an extraordinarily large Bayes factor. Because 

the null distribution of Bayes factor is unknown, a previous solution has been to obtain the 

p-value through permutation [Servin and Stephens, 2007]. In genome-wide association 

studies, however, the significance threshold for p-values is exceedingly small, owing to the 

burden of multiple testing; thus, the number of permutations required is often prohibitively 
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large and hence impractical. This motivates us to quantify the null distribution of Bayes 

factors, from which we can compute a p-value associated with Bayes factor analytically, 

without the need of permutation.

Our second motivation is to understand Bayes factor itself, first and foremost to understand, 

quantitatively, the prior-dependence nature of Bayes factors. Such prior-dependency often 

turns away naive practitioners. The second is to investigate the root of inconsistency of 

Bayes factor, namely, Bartlett’s paradox [Bartlett, 1957]. Bartlett discovered that a diffusive 

prior tends to favor, unintentionally, the null model. In other words, if one were uncertain 

about the prior effects, one would automatically favor the null. (On the other hand, if one 

were too certain about the prior effects, one would risk prior-misspecification, which also 

unintentionally favors the null.) We identified the dominant term in Bayes factor that is 

affected by the prior, which motivates us to systematically scale Bayes factor. The scaled 

Bayes factor depends weakly on the prior and no longer suffers from the Barlett’s paradox.

Our third motivation is to emphasize the necessity of taking into account power to interpret 

p-values. The probability that a positive report is false depends on both the p-value and the 

power of a test [Wacholder et al., 2004]. A plainer reiteration of this insightful observation is 

that a small p-value alone cannot provide a strong evidence for a true association, and it has 

to be interpreted in light of the statistical power [Burton et al., 2007]. A large Bayes factor, 

however, by itself provides a strong evidence for a true association [Stephens and Balding, 

2009]. And Sawcer [2010] related Bayes factor to the ratio between the power and the p-

value. It is therefore beneficial for a study to report both Bayes factors and their associated 

p-values. The idea of computing a p-value associated with Bayes factor dates back to Good 

[1957], as a symbol of “Bayes/non-Bayes compromise” [Good, 1992]. The p-values will 

satisfy the practical mandate imposed by the research community, and the companion Bayes 

factors will remind one to account for power when interpreting p-values. For example, tests 

may be ranked differently by their p-values than by their Bayes factors, and two identical p-

values may associate with different Bayes factors. Both examples highlight the necessity of 

taking into account the statistical power to interpret p-values. To this end, our scaled Bayes 

factor becomes more appealing. When two tests produce identical p-values, the scaled Bayes 

factor tends to assign a larger value to the test with a larger power, while the (unscaled) 

Bayes factor does not.

Our main result states that, under the null, the logarithm of Bayes factor has the same 

distribution as a weighted sum of chi-squared random variables with a shifted mean. The 

results hold asymptotically for Bayesian multi-linear regression. For simple linear 

regression, we have 2 log(Bayes factor) = λχ1
2 + log(1 − λ), where λ is a quantity related to the 

prior and the data, and χ1
2 denotes a chi-squared random variable of one degree of freedom 

(denoted by d.f.). The undesirable properties of Bayes factor, namely, its over-dependence 

on the prior and Bartlett’s paradox, find their roots in the shift term log(1 − λ). Our scaled 

Bayes factor effectively substitutes this term with −λ to achieve 

2 log(scaled Bayes factor) = λ(χ1
2 − 1). For simple linear regression, the p-value associated with 

a Bayes factor is the same as the p-value of the likelihood ratio test. For multi-linear 

regression, computing the p-value associated with a Bayes factor requires evaluation of the 
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distribution function of a weighted sum of chi-squared random variables. Based on a 

recently published polynomial algorithm [Bausch, 2013], we developed a software package 

to evaluate the p-values analytically, which can efficiently achieve an arbitrary precision.

The paper is structured as follows. In Section 2 we formulate the model and the priors, and 

provide our main result on the null distribution of Bayes factors. In Section 3 we 

demonstrate how to compute a p-value associated with a Bayes factor. In Section 4 we 

introduce the scaled Bayes factor and demonstrate its benefits. In Section 5 we analyze a real 

dataset to compute and compare Bayes factor, the scaled Bayes factor, and the p-values 

associated with Bayes factors. In the last section we summarize our findings and discuss 

relevant (future) topics. All proofs are in the Supplementary online.

2 The Null Distribution of Bayes factor

We consider the standard hypothesis testing problem in linear regression with independent 

normal errors.

H0: y | a, τ MVN(Wa, τ−1In), H1: y | a, b, τ MVN(Wa + Lb, τ−1In), (1)

where MVN stands for the multivariate normal distribution, In is an n × n identity matrix, W 
is a full-rank n × q matrix representing the nuisance covariates, including a column of 1, a is 

a q-vector, L is an n × p matrix representing the covariates of interest, b is a p-vector, and τ
−1 is the error variance. The two models H0 and H1 are nested and the null model H0 

represents no effect of L.

The Bayesian linear regression comes with three forms of conjugate priors in the literature. 

