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Background. Reduced seasonal influenza vaccine effectiveness (VE) was observed in individuals who received repeated annual
vaccinations. Preexisting influenza antibody levels were also found inversely correlated with postvaccination titers. These reports
suggest that preexisting immunity may affect contemporary seasonal vaccine performance.

Methods. Influenza A/H3 specific cross-reactivity of postvaccination sera from humans with or without preexisting immunity
was assessed by hemagglutination inhibition (HAI) assay. Ferret antisera induced by repeated H3 exposures were also subjected to
HALI, antibody affinity, and antibody avidity analyses.

Results. Human postvaccination sera derived from subjects with or without preexisting immunity showed different cross-reac-
tivity against H3 variant viruses. Similarly, the breadth of cross-reactive ferret antibodies induced by repeated H3 exposures was also
broadened. Antigenic differences between H3 viruses characterized by ferret antisera became smaller as the number of exposures
increased. Although repeated H3 exposures induced “original antigenic sin” phenