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Purpose: Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure in which
a prosthetic heart valve is placed and expanded within a defective aortic valve. The device placement
is commonly performed using two-dimensional (2D) fluoroscopic imaging. Within this work, we
propose a novel technique to track the motion and deformation of the prosthetic valve in three dimen-
sions based on biplane fluoroscopic image sequences.
Methods: The tracking approach uses a parameterized point cloud model of the valve stent which
can undergo rigid three-dimensional (3D) transformation and different modes of expansion. Rigid
elements of the model are individually rotated and translated in three dimensions to approximate the
motions of the stent. Tracking is performed using an iterative 2D–3D registration procedure which
estimates the model parameters by minimizing the mean-squared image values at the positions of the
forward-projected model points. Additionally, an initialization technique is proposed, which locates
clusters of salient features to determine the initial position and orientation of the model.
Results: The proposed algorithms were evaluated based on simulations using a digital 4D CT phan-
tom as well as experimentally acquired images of a prosthetic valve inside a chest phantom with
anatomical background features. The target registration error was 0.12 � 0.04 mm in the simulations
and 0.64 � 0.09 mm in the experimental data.
Conclusions: The proposed algorithm could be used to generate 3D visualization of the prosthetic
valve from two projections. In combination with soft-tissue sensitive-imaging techniques like trans-
esophageal echocardiography, this technique could enable 3D image guidance during TAVR proce-
dures. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12913]
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1. INTRODUCTION

Transcatheter valve replacement and repair have recently
emerged as a minimally invasive alternative to surgery for
aortic, mitral, pulmonic, and tricuspid valvular heart disease.
For example, the United States Food and Drug Administra-
tion has approved transcatheter aortic valve replacement
(TAVR) for the treatment of severe aortic valve stenosis in
patients who are considered to be at intermediate or high risk
with surgical aortic valve replacement. Currently, approved
TAVR devices are either balloon expandable (Sapien XT
and S3, Edwards Lifesciences, Irvine, CA, USA) or self-
expanding (CoreValve and CoreValve Evolut R, Medtronic,
Minneapolis, MN, USA), although the balloon expandable
variety was first to market and is most widely used world-
wide.1 In this procedure, a stent-supported valve is mounted
on an expandable balloon and carefully positioned within the

native aortic valve annulus. The aortic valve annular plane is
typically defined by the preoperative CT scan and then con-
firmed using intraoperative C-arm aortography. The balloon
is then inflated to deploy the stent valve and then deflated.
During the initial portion of the deployment, minor adjust-
ments can be made to improve the position of the stent valve.
Major complications such as perivalvular regurgitation, valve
embolization, and coronary artery obstruction occur if the
valve is deployed too low or too high relative to the aortic
valve annular plane. Imaging methods that enhance device
visualization with respect to the local anatomy may improve
procedure success and prevent these complications.

In addition to fluoroscopic guidance, ultrasound imaging
such as transesophageal echocardiography (TEE) can be used
to provide three-dimensional (3D) soft-tissue information in
real time. Echocardiography/x-ray fusion techniques have
been proposed to combine the soft-tissue information
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provided by the TEE with a two-dimensional (2D) fluoro-
scopic display.2–6 In these techniques, the transformation
between the coordinate systems of the imaging modalities
has to be known. Since the ultrasound coordinate system is
dependent on the position and orientation of the probe, real-
time tracking of the probe is required. In Ref. [2–4], the trans-
formation was estimated for each frame by iteratively forward
projecting a 3D model of the ultrasound probe and minimiz-
ing the difference between the virtual projection and the fluo-
roscopy image. The approach proposed in Lang et al.5 uses
external fiducials attached to the probe and a Procrustes anal-
ysis to register the probe position to the fluoroscopic images.
Recent display approaches have been to render the semitrans-
parent 3D echo surface onto the 2D x ray.6 Although the
x-ray image provides the high spatial and temporal resolution
needed for device visualization, and the echo imaging pro-
vides good soft-tissue visualization, the display remains in a
2D projection format. A more intuitive feel for the relation-
ship between prosthetic valve and anatomy might be obtained
by remaining in a 3D view. However, this requires 3D repre-
sentation of the device itself, as the geometry of the expand-
ing prosthetic valve is not easy to visualize in ultrasound (see
Fig. 1). Therefore, the purpose of this work is to propose a
novel technique to generate a time-resolved 3D representation
of a prosthetic valve from biplane fluoroscopic image
sequences.

