Skip to main content
. 2018 Oct 29;9:4502. doi: 10.1038/s41467-018-06615-1

Table 1.

Electronic spectrum of the heme–CO model in the gas phase

State Energy Character Sym.
15MC 0.70 dyz,dxydx2-y2,dz2 E
25MC 0.74 dxz,dxydx2-y2,dz2 E
13MC 0.89 dxydx2-y2 B2
35MC 1.40 dxz,dyzdx2-y2,dz2
23MC 1.43 dxzdz2 E
33MC 1.51 dyzdz2 E
43MC 1.62 dxydz2 A2
53MC 1.86 dyzdx2-y2 E
63MC 1.90 dxzdx2-y2 E
11MC 1.90 dxydx2-y2 B2
13MLCT 2.15 a1,dyz,dxye,dx2-y2,dz2
21MC 2.35 dyzdz2 E
31MC 2.36 dxydz2 E
13Q1 2.43 a2 → e E
5MLCT 2.48 a2,dyz,dxye,dx2-y2,dz2
23Q2 2.49 a2 → e E
13MLCT 2.56 a1,dyz,dxye,dx2-y2,dz2
1Qx 2.73 a2 → e/a1 → e E
1Qy 2.79 a2 → e/a1 → e E
1MLCT 2.83 a2,dyze,dz2

Electronic states up to the bright 1Qx,y state are shown. The excitation energies (in eV) are computed at the CASSCF(10,9)/CASPT2/ANO-RCC-VDZP level of theory at the S0 minimum energy structure obtained at the B3LYP/LANL2DZ level of theory. In addition, the state nature, the character of the dominant transitions and the symmetry label is shown