The first is the normal-inverse-gamma (NIG) prior [O’Hagan and Forster, 2004, Chap. 9], 

detailed below:

a |τ MVN(0, τ−1Va), b |τ MVN(0, τ−1Vb), τ Gamma(κ1/2, κ2/2), (2)

where Va and Vb are some positive definite matrices, and the gamma distribution is in the 

shape-rate parameterization. Following the standard treatment [c.f., Servin and Stephens, 

2007] to let Va
−1 0 and κ1, κ2 → 0, we can compute Bayes factor in the closed form

BF = |Vb|−1/2|XtX + Vb
−1|−1/2 1 −

ytX(XtX + Vb
−1)−1Xt y

yt y − ytW(WtW)−1Wt y

−n/2

(3)

where
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X = (In − W(WtW)−1Wt)L (4)

is the residuals of L after regressing out W, and |·| denotes the determinant. Since W is 

assumed to contain a column of 1, each column in X is therefore centered.

Bayes factor in (3) uses the null as the base model and is thus called the null-based Bayes 

factor [c.f., Liang et al., 2008], which has been widely used in genetic association studies 

[Balding, 2006, Marchini et al., 2007, Guan and Stephens, 2008, Xu and Guan, 2014].

The use of the improper prior Va
−1 0, κ1, κ2 → 0 has two merits. First, the limiting prior 

distributions for a and τ is equivalent to Jeffreys’ prior [Ibrahim and Laud, 1991, O’Hagan 

and Forster, 2004], p(a, τ ) ∝ τ(q−2)/ 2, which is the standard choice of the non-informative 

prior for the nuisance parameters in the literature. Moreover, the posterior distributions for a 
and τ are proper. Second, Bayes factor in (3), which can be written as the limit of a sequence 

of Bayes factors with proper priors (see proof in Supplementary), is invariant to the shifting 

and scaling of y (or independent of a and τ). To see this, replace y with the standardized 

random variable

z =def τ1/2(y − Wa) . (5)

and one can check (3) still holds.

We assume a priori that the expectation of b is zero so that the direction of the effect has no 

influence on Bayes factor. This prior for b is commonly adopted in practice [c.f., Jeffreys, 

1961, Chap. 5]. For the NIG prior, we further assume independence between the effects and 

the covariates. Henceforth when we refer to the NIG prior we mean

Vb = σb
2Ip, (6)

unless otherwise stated. The NIG prior and the corresponding Bayes factor will be the 

primary focus of this paper.

The second conjugate prior is Zellner’s g-prior [Zellner, 1986, Liang et al., 2008]:

p(a, τ) ∝ 1/τ, b |τ MVN(0, g
τ (XtX) − 1) . (7)

This can be seen as a special case of the NIG prior with Vb = g(XtX)−1 and thus Bayes factor 

under the g-prior can be derived straightforwardly from (3).
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The third conjugate prior, the normal prior, can also be viewed as a special case of the NIG 

prior, when the error variance τ−1 is assumed known:

a |τ MVN(0, τ−1Va), b |τ MVN(0, τ−1Vb) . (8)

Under this prior, and letting Va
−1 0, Bayes factor can also be computed analytically

BF = |Vb|−1/2|XtX + Vb
−1|−1/2exp 1

2 ztX(XtX + Vb
−1)−1Xtz , (9)

where X is defined in (4) and z is defined in (5). Because the error variance in most 

applications is unknown, the normal prior is more of theoretical interest. But, as we will see 

shortly, Bayes factor with the normal prior is approximately equal to that with the NIG prior. 

This is not too surprising because the data are very informative on the error variance.

Theorem 1. For multi-linear regression (1) with the NIG prior (2), the g-prior (7), and the 
normal prior (8), under the null Bayes factors (BF) given in (3) and (9) follow

2log(BF) = ∑
i = 1

p
[λiQi + log(1 − λi)] + ε, (10)

where Qi = (ui
tz)2i.i.d χ1

2 with z defined in (5), and (λi, ui) is the ith eigenvalue-eigenvector 

pair of X(XtX + Vb
−1)−1

Xt with X defined in (4). For the NIG prior and the g-prior, ε = oP (1) 

vanishes in probability when the sample size n → ∞. For the normal prior ε = 0.

Theorem 1 states that under the null 2 log BF is distributed as a weighted sum of chi-squared 

random variables with a shifted mean, and the weights and the mean-shift can be computed. 

By evaluating the distribution function, we can obtain a p-value associated with Bayes 

factor. For simple linear regression, Q1 is asymptotically equal to the test statistic of the 

likelihood ratio test. Thus, the p-value associated with Bayes factor is the same as the p-

value of the likelihood ratio test.

It is easy to see that λi ∈ [0, 1). When the leading eigenvalue approaches 1, ∑i = 1
p log(1 − λi)

goes to negative infinity, and so does the 2 log BF. Under two scenarios the leading 

eigenvalue does approach 1: the sample size goes to infinity or the prior diffuses indefinitely. 

Thus the prior-dependence nature of Bayesfactor and the Barlett’s paradox both find their 

roots in the term ∑i = 1
p log(1 − λi). Moreover, when the sample size gets extraordinarily large, 

every λi approaches 1 and ∑i = 1
p λiQi behaves like the likelihood ratio test statistic, which is 

distributed as a chi-squared random variable with p degrees of freedom, a special case of 

Wilks’s [1938] theorem.
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3 The P-value Associated with Bayes factor

Using Theorem 1 we can compute a p-value associated with Bayes factor given in (3), which 

henceforth is denoted by pB. Since Bayes factor is a test statistic, pB is naturally a 

Frequentist p-value. We point out pB is also a Bayesian p-value. The p-values, or tail 

probabilities, are frequently computed in Bayesian context to check whether the model 

provides a good fit to the data. Bayesians p-values can be computed by comparing the 

observed test statistic to a predictive distribution obtained by integrating out the nuisance 

parameters over a reference distribution. Different Bayesian p-values can be computed using 

different reference distributions [Robins et al., 2000, Table 1]. Two well-known examples 

are the prior predictive p-values [Box, 1980] and the posterior predictive p-values [Rubin, 

1984, Meng, 1994], which use the prior and the posterior as the reference distributions 

respectively. In our case, Bayes factors in (3) and (9) are independent of the nuisance 

parameters; thus, pB can be viewed as a posterior predictive p-value. This convenience can 

be viewed as a bonus from the improper prior we used.