Many techniques for the 3D reconstruction of objects from
biplane fluoroscopic images have been investigated. How-
ever, the approaches vary depending on the type of object
being reconstructed. In the simplest case, if a single 2D point
is given in each image plane, its 3D position can be deter-
mined by triangulation. An evaluation of the 3D point recon-
struction accuracy for known-point correspondences showed
that an error of less than 1 mm is possible depending on the
angulation of the C-arms.7 In most practical applications, the
point correspondences are not implicitly known. However, in
many cases, it is possible to solve this problem using a priori
knowledge of the object. One example is the reconstruction

of curvilinear devices such as guidewires. By segmenting and
connecting the 2D device path in each image plane, corre-
sponding pairs of points along the 3D path can be
extracted.8–10 Similar approaches can be used to reconstruct
3D vessel trees from biplane images. For example, Wahle
et al.11 use manually selected nodes to extract and reconstruct
3D vessel centerlines from biplane angiograms. Other
approaches iteratively manipulate a 3D model of the object
of interest until a similarity measure between a projection of
the object and the 2D images is optimized. This was investi-
gated for catheters using a 3D B-spline curve as model.12 The
deformable known-component registration proposed in Ref.
[13] uses a B-spline model to estimate the position, orienta-
tion, and shape of K-wires and spinal fixation rods from two
to three x-ray images acquired with different gantry angles. In
Ref. [14,15], techniques for the 3D localization of ablation
catheters with multiple radio-opaque electrodes near the tip
are described, where the model describes the number and dis-
tance between the electrodes as well as their individual
shapes. Model-based vasculature reconstruction techniques
based on snakes were proposed in Ref. [16,17], where the
shape and position of the snakes are defined by a function of
internal and external energies. The internal energy preserves
the smoothness of the curve, while the external energy is a
function of the acquired image data. A binary reconstruction
approach for heart chambers was investigated in Prause
et al.18, where a priori knowledge is included by assuming
similarity between adjacent frames. Statistical shape models
have also been used for the reconstruction of 3D shapes from
biplane images.19–23 This requires a training dataset, where
each training surface is labeled and mapped into a common
domain. The model is then determined by the average shape
and the principal components.

The present work proposes a 3D tracking framework for a
class of dynamic devices, which expand and change shape
while being deployed. Recovering the shape and position of
an object from only two views is generally an underdeter-
mined problem. However, by using prior knowledge about

FIG. 1. Ultrasound (left) and x-ray (middle) images of a fully deployed valve during a TAVR procedure. A photograph of the valve (SAPIEN 3, Edwards Life-
sciences Corporation, Irvine CA, USA) is shown to the right. Anatomical regions are annotated as left atrium (LA), left ventricle (LV), and Aorta (Ao). The top
of the valve frame (A), bottom of the valve frame (B), and guidewire (C) are also indicated. The stent structure of the prosthetic valve is easily visualized in the
x-ray image. [Color figure can be viewed at wileyonlinelibrary.com]
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the device shape and parameterizing possible deformations,
the complexity of the reconstruction task can be reduced. The
feasibility of this approach was previously investigated using
simulations and a simple phantom study.24 The tracking
method uses the Nelder–Mead simplex algorithm25 to opti-
mize the parameters determining the position and shape of a
point cloud model of an expanding valve stent. The model is
forward projected into the 2D image space of the fluoro-
scopic images and the gray values for all projected model
points are interpolated to determine the accuracy of the cur-
rent estimate. Within this work, we present an extension of
this approach, which includes preprocessing of the image
data to reduce the influence of anatomical background, a
more sophisticated device model that allows for a wider range
of deformations, and a modified regularization term to
improve the reliability of the algorithm. Additionally, an ini-
tialization technique based on FAST corner points26 is pre-
sented. The approach is evaluated using simulated as well as
experimental image data, which includes realistic anatomical
background.

2. MATERIALS AND METHODS

2.A. Dynamic model

To track both motion and deformation of a prosthetic heart
valve, a parameterized point cloud model representing the 3D
structure of the expandable stent structure of the valve is cre-
ated. The model in this work is based on a SAPIEN XT tran-
scatheter aortic valve (26 mm, Edwards Lifesciences
Corporation), as shown in Fig. 2. The device consists of a

bovine pericardial tissue prosthetic valve sewn to a balloon-
expandable metal stent. The technique presented here can be
used for other valves of similar design.