Corollary 1. Denote by pF the p-value from the likelihood ratio test, then for simple linear 
regression, we have asymptotically pB = pF.

When p = 1, the right-hand side of (10) contains a single chi-squared random variable Q1, 

which is asymptotically equal to the likelihood ratio test statistic, and therefore the two p-

values are equal. In addition, for simple linear regression (10) explains the linear relationship 

between log BF and the likelihood ratio test statistic observed in Wakefield [2008] and Guan 

and Stephens [2008].

3.1 Weighted Sum of χ1
2

For multi-linear regression, the right hand side of (10) contains a weighted sum of chi-

squared variables. The weights λ1, ..., λp are functions of the prior effect size σb and the 

eigenvalues of the matrix X defined in (4). In contrast, the likelihood ratio test statistic is 

asymptotically equal to ∑i = 1
p Qi and distributed as χp

2, which does not take into account the 

eigenvalues of X. Consequently, pB no longer equals to pF in general. One exception, 

however, is Bayes factor under the g-prior, where we have λi = g/(g + 1) for every i.

To compute pB for multi-linear regression requires evaluating the distribution function of a 

weighted sum of chi-squared random variables, a challenging problem. Fortunately, a recent 

polynomial method by Bausch [2013] provides an efficient solution. Our contribution here is 

its implementation. We have implemented Bausch’s method in C++, which allows one to 

compute p-values (tail probabilities) to an arbitrary precision efficiently.

First we briefly summarize Bausch’s method and then provide more details of our 

implementation. Bausch pairs the chi-squared variables to take advantage of the identity

f λ1Q1 + λ2Q2
(x) = (4λ1λ2)−1/2exp( −

λ1 + λ2
4λ1λ2

x)I0(
λ2 − λ1
4λ1λ2

x),
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where Q1 and Q2 are independent χ1
2 random variables and I0 is the modified Bessel function 

of the first kind. I0 can be approximated, to an arbitrary precision, by its Taylor expansion, 

and the series obtained can be integrated algebraically in the subsequent convolutions. The 

error of this algorithm only depends on the remainder terms of the Taylor expansions and 

thus can be quantified. Bausch showed that the complexity of this algorithm is polynomial in 

p.

In our implementation, the weights (λ1, ..., λp) are sorted in a descending order and the chi-

squared variables are then paired consecutively. If p is odd, the term with the smallest weight 

is retained for a numerical convolution in the last step. This pairing strategy aims to 

minimize the number of terms needed in Taylor expansions for a pre-specified precision. 

After Taylor expansion, we are faced with convolving gamma density functions (up to a 

normalizing constant). The order of the convolutions is determined by a single-linkage 

hierarchical clustering [Murtagh and Contreras, 2012] on the rate parameters of the gamma 

densities. Convolving two gamma densities of similar rates is computationally more 

efficient.

Our program has four features outstanding. First, we adopted GNU Multi-Precision Library 

so that our program can produce an arbitrarily small p-value without suffering underflow or 

overflow. Second, for an even number of chi-squared variables, pB can be computed at an 

arbitrary precision; for an odd number of chi-squared variables, the error introduced at the 

last step of numerical convolution can be made arbitrarily small. Third, the terms of Taylor 

expansion are determined by a pre-specified precision and a strict error bound is provided. 

Last, since the program is written in C++, it is fast and suitable for studies that evaluate 

millions of tests, such as genetic association studies. Figure 1 demonstrates the efficiency of 

our program, for example, when p = 10 our program can evaluate ≈ 150 p-values per second. 

The speed appears to be quadratic in p. The weighted sum of chi-squared variables occurs 

frequently in statistical applications, such as the ridge regression, the variance component 

model, and recently the association testing for rare variants [Wu et al., 2011, Epstein et al., 

2015]. We believe our program has a wide range of applications. The source code and 

executables of our program BACH (Bausch’s Algorithm for CHi-square weighted sum) are 

freely available at http://haplotype.org.

3.2 Accuracy and Calibration of pB for Finite Sample Sizes

Using Theorem 1, we can evaluate extremely small p-values, an important advantage in 

applications such as genome-wide association studies (GWAS) compared to the permutation 

method described in [Servin and Stephens, 2007]. Since pB is quantified asymptotically, we 

are compelled to evaluate the accuracy and calibration of pB for small sample sizes. We also 

computed the likelihood ratio test p-value pF as a comparison because of its intrinsic 

connection to Bayes factor (and hence pB) shown in Theorem 1.

We used a GWAS dataset to perform our simulation studies. The details of the dataset are 

provided in Section 5. For given n and p, we randomly sampled a subset of genotypes of n 
individuals and p SNPs. Then we simulated y under the null, that is, y ~ MVN(0, In). For 

each pair of sampled genotypes and simulated phenotypes, we computed pB, using σb = 0.2, 
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and pF. We chose n = 100, 300 and p = 1, 5, 10, 20. For every combination of n and p we 

repeated the simulations 107 times. For p = 1, we can compute the exact p-value associated 

with Bayes factor using the F test (see proof in Supplementary). The comparison between 

exact values of pB and pB obtained from asymptotic approximation is shown in the top row 

of Figure 2. For p > 1, true values of pB cannot be obtained analytically, we thus compared 

our asymptotic results against the theoretical uniform distribution. The two bottom rows 

show that for n = 100, the asymptotic results are conservative for small p-values; but for n = 

300, the asymptotic results appear to be well-aligned with the theoretical prediction. Overall, 

Fig. 2 demonstrates that pB is well calibrated, and the calibration is better than the pF at the 

tail. We thus conclude that our asymptotic method for obtaining pB is accurate and well-

calibrated when the sample size is more than a few hundred.

4 Scaled Bayes Factors

Bayes factors are sensitive to the specification of priors. Let’s consider the NIG prior with 

Vb = σb
2Ip and denote the singular values of X by δi for i = 1, …, p. Then λi in (10) becomes 

λi = δi
2/(δi

2 + 1/σb
2), and thus

2 log BF = ∑
i = 1

p δi
2Qi

δi
2 + 1/σb

2 − log (1 + δi
2σb

2 . (11)

Here we assume the sample size is sufficiently large such that the oP(1) error term can be 

safely omitted. The term λiQi is bounded by Qi (because λi < 1), but the term log(1/δi
2σb

2) is 

monotonically increasing with respect to both δi and σb. When the sample size goes to 

infinity, δi goes to infinity; when the prior becomes more diffusive, σb goes to infinity. These 

properties give rise to the prior-dependence nature of Bayes factor and Bartlett’s paradox.

By (10), 𝔼0[2log BF] = ∑i = 1
p (λi + log(1 − λi)), where 0 is the expectation evaluated under 

the null. Centering 2 log BF to obtain

2 log sBF =def 2 log BF − 𝔼0[2 log BF] = ∑
i = 1

p
λi(Qi − 1) . (12)

We call the quantity log BF − 0[log BF] the logarithm of the scaled Bayes factor (sBF). By 

definition, evaluating sBF requires computing 0[2 log BF]. In addition to direct 

computation, 0[2 log BF] can also be evaluated by simulating y under the null. A valid and 

convenient approach to simulating under the null was proposed by Kennedy [1995]. The 

approach is to permute yW, the residuals of y regressing out covariates W. Since 2 log BF is 

a weighted sum of chi-squared random variables, a modest number of permutations of yW 

provide an accurate estimation of its mean under the null. The permutation might be 

advantageous over the analytical computation when the model is mis-specified.
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Proposition 2. The scaled Bayes factor has the following properties.

a. 𝔼0[2log sBF] = 0; sBF/BF = ∏i = 1
p {exp( − λi/2)/ (1 − λi)} > 1.

b. sBF and BF have the same (Bayesian) p-value pB.

c. Let ỹ be a permutation of y. Then BF(y)/BF(ỹ) = sBF(y)/sBF(ỹ) =def D(ỹ), and 

P[log D (ỹ)] = log sBF(y), and sBF(y) < P[D(ỹ)].

Comparing (11) and (12), the scaling removes from sBF the over-dependence on prior and 

Bartlett’s paradox observed in BF (Fig. 3). The scaling is a function of λ which takes value 

in [0, 1)p. If there is a gap between λi and 1, then the i-th component contributes modestly to 

the scaling. For example, when p = 1 the scaling is 1:5 when λ1 = 0.8 and 2.0 when λ1 = 

0.9. When all λi → 0, the scaling approaches 1 and meanwhile sBF → 1, as expected; 

when all λi → 1, although the scaling factor blows up (sBF=BF → ∞), 2 log sBF is stable 

and 2log sBF χp
2 − p .

Consider a multiple testing problem that tests H1, H2, … against H0. Each alternative model 

is concerned with testing a single covariate in association with the response variable, and 

each covariate has the same λ1. Then sBF and BF produce the same ranking for alltests, 

because the scaling coefficient is determined solely by λ1. In light of the connection 

between BF and pF [Wakefield, 2008, Guan and Stephens, 2008], we have that, 

asymptotically, sBF and pF produce the same ranking for all tests that have the same λ1. 

However, when λ1 differs, the three statistics BF, sBF, and pF (or pB) produce different 

rankings.

4.1 sBF disregards informativeness of covariates under the null

Let us focus on simple linear regression. The treatment of multi-linear regression can be 

found in Supplementary. Let Vb = σb
2andXtX = δ1

2. Then we have λ1 = δ1
2/(δ1

2 + 1/δb
2). So λ1 

can be taken as a measurement of the informativeness of a covariate. In genetic association 

studies, a SNP’s λ1 is determined by the minor allele frequency and the prior effect size, and 

for a fixed prior effect size, the larger the minor allele frequency, the larger the λ1.

Proposition 3. Suppose two models H1 and H2 are each concerned with a single but 
different covariate, and H1 associates with a larger λ1. Denote BFj and sBFj of BF and sBF 

for model Hj (j = 1, 2). We have

𝔼0[log BF1 − log BF2] < 0, 𝔼o[log sBF1 − log sBF2] = 0 . (13)

Although it is rudimentary to prove Proposition 3 (see Supplementary), the result is 

illuminating with respect to the difference between BF and sBF. Under the null, BF has the 

propensity to assign a larger value to a less informative covariate. In other words, BF 

penalizes more heavily to a more informative covariate. On the other hand, sBF disregards 

the informativeness of a covariate under the null. This indifference to the informativeness of 

sBF is advantageous under the alternative model (next section), because, loosely speaking, 
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the over-penalty of BF on more informative covariates applies not just under the null, but 

also under the alternative.