The deformable model M is created from rigid elements,
where each element E ¼ ½p1p2 � � �� is represented by a cloud of
3D points, pj ¼ ½xj yj zj�T . The points are aligned on a rectangu-
lar grid with an isotropic grid spacing of 0.2 mm. Five different
types of elements are created: vertical struts, diagonal struts,
inner and outer connection points, and stent–valve connection
(SVC) components. The SVC components provide the main
connection to the actual prosthetic valve. The first four element
types are created by a single cylindrical shape, whereas the SVC
component is a combination of multiple cylinders and cuboids.
A list of all element types along with the respective measure-
ments is shown in Table I. Since the elements are rigid, the
point clouds only have to be generated once.

In its default nonexpanded state, the model is the concate-
nation of the point–cloud matrices representing the individual
elements: M ¼ ½E1 E2 � � � En�. Each element Ei can be
rotated and translated within the stent structure using a rotation
matrix Ri and a translation vector ti, which are in turn depen-
dent on a set of valve shape parameters ue. Therefore, the
parameterized model M� at some state of expansion can be
described by the concatenation of transformed elements E�

i ,

M�ðueÞ ¼ ½E�
1 E

�
2 � � � E�

n� (1)

where

E�
i ¼ RiðueÞEi þ tiðueÞ (2)

and n = 93 elements (see Table I). The vector of valve shape
parameters ue ¼ ½d s fu fl� contains the diameter d at the cen-
ter of the valve, the slant s which is the ratio between the
diameters at the top and the bottom of the valve, and two
angles fu and fl describing the flare at the upper and lower
end of the valve, respectively. An overview of all possible
modes of expansion included in the model is shown in Fig. 3.
A global rotation and translation are applied to M� to calcu-
late the final 3D point cloud model

MðuÞ ¼ RðrÞM�ðueÞ þ t; (3)

where R(r) is a 3D rotation matrix defined by the Euler angles
r ¼ ½a b c�, and t ¼ ½DxDyDz�T is the translation in 3D. The
final model is, therefore, described by ten adjustable parameters,

FIG. 2. Photograph of the transcatheter heart valve (SAPIEN XT 26 mm,
Edwards Lifesciences Corporation). Expandable stent structure (silver)
secures the valve in place and defines the shape of the valve. Its radio-opaque
structures can be used to track the valve in fluoroscopic images. [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE I. List of all model elements with measurements. Connection points
are placed at the joints between two or more vertical or diagonal struts. The
stent–valve connection (SVC) component represents the connection between
the stent and the actual prosthetic valve. The radius of the SVC component
denotes the height and width (at the widest point) of the part.

Description Length (mm) Radius (mm) Count

Connection (small) 0.4 0.4 24

Connection (big) 0.4 0.6 6

Vertical strut 8.3 0.4 6

Diagonal strut 5.7 0.4 54

SVC component 13.4 0.4 9 1.8 3
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representing six degrees of freedom for global rotation and
translation and four parameters for the valve shape.

u ¼ ½a b cDxDyDz d s fu fl� (4)

2.B. Tracking algorithm

An overview of the proposed tracking algorithm is shown
in Fig. 4. Two simultaneous fluoroscopic image sequences
are acquired using a biplane angiography system. The images
are preprocessed to enhance features corresponding to the
stent of the valve. The algorithm then estimates the 3D posi-
tion, orientation, and deformation of the prosthetic valve
using a parameterized point cloud model. To determine the
parameters that best represent the true valve position, a cost
function is iteratively minimized using the Nelder–Mead
method.25 The cost for a given set of parameters u is calcu-
lated by projecting the model points into the 2D image space
and calculating the mean-squared value of the preprocessed
images at those projected points.

2.B.1. Prerequisites

The proposed algorithm requires a biplane angiography
system which acquires two simultaneous fluoroscopic image

streams while the valve is deployed. Preferably, the two
C-arm gantries are positioned orthogonal to each other to
improve the accuracy of the 3D representation.7 Within this
work, gantry angles of �90°/0° and �45°/45° are investi-
gated for plane A and B, respectively, where a gantry angle
of 0° corresponds to an anterior–posterior and �90° to a
lateral view. A calibration step has to be performed for
each gantry position to estimate the 3D–2D projection
matrices. Cone-beam CT calibration has been investigated
previously27–29 and therefore is not discussed further here.