4.2 BF and sBF under the local alternatives

The local alternatives are a sequence of alternatives that scale down the effect size when 

sample size increases so that the test statistic converges for large samples [c.f. Ferguson, 

1996, Chap. 22]. The following theorem quantifies BF (and hence sBF) under the local 

alternatives.

Theorem 4. For multi-linear regression (1) with the NIG prior (2), the g-prior (7), and the 
normal prior (8), under the local alternatives b = β/ nτ and assuming either LtL/nconverges 

or L is entry-wise bounded, Bayes factors given in (3) and (9) follow

2 log BF = ∑
i = 1

p
λiQi + log(1 − λi) + ε, Qi ∼ X1

2(ρi), (14)

where ε ~ oP (1), Qi is a noncentral chi-squared random variable with d.f. = 1 and 

thenoncentrality parameter ρi = (ui
tLβ)2/n, and (λi, ui) is the ith eigenvalue-eigenvector pair 

of X(XtX + Vb
−1)−1

Xt. For the normal prior ε = 0.

Note in the above theorem 2 log BF has the same form as in (10). The only difference is that 

under the local alternatives Q1, …, Qp become noncentral chi-squared random variables 

instead of central chi-squared under the null. The assumptions on L guarantees the stochastic 

boundedness of ρi, permitting a Taylor expansion that leads to the linear approximation. 

These two assumptions are usually satisfied in practice, particularly in genetic association 

studies, where each entry of L is the allele counts of an individual at a marker and thus 

bounded by two.

Let’s assume that the sample size is large enough so that the error term ε in Theorem 4 can 

be safely ignored. For simple linear regression, we have 2 log BF = λ1Q1 + log(1−λ1) and 2 

log sBF = λ1(Q1−1), where Q1 χ1
2(ρ1) is a noncentral chi-squared random variable. Because 

[Q1] = ρ1 + 1, we have [2 log sBF] = λ1ρ1, which is proportional to λ1 for a fixed ρ1. In 

other words, under the local alternatives, sBF tends to assign larger values to more 

informative covariates. On the other hand, [2 log BF] = λ1(ρ1 + 1) + log(1−λ1) is not a 

monotonic function of λ1 for a fixed ρ1. Thus, the (unscaled) Bayes factor does not respect 

the informativeness of covariates under the alternative model.

Proposition 5. Consider simple linear regression in the context of Theorem 4,

a. Given b = σb/ τ, Q1 χ1
2(ρ1).

b. Let b N(0, σb
2/τ), the marginal distribution (over b) of Q1 is (1 − λ1)−1χ1

2, a scaled 

central chi-squared distribution.
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The above proposition says that under the local alternatives the distribution of Q1 (and hence 

BF and sBF) is determined by λ1. In (a), the alternative is evaluated at a fixed point, while in 

(b) it is averaged over the prior distribution of b. Because the power of a test is determined 

by the alternative distribution of Q1 (for a fixed null), Proposition 5 suggests that the 

statistical power is positively correlated with λ1. This result is simple yet profound. Suppose 

we are faced with two tests with equal p-values that suggest the null should be rejected. 

Without knowing the powers of the tests, we cannot decide which rejection is more reliable 

or carries more evidence [Stephens and Balding, 2009]. Suppose two tests have different 

λ1’s but the same Q1’s, then the two tests have the same p-value. From 2 log sBF = 

λ1(Q1−1), the scaled Bayes factor has a propensity to assign a largervalue to the test that has 

a larger power (or a larger λ1), a desirable property. On the other hand, this desirable 

property is missing for the unscaled Bayes factor.

5 Applying to Ocular Hypertension GWAS Datasets

To illustrate how the scaled Bayes factor performs in real data analysis, we applied for 

access and downloaded two GWAS datasets from the database of Genotypes and Phentoypes 

(dbGaP). Both studies were funded by the National Eye Institute: one is the Ocular 

Hypertension Treatment Study [Kass et al., 2002] (henceforth OHTS, dbGaP accession 

number: phs000240.v1.p1), the other is National Eye Institute Human Genetics 

Collaboration Consortium Glaucoma Genome-Wide Association Study [Ulmer et al., 2012] 

(henceforth NEIGHBOR, dbGaP accession number: phs000238.v1.p1).

The phenotype of interest is the intraocular pressure (IOP). The OHTS dataset only contains 

individuals of high IOP (> 21). The NEIGHBOR dataset is a case-control design for 

glaucoma [Ulmer et al., 2012, Weinreb et al., 2014], in which many samples have IOP 

measurements because a high IOP is considered a major risk factor and a precursor 

phenotype for glaucoma. The NEIGHBOR dataset, however, contains case samples with 

small IOP and control samples with large IOP. Since IOP and glaucoma evidently have 

different genetic basis, though many are overlapping, we removed those samples. We also 

removed samples whose IOP measurements differ by more than 10 between the two eyes 

since such a large difference is likely to be caused by a different mechanism, e.g., physical 

accidents. The average IOP of the two eyes was used as the raw phentoype. We then 

performed the routine quality control for the genotypes using the same procedure described 

in Xu and Guan [2014]. OHTS and NEIGHBOR were genotyped on different SNP arrays, 

and there remained 301, 143 autosome SNPs genotyped in both datasets that passed QC. We 

then performed principal component analysis to remove the outliers and extracted 3,226 

subjects (740 from OHTS and 2486 from NEIGHBOR) that clustered around the European 

samples in HapMap3 [The International HapMap Consortium, 2010]. We regressed out age, 

sex, and 6 leading principal components from the raw phenotypes, quantile normalized the 

residuals and used them as the phenotypes for single SNP analysis. We computed BF, sBF 

and pB using prior σb = 0.2.

We first compared BF and sBF in different minor allele frequency (MAF) bins. Different 

MAF bins correspond to different bins of the informativeness (λ1) of SNPs. Figure 4 shows 

that in each bin log10 sBF ~ log10 BF is roughly parallel to the line y = x, and more 
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importantly the larger the MAF, the further are the points away from y = x, or in other 

words, log10 sBF − log10 BF is larger, which agrees well with the definition of sBF (Fig. 3), 

and fits the theoretical predictions (Propositions 3 and 5). Another noticeable feature in Fig. 

4 is that the minimum value of sBF is larger than that of BF, which is consistent with the 

Proposition 2(a).

Next we examined the ranking of SNPs by different test statistics. Table 1 contains the top 

20 SNPs in the ranking by BF. Rows were then sorted according to SNP’s chromosome and 

position. Incidentally, the top 2 hits (rs7518099 and rs4656461) are the same for all the three 

test statistics. The rankings are largely similar to one another among the three test statistics: 

BF, sBF, and pB, particularly so between BF and pB. There is, however, the noticeable 

exception of SNP rs7696626; with a ranking by sBF that is much worse than its rankings by 

BF and pB. Not surprisingly, this SNP has the smallest MAF (0.023) among the 20 SNPs 

included in Table 1. This example fits the theoretical observations made in Proposition 3. We 

permuted the phenotypes once, and recomputed the test statistics. The permutation is to 

simulate under the null to confirm that 0[log sBF] = 0. Apparently sBF is more invariant 

against permutation compared to BF in the sense that log(sBF(y)/sBF(ỹ)) ≈ log sBF(y).

Our choice of the σb = 0.2 represents the prior belief of small but noticeable effect size in the 

context of GWAS [c.f. Burton et al., 2007]. To check how sensitive our results with respect 

to the choice of σb = 0.2, we redid the analysis using σb = 0.5. As predicted by our theory 

(Fig. 3), we observed that with σb = 0.5 BF tends to be smaller and sBF tends to be larger, 

and pB remains unchanged. Moreover, the rankings of the SNPs remained mostly unchanged 

between the two choices of σb (Table S1 in Supplementary).

Lastly, although it was not our main objective, we examined the top hits in the association 

result. Our analysis reproduced three known genetic associations for IOP. Namely, the 

TMCO1 gene on chromosome 1 (163.9M-164.0M) which was reported in [van Koolwijk et 

al., 2012]; a single hit rs2025751 in the PKHD1 gene on chromosome 6 [Hysi et al., 2014]; 

and a single hit rs12150284 in the GAS7 gene on chromosom 17 [Ozel et al., 2014]. A 

noticeable potentially novel finding is the gene PEX14 on chrosome 1. Two SNPs, 

rs12120962 and rs12127400, have modest association signals from BF and pB, but their 

scaled Bayes factors are noteworthy. PEX14 encodes an essential component of the 

peroxisomal import machinery. The protein interacts with the cytosolic receptor for proteins 

containing a PTS1 peroxisomal targeting signal. Incidentally, PTS1 is known to elevate the 

intraocular pressure [Shepard et al., 2007]. In addition, a mutation in PEX14 results in one 

form of Zellweger syndrome, and for children who suffer from Zellweger syndrome, 

congenital glaucoma is a typical neonatal-infantile presentation [Klouwer et al., 2015].

6 Discussion

In this paper, we quantify the null distribution of Bayes factors in the context of multilinear 

regression. We showed that under the null, 2 log BF is distributed as a weighted sum of chi-

squared random variables. The null distribution allows us to compute the p-value associated 

with Bayes factor analytically, and we have developed a software package to do so 

efficiently. The software package can be used in a wide range of applications such as ridge 
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regression, variance component model, and genetic association studies. The null distribution 

of Bayes factors also allows us to study the properties of Bayes factors, and we identified the 

dominant term in Bayes factor that leads to its excessive prior-dependence and Bartlett’s 

paradox. We proposed the scaled Bayes factor, which depends less on the prior and is 

immune to Bartlett’s paradox. We then studied the properties of the sBF under the null and 

the local alternatives. Compared to BF, sBF respects more to the informativeness of data.

Very often the covariates L are inferred from a statistical model, for example, imputed allele 

dosages in Guan and Stephens [2008] and the haplotype loading matrix in Xu and Guan 

[2014]. One would like to take into account the uncertainty of the inferred L. In imputation-

based association studies, one may compute the posterior mean of L and then perform the 

test. But in haplotype association analysis [Xu and Guan, 2014], using the posterior mean of 

L is impractical as one realization of L may be a column switching of the other, to say the 

least. A natural solution is to compute a Bayes factor for each realization of L and use the 

averaged Bayes factor as the test statistic. Then how to evaluate the associated p-value for 

the averaged Bayes factor? The same question also arises after obtaining an averaged Bayes 

factor from multiple choices of σb’s. Two commonly used methods to combine p-values are 

Fisher’s [1948] method and Stouffer et al.’s [1949] method. Fisher’s method uses 

−2∑i = 1
k log(pi) χ2k

2 ; and Stouffer’s method first obtains a Z-score for each p-value and then 

uses ∑i = 1
k Zi/ k N(0, 1). Both methods assume the p-values to be combined are 

independent, while in our situations the p-values are obviously dependent. Motivated by 

Theorem 1, we propose to combine p-values using 2 log(∑i = 1
k exp(W i/2)/k) χ1

2, where Wi = 

Ψ−1 (1−pi) and Ψ is the cumulative distribution function of χ1
2. In essence, we converted 

each p-value to its associated Bayes factor, averaged Bayes factors, and computed pB of the 

average Bayes factor. Since averaging over Bayes factors is always valid and Theorem 1 

provides the necessary connection between p-values and Bayes factors, our approach to 

combining the correlated p-values appears to work well, at least for the afore-mentioned two 

examples, where the existing methods surely fail.