2.B.2. Preprocessing

The purpose of the preprocessing step is to enhance
image features which correspond to the stent structure of
the prosthetic valve. Since the metal stent is highly attenu-
ating, the projection images may be used directly for the
optimization step without preprocessing. That is, a low
mean-squared image value at the projected model points in
both images indicates that the projected model is well
aligned with the actual dark features of the device in the
x-ray images, and optimization can be based on minimiza-
tion of this quantity. However, preprocessing can help dis-
tinguish between the metal ridges of the stent and other
highly absorbing material, such as bones, and reduce the

FIG. 3. Transformation parameters of the valve model. The entire model can be translated and rotated with six degrees of freedom. Additionally, the valve diame-
ter, slant, and flare can change. Slant can occur toward the top or bottom of the stent and flare can occur on either end of the stent. The number next to the label
denotes the degrees of freedom for each type of transformation.

FIG. 4. Flow diagram of the proposed tracking algorithm. The initial guess of the dynamic 3D model is optimized by minimizing a cost function which is based
on the gray levels in the normalized and feature-enhanced x-ray images at the positions of the forward projected points of the model. [Color figure can be viewed
at wileyonlinelibrary.com]
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influence of low frequency background intensity variations
on the optimization procedure. Therefore, the original fluo-
roscopic images are converted to line integral images
using software provided by the manufacturer of the imag-
ing system. Low-frequency components are then removed
from the line integral image IL by subtracting a Gaussian-
filtered version of the image

IN ¼ IL � hr � IL (5)

where hr represents a discrete 2D Gaussian kernel with stan-
dard deviation r ¼ 9 pixels. To further improve the conver-
gence properties of the optimization algorithm, Gaussian
blurring with standard deviation ro ¼ 2:5 pixels is applied to
the normalized images IN . The parameters were chosen
empirically. A relatively large value is required for r to filter
out high frequencies generated by the valve stent. The value
chosen for ro is dependent on the expected valve motion
between adjacent frames.

2.B.3. Optimization

To calculate the cost function for a given set of parame-
ters u, the 3D point cloud model is projected into the
image space of both plane A and B. The respective images
are then interpolated at each projected point and the
squared value is calculated. Since the stent material is
highly attenuating and the images are converted into line
integrals in preprocessing, larger values are obtained when
the model is well aligned with the true device image. Cor-
respondingly, one may maximize the sum of the squared
image values from both planes or minimize the negative
sum of the squared values. Given a parameter set u, a cost
function to be minimized was defined as

cðuÞ ¼ � 1
2

X
8j2fA;Bg

X
8i

IN;jðPjMðuÞiÞ2 þ kku� uok2

(6)

where IN;j is the preprocessed image frame of plane A or B,
Pj is the corresponding 3D–2D projection matrix, MðuÞi is
the ith point of the point cloud model for parameter set u,
and the function IN;jð�Þ denotes bilinear interpolation of an
image at a specified 2D point on the detector. The last term
of the cost function is a penalty term with weighting factor k
which increases the total cost for large parameter changes
between u and the initial guess u0. In midsequence, the ini-
tial guess for a frame is the final result from the previous
frame. Initialization of the first frame is described in
Section 2.C.

The parameter optimization for the point cloud model is
performed in three steps. The first step estimates only a glo-
bal translation vector. In the second step, rotation and stent
diameter are added to the set of adjustable parameters. The
final step optimizes all model parameters. For the rigid regis-
tration in the first step, a weighting factor of k ¼ 0 is used.
The two other steps use k ¼ 1:0. The cost function is mini-
mized in each step of the optimization procedure using the

Nelder–Mead method,25 which for an N-dimensional func-
tion defines an (N + 1)-simplex, where N is the number of
parameters (within this work N ¼ 10). The algorithm then
performs a series of reflection, expansion, contraction, and
shrinkage steps to move the simplex toward the minimum of
the cost function. In each step, the vertex of the simplex
which represents the highest cost is selected and reflected
through the centroid of the remaining vertices. If the new
point has a lower cost than all remaining points, an expansion
is performed to increase the step size. If the costs are higher
than for all remaining points, a contraction is performed.
Finally, if the reflected point is worse than the original point,
a shrinkage step is performed, which replaces all points
except the best to reduce the size of the simplex.