By definition, 0[BF] = 1 which is a nice property because it suggests that BF does not favor 

either the null or the alternative when the data are simulated under the null. A careful 

investigation into Proposition 3, however, revealed that this seemingly nice property 

effectively results in a greater penalty on more informative covariates. The scaled Bayes 

factor, on the other hand, satisfies 0[log sBF] = 0, trading the property 0[BF] = 1 of the 

(unscaled) Bayes factor. Immediately, this trade suggests that sBF favors the alternative over 

the null (by Jensen’s inequality or simply Proposition 2(a)). We argue that this trade brings 

several benefits to sBF: it depends less on prior; it becomes immune to Bartlett’s paradox; 

and, more importantly, sBF becomes well calibrated with respect to permutation. Suppose 

we permute the response variable y once to obtain ỹ and compute the test statistic (either BF 

or sBF) with ỹ, treating it as the test statistic under the null. Obviously, 2 log(sBF(y)/

sBF(ỹ)) is expected to have the same mean as that of 2 log sBF(y) (Proposition 2(c)). On the 

other hand 2 log(BF(y)/BF(ỹ)) is expected to have a different (shifted) mean from 2 log 

BF(y). We believe this better calibration of sBF with respect to permutation will make it a 

better test statistic for Bayesian variable selection regression [Guan and Stephens, 2011].
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In genetic association studies one routinely performs millions of simple linear regression to 

test for the association between each genetic variant and the phenotype. In general, sBF and 

pB would produce different rankings for the variants, because their corresponding λ1’s 

differ. When a special prior, σb ∝ 1/δ1, is used, however, sBF (and BF) will produce the 

same ranking as pB [Wakefield, 2008, Guan and Stephens, 2008]. This prior, which produces 

the same λ1 for all covariates, somewhat defeats the purpose of specifying a prior, because it 

practically eliminates the effect of a variant’s variance to its test statistic. In multi-linear 

regression, such a special prior is the g-prior which sets every λi to g/(g + 1). At some sense 

ranking variants using sBF is more “informative” than using pB, and we would like to 

control false discovery rate (FDR) for sBF. One approach is specifying the prior odds, 

multiplying the prior odds with BF or sBF to obtain the posterior odds, and then the 

posterior probability of association (PPA) for each variant. But specifying the prior odds is 

somewhat arbitrary, which unfortunately has a strong influence on PPA. An alternative 

approach is perhaps to develop a procedure that is similar to that of Benjamini and Hochberg 

[1995]. The Benjamini-Hochberg procedure relies on the null distribution of the p-values 

(which is uniform) to control FDR, but it is noted that the p-value may not be the optimal 

statistic for controlling FDR [Sun and Cai, 2009]. Since now we know the null distribution 

of sBF (and BF), we can estimate the expected FDR for sBF (and BF). Such a FDR 

controlling procedure will provide an alternative solution to “calibrating” Bayes factors 

(either scaled or unscaled), and it will strengthen the “Bayes/non-Bayes compromise,” 

which is likely to attract more practitioners to apply Bayesian methods in their studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Speed of evaluating pB. The plot shows the time spent (y-axis) evaluating 1, 000 density 

functions to obtain 1, 000 p-values for different number of χ1
2 components (2–50 on x-axis). 

The p-values were evaluated with relative error < 10−5.
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Figure 2. 
Accuracy and calibration of pB. The top row is for simple linear regression. The “true 

values” for pB are obtained from F-tests. The y-axis is the asymptotic pB. Line y = x is 

marked in grey. Two bottom rows are for multi-linear regression. Red dots represent pF 

(from likelihood ratio tests) and blue pB. The grey region represents a 95% prediction 

intervals for uniformly distributed p-values.
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Figure 3. 
BF and sBF as functions of σb. The plot is for simple linear regression of various sample 

sizes. BF is in gray and sBF black. BF and sBF are computed assuming the covariate has 

unit variance.
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Figure 4. 
The distributions of log10 BF and log10 sBF by different bins of minor allele frequency 

(MAF). The bins are marked by color and the diagonal line is y = x.

Zhou and Guan Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou and Guan Page 21

Ta
b

le
 1

To
p 

20
 s

in
gl

e 
SN

P 
as

so
ci

at
io

ns
.

SN
P

C
hr

P
os

M
A

F
bf

(y
)

bf
(ỹ

)
sb

f(
y)

sb
f(
ỹ

)
p(

y)
p(

ỹ
)

rs
12

12
09

62
1

10
.5

3
0.

38
4

3.
88

 (
5)

−
0.

90
4.

56
 (

4)
−

0.
21

5.
63

 (
5)

0.
01

rs
12

12
74

00
1

10
.5

4
0.

38
4

3.
61

 (
9)

−
0.

90
4.

29
 (

8)
−

0.
21

5.
34

 (
9)

0.
01

rs
46

56
46

1
1

16
3.

95
0.

14
0

5.
71

 (
2)

−
0.

57
6.