2.C. Initialization

In order to find a good initial approximation of the valve
position and shape for the first frame, the proposed method
detects corner points in the image according to Rublee
et al.30 Therefore, candidate pixels are first determined using
the FAST algorithm.26 FAST calculates the difference
between the gray value of each pixel and the average value of
the pixels along a circle with a fixed radius rFAST around it. If
the difference exceeds a threshold sFAST, then the pixel is
considered a candidate. For this work, empirically deter-
mined parameters of rFAST ¼ 9 pixels and sFAST ¼ 20 pixels
are used. The candidates are calculated for eight different
pyramid levels and are then sorted using the Harris score,31

which is a measure for the cornerness of a point. Only the
500 points with the highest score are analyzed further as
described below. An example of the extracted corner points
is shown in Fig. 5(a).

Due to the stent structure of the valve, a high number of
salient corner points can usually be found at the device
position in the image. A first estimate of the valve position
is obtained by calculating the number of corner points
within a small circular region around each pixel. The size
of the region is set such that it is slightly larger than the
size of the valve stent positioned at the isocenter and pro-
jected into the image plane. A radius of 70 pixels was used
within this work. The centroid of the region with the most
corner points is used as initial approximation as shown in
Fig. 5(b). To exclude corner points which are not part of
the valve, the position and orientation of a 50 9 110 pixel
box are optimized by maximizing the number of corner
points within this area. The size of the region is slightly
larger than a prosthetic valve in its undeployed stage. All
points outside of that region are excluded as shown in
Fig. 5(c). Finally, the smallest rotated bounding box is
determined for the remaining corner points by minimizing
the area of the box as shown in Fig. 5(c). Given the centers
cA and cB of the resulting bounding boxes in both image
planes, the 3D position of the valve c3D can be calculated
by backprojecting both points into the volume space and
finding the closest point to both projection rays
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c3D ¼ 1
2
ðvA þ kAbA þ vB þ kBbBÞ; (7)

with

kA ¼ ðb>A bBÞbB � kbBkbA
� �>ðvA � vBÞ

kbAkkbBk � ðb>A bBÞ2
(8)

By switching bA and bB, kB can be calculated in a similar
manner. The variables vA and vB denote the focal spots of
plane A and B, respectively, and bA and bB are the direction
vectors pointing from cA or cB to the respective focal spot.
An illustration of the projection geometry is shown in Fig. 6.
The b vectors can be calculated using

bA=B ¼ QA=B
cA=B
1

� �
; (9)

where QA=B is the inverse of the upper left 3 9 3 submatrix
of the projection matrix of plane A or B. The 3D orientation
of the valve is determined by backprojecting the longitudinal

axes lA and lB of the 2D bounding boxes into the 3D volume
space. The intersection of the resulting two planes defines the
longitudinal axis l3D of the valve in 3D.

l3D ¼ QA
lA
0

� �
� bA

� �
� QB

lB
0

� �
� bB

� �
(10)

Finally, the diameter d3D of the valve is calculated by back-
projecting the lateral axis of the bounding boxes uA and uB.

d3D ¼ 1
2
ðkQAuAk þ kQBuBkÞ (11)

2.D. Simulated image data

The proposed algorithm was evaluated using simulated as
well as real fluoroscopic image sequences. The simulation
was based on the 4D digital XCAT phantom,32 which simu-
lates realistic human anatomy and includes sophisticated res-
piratory and cardiac motion models. For each time frame, a

(a) (b) (c)

FIG. 5. Intermediate results of the initialization algorithm applied to a clinical dataset. (a) Selection of FAST key points based on the Harris score. (b) Number of
corner points within 11 mm radius around each pixel with centroid of the maximum area shown as white circle. (c) Rotated box for corner point selection, rotated
bounding box of remaining corner points, and lateral and longitudinal axes. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Illustration of the projection geometry. The vectors v, b, and c are used in the initialization algorithm. [Color figure can be viewed at wileyonlinelibrary.-
com]
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voxelized version of the XCAT phantom was created with an
isotropic resolution of 0.2 mm. The valve model was placed
in the cardiac region of the XCAT phantom. Ten biplane
projection sequences with 150 frames were created using a
respiratory cycle time of 5 s, a heart rate of 60 bpm, and a
frame rate of 15 fps. The virtual projection angles were set to
�90° (lateral) and 0° (anterior–posterior). An orthogonal
projection geometry was used for the simulations, where the
projection images were determined by the line integrals along
the y- and x-dimensions, respectively. The valve diameter vs
time was described with a smooth monotonically increasing
function, the change in slant over time was modeled by a
piecewise linear function, and the upper and lower flare
angles were allowed to continuously increase during the
expansion.

An example of the simulated valve shape parameters can
be found in Fig. 7. The translation and rotation of the valve
consisted of three components. Respiratory and cardiac
induced motion components were synchronized with the res-
piratory and cardiac motion of the XCAT phantom. Superim-
posed on the cardiorespiratory motion was a general motion
component representing the operator movements to adjust the
device position. The motion parameters were randomized to
create different paths and expansion evolutions in each
sequence.

The size of the simulated projection images was
512 9 512 pixels corresponding to a 102.4 9 102.4 mm
field of view. Additionally, different amounts of Poisson
noise were added to the projection images to create realistic
fluoroscopy or cine quality images. Image sequences with a
contrast to noise ratio (CNR) of 3, 6, and 15 and no noise
were created. For comparison, the CNR was measured in real
fluoroscopic and cine images of the valve in a water bath.
The signal difference between the device and the surrounding
water divided by the standard deviation of the noise was 6
and 15, respectively.

2.E. Experimental image data

For the real fluoroscopic acquisitions, a SAPIEN XT
26 mm valve was placed inside a cylindrical plastic container
filled with water. The valve was mounted on a balloon cathe-
ter, which was guided through a hole in the lid of the con-
tainer as shown in Fig. 8. This allowed for changes to the
position, orientation, and expansion state of the valve without
opening the container. Using a biplane angiography system
(Artis Zee, Siemens, Forchheim, Germany), a rotational 3D
acquisition with 496 projection images over a range of 210°
was performed. The valve was then slightly expanded using
the balloon catheter, and the position and orientation were
modified. Afterward, another rotational acquisition was per-
formed. This process was repeated until the valve was com-
pletely expanded, resulting in 16 acquisitions. Additionally, a
rotational acquisition of a chest phantom with embedded
ribcage and spine (see Fig. 8) was performed. All images
were converted into line integral images using software pro-
vided by the manufacturer of the imaging system. In order to
add realistic anatomical background to the images of the
valve, the empty cylindrical container was subtracted from
the line integral images of the valve acquisitions and the chest

FIG. 7. Example of ground truth valve parameters for simulated valve motion and expansion. Translation (left) and rotation (center) vectors parameters consist of
cardiac and respiratory component as well as a random low-frequency component. The upper and lower flare angles fu and fl are represented by a linear function.
The slant s is described by a piecewise linear function, where the total range of values is in the interval from �1 to 1. The valve diameter d monotonically
increases during the simulated expansion. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 8. Experimental setup for C-arm CT acquisitions. Left: Sapien XT
26 mm valve is mounted on an inflatable balloon catheter within a water-
filled cylindrical container. The catheter is guided through a sealed hole in
the lid of the container. Right: Chest phantom used for anatomical back-
ground. [Color figure can be viewed at wileyonlinelibrary.com]
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phantom images were added to the result. Dynamic image
sequences were then created by extracting the images for one
projection angle from each acquisition. Biplane image
sequences were created for gantry positions of �90° and 0°
as well as �45° and 45°. Poisson noise was added to generate
images with a signal-to-noise ratio similar to standard fluo-
roscopy images.

With this experimental design, the volumetric CT recon-
struction generated from a rotational scan provides the
ground truth reference for the valve position, orientation, and
shape, at a particular state of valve expansion. The 3D recon-
struction obtained from two projections of a rotation is
directly compared to the CT image from the same rotation.
The CT images were reconstructed with an isometric voxel
size of 0.14 mm and a volume size of 512 9 512 9 387
voxels.

2.F. Evaluation

The target registration error (TRE) was used to quantify
the accuracy of the 3D valve representation. The TRE was
calculated for nine corner points on the upper and lower ends
of the valve as shown in Fig. 9. The true positions of these
points are inherently known for the simulated data. For the

experimental data, the true positions were extracted from the
voxelized reconstructions. First, the valve was segmented
from the cone-beam CTvolume using global intensity thresh-
olding. A cylinder was then fitted to the segmented object to
estimate the longitudinal axis of the valve. All points within a
0.7 mm thick slice at the upper and lower end of the valve
were then grouped into nine clusters using the k-means algo-
rithm. The centroid of each group was then used as corner
point in the CT volume. The TRE was calculated as the root-
mean-squared error between the estimated valve corner
points bpi obtained from biplane imaging and the true corner
points pi obtained from CT,

TRE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

kpi � bpik2
s

(12)

where n ¼ 18 is the number of corner points. Additionally,
the accuracies of the orientation of the longitudinal axis, the
centroid location, and the valve diameter were evaluated.