26
 (

2)
−

0.
03

7.
51

 (
2)

0.
46

rs
74

11
70

8
1

16
3.

99
0.

42
8

3.
69

 (
8)

−
0.

68
4.

38
 (

7)
0.

01
5.

43
 (

8)
0.

52

rs
10

91
82

76
1

16
3.

99
0.

42
7

3.
59

 (
10

)
−

0.
66

4.
28

 (
9)

0.
03

5.
33

 (
10

)
0.

54

rs
75

18
09

9
1

16
4.

00
0.

14
0

6.
04

 (
1)

−
0.

61
6.

58
 (

1)
−

0.
07

7.
85

 (
1)

0.
38

rs
97

22
37

2
12

5.
89

0.
11

9
3.

05
 (

15
)

−
0.

62
3.

56
 (

17
)

−
0.

11
4.

65
 (

18
)

0.
31

rs
27

28
03

4
3

2.
72

0.
09

0
3.

80
 (

6)
−

0.
62

4.
27

 (
10

)
−

0.
15

5.
45

 (
7)

0.
22

rs
76

45
71

6
3

46
.3

1
0.

25
4

3.
34

 (
11

)
−

0.
88

3.
98

 (
11

)
−

0.
16

5.
03

 (
11

)
0.

21

rs
76

96
62

6
4

8.
73

0.
02

3
2.

96
 (

18
)

−
0.

33
3.

20
 (

42
)

−
0.

01
4.

70
 (

16
)

0.
31

rs
30

10
88

4
53

.5
3

0.
47

3
2.

95
 (

20
)

−
0.

81
3.

64
 (

16
)

−
0.

11
4.

65
 (

17
)

0.
31

rs
20

25
75

1
6

51
.7

3
0.

46
6

3.
78

 (
7)

−
0.

75
4.

47
 (

6)
−

0.
06

5.
53

 (
6)

0.
41

rs
10

75
76

01
9

26
.1

8
0.

44
3

3.
09

 (
13

)
−

0.
79

3.
78

 (
12

)
−

0.
10

4.
80

 (
13

)
0.

33

rs
10

50
64

64
12

62
.5

0
0.

16
4

2.
97

 (
17

)
−

0.
75

3.
54

 (
18

)
−

0.
18

4.
59

 (
19

)
0.

15

rs
10

77
82

92
12

10
2.

78
0.

14
0

4.
00

 (
4)

−
0.

75
4.

54
 (

5)
−

0.
21

5.
68

 (
4)

0.
02

rs
25

76
96

9
12

10
2.

80
0.

27
1

3.
07

 (
14

)
−

0.
85

3.
71

 (
14

)
−

0.
20

4.
75

 (
14

)
0.

08

rs
17

03
49

38
12

10
2.

85
0.

12
7

3.
23

 (
12

)
−

0.
71

3.
75

 (
13

)
−

0.
19

4.
85

 (
12

)
0.

13

rs
12

88
86

1
15

43
.5

0
0.

12
0

2.
95

 (
19

)
−

0.
45

3.
46

 (
20

)
0.

06
4.

54
 (

21
)

0.
59

rs
49

84
57

7
15

93
.7

6
0.

36
7

3.
02

 (
16

)
−

0.
64

3.
69

 (
15

)
0.

04
4.

71
 (

15
)

0.
56

rs
12

15
02

84
17

9.
97

0.
35

3
4.

95
 (

3)
−

0.
75

5.
63

 (
3)

−
0.

07
6.

75
 (

3)
0.

38

T
he

 S
N

Ps
 c

ho
se

n 
ha

ve
 to

p 
20

 B
F 

va
lu

es
 u

si
ng

 σ
b 

=
 0

.2
. T

he
 r

an
ki

ng
s 

by
 th

re
e 

te
st

 s
ta

tis
tic

s 
ar

e 
gi

ve
n 

in
 th

e 
pa

re
nt

he
se

s.
 ỹ

 is
 o

bt
ai

ne
d 

by
 p

er
m

ut
in

g 
y 

on
ce

. S
N

P 
ID

s 
ar

e 
in

 b
ol

d 
if

 th
ey

 a
re

 m
en

tio
ne

d 

sp
ec

if
ic

al
ly

 in
 th

e 
m

ai
n 

te
xt

. T
he

 c
ol

um
n 

na
m

es
 a

re
 e

xp
la

in
ed

 a
s 

fo
llo

w
in

g.
 P

os
: g

en
om

ic
 p

os
iti

on
 in

 m
eg

ab
as

e 
pa

ir
 a

cc
or

di
ng

 to
 H

G
18

; b
f(

y)
: l

og
10

 B
F(

y)
; b

f(
ỹ

):
 lo

g 1
0 

B
F(

ỹ
);

 s
bf

(y
):

 lo
g 1

0 
sB

F(
y)

; 

sb
f(
ỹ

):
 lo

g 1
0 

sB
F(

ỹ
);

 p
(y

):
 −

lo
g 1

0 
p B

(y
);

 a
nd

 p
(ỹ

):
 −

lo
g 1

0 
p B

(ỹ
).

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.


	Abstract
	1 Introduction
	2 The Null Distribution of Bayes factor
	3 The P-value Associated with Bayes factor
	3.1 Weighted Sum of 
χ12
	3.2 Accuracy and Calibration of pB for Finite Sample Sizes

	4 Scaled Bayes Factors
	4.1 sBF disregards informativeness of covariates under the null
	4.2 BF and sBF under the local alternatives

	5 Applying to Ocular Hypertension GWAS Datasets
	6 Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