3. RESULTS

To enable successful tracking of the valve using biplane
fluoroscopic image sequences, a good estimate of the posi-
tion, orientation, and diameter of the valve is necessary. The
proposed initialization technique was able to locate the valve
in the initial frames of the image sequences with a TRE of
0.72 � 0.24 mm in the simulated images and 0.73 �
0.19 mm in the phantom experiments. The initial orientation
of the 3D longitudinal axis was determined with an error of
1:24� � 1:74� in simulation and 1:40� � 0:98� in experi-
ment. The diameter errors were 0.21 � 0.11 mm and
0.10 � 0.07 mm, respectively. Figure 10 shows a detailed

FIG. 9. Points of interest for the calculation of the target registration error
(TRE). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 10. Performance of initialization based on the first frame of a fluoro-
scopic image sequence, expressed as the average and standard deviation of
the target registration error (TRE) in millimeter. Results are shown for simu-
lations and phantom experiments, with and without anatomical background,
and different image contrast to noise ratios (CNR). [Color figure can be
viewed at wileyonlinelibrary.com]
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analysis of the initialization TRE for the simulated and phan-
tom experiments, with and without anatomical background.
Examples of the initialization results for the simulated and
phantom images are shown in Fig. 11. The initialization tech-
nique was also applied to a clinical image of a TAVR proce-
dure (Fig. 11, right); however, since no ground truth is
available, only a visual comparison is provided. The experi-
mental and clinical images contain additional high contrast
objects such as fiducials and an ultrasound probe.

Using these initialization results, the position, orientation,
and shape of the valve were tracked for each frame of the
image sequences. The average and standard deviation of the
target registration error for the simulated fluoroscopic image
sequences are shown in Fig. 12. The simulation without
anatomical background yielded an average TRE of less than
0.1 mm for all noise levels. Using the XCAT phantom, the
average TRE slightly increased to 0.12 � 0.04 mm. The
average location error of the valve measured at the center of
mass was 0.03 � 0.02 mm. The error in the estimated orien-
tation of the longitudinal axis was 0:20� � 0:11� and the
error in the estimated diameter was 0.03 � 0.02 mm.

The tracking results of the phantom experiments are shown
in Fig. 13. The tracking algorithm yielded TRE results for
image sequences with and without anatomical background of
0.64 � 0.09 mm and 0.65 � 0.08 mm, respectively. The
location error of the valve measured at the center of mass was
0.52 � 0.08 mm. The error in the estimated orientation of the
longitudinal axis was 0:72� � 0:45� and the error in the esti-
mated diameter was 0.12 � 0.07 mm. Examples of the track-
ing results in 2D and 3D are shown in Fig. 14.

The symmetry of the real valve in an expanded state was
also evaluated to validate the assumptions of a symmetrically
expanding model with rigid parts. Therefore, a CT volume of
the expanded valve was analyzed by extracting the corner
points at the lower end of the valve. The angles between the
elements were then measured and compared to the mathemat-
ical model at the same expansion state. Figure 15 shows the
direct comparison between the real expanded valve and the
model. In both the model and real valve, the angles between
corner points that enclose an SVC component are slightly

FIG. 11. Examples of the 2D initialization results. Left image shows a result from the simulation with CNR = 3. The center image is from the phantom experi-
ment (CNR = 3), where a chest phantom, fiducials, and a guiding sheath provided background. The image on the right shows the initialization results for a clini-
cal image from an actual TAVR procedure. A TEE probe appears in the upper left corner. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 12. Average target registration error (TRE) in millimeter for the simu-
lated fluoroscopic sequences with different contrast to noise ratio. The error
bars indicate the standard deviation of the TRE. The results are shown with
and without anatomical background added using the XCAT phantom. [Color
figure can be viewed at wileyonlinelibrary.com]

FIG. 13. Comparison of the target registration error (in mm) results for the
phantom experiments at different gantry angles and noise levels, with and
without anatomical background. The error bars represent the standard devia-
tion of the TRE. Gantry angles are AP-lateral (�90� = 0�) and (�45�=45�).
[Color figure can be viewed at wileyonlinelibrary.com]
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larger (	 2�) than the angles between regular corner points
that do not enclose an SVC component. In the CT acquisition
of the real valve, the standard deviation of the regular angles
was 1:38�, and the standard deviation of the angles enclosing
an SVC component was 0:47�.

4. DISCUSSION

The presented technique for motion and deformation
tracking of prosthetic valves in biplane fluoroscopic images

shows consistent results with submillimeter accuracy. The
initialization approach based on corner points was able to
find the outline of the valve in all image sequences, which
allowed the initialization of position, orientation, and diame-
ter of the 3D model. In the phantom experiments, comparable
initialization results were achieved for sequences with and
without anatomical background despite the presence of high
contrast fiducials. Also, in a clinical image containing a trans-
esophageal echo probe and other high contrast devices which
may generate a considerable number of corner points, the

FIG. 14. Example images of prosthetic valve tracking. The top row shows an overlay of the forward projected valve model on the simulated x-ray images from
one plane of the biplane system, at four states of valve expansion. The second row shows a similar overlay result from the experimental study. The third and fourth
rows show the correspondence between the 3D valve model determined from biplane imaging and the ground truth or reference. Results of the simulation are
shown in row 3, while the results from the experimental study are shown in row 4. [Color figure can be viewed at wileyonlinelibrary.com]
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valve was correctly identified. However, it should be men-
tioned that some other configurations of high contrast objects
might cause the algorithm to fail or to deliver inaccurate
results. For a clinical application, this could be resolved by a
manual interaction of the user in cases where the automatic
initialization fails.

The model-based tracking algorithm was able to determine
the position, orientation, and shape of the valve in 3D reli-
ably. The tracking accuracy can be influenced by the image
quality, the gantry angles, or anatomical features in the back-
ground of the valve. However, as demonstrated in Figs. 12
and 13, similar results were achieved across all noise levels
tested as well as for the different gantry positions and no con-
siderable differences were observed between the groups. The
accuracy achieved in the simulated image sequences is con-
siderably better than in the phantom experiments. This is
expected, since the device model used to generate image data
was of the same general form as that used in tracking. How-
ever, the phantom experiments demonstrate that tracking can
still be performed even when the device model is not per-
fectly matched to the real device. For example, the valve
model in this study assumed symmetrical expansion of the
valve and rigid elements of the stent structure. Deviations
from this ideal expansion behavior can cause small mis-
matches between the final model and ground truth. However,
in experiments, the device representations were still obtained
with a TRE of 0.62 mm. This is comparable to about 3/4 of
the diameter of the vertical and diagonal struts.

Anatomical structures in the image background only
slightly affected the accuracy in the simulated images. In the
phantom experiments, the aforementioned effects of valve
asymmetry outweigh the influence of other structures in the

background. In a clinical application, the interaction of the
valve with anatomical structures might cause additional varia-
tion in the valve symmetry. However, Willson et al.33 deter-
mined that balloon-expandable stents such as the one used
within this work maintained 96% circularity in 48 of 50 cases
in an analysis of TAVR patients 1-yr postprocedure.

The proposed technique can be used with other types of
prosthetic valves with stent-like support structures. However,
a separate model is required for each valve type. The behavior
of a valve type can be characterized by high-resolution CT
scanning of the valve at different states of expansion. How-
ever, at this point, there is no automated method to generate
the dynamic point cloud model. Instead, it requires careful
analysis of the stent deformations that occur during expan-
sion. The degrees of freedom in valve shape can vary for dif-
ferent valve types.

A real-time implementation of the proposed algorithm
might help the physician to better appreciate the valve apposi-
tion within the annulus and to predict potential problems such
as paravalvular leak, risk of embolization, and coronary
obstruction. For repositionable valves, it might also help the
operator to find the optimal valve position. The data collected
during a procedure might also help in the development and
engineering of future valves with the aim of minimizing com-
plications.

5. CONCLUSION

The proposed technique shows a novel approach which
enables tracking of the position, orientation, and shape of
prosthetic heart valves in 3D, based on biplane fluoroscopy
and a mathematical model of the valve. The results shown

FIG. 15. Symmetry evaluation of the real prosthetic valve (left) compared to the model (right). Points around the center denote the corner points used for TRE
calculation at the lower part of the valve. The angles shown underlined are slightly larger due to the SVC components. [Color figure can be viewed at wileyonline-
library.com]
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here demonstrate that submillimeter accuracy is possible. The
results could be used to combine a 3D valve representation
with live 3D echocardiography acquisitions of the soft-tissue
structures of the heart. Such an approach to the visualization
of device and anatomy may help the physician better appreci-
ate valve placement during a procedure and possibly allow
for improved prediction of potential problems.
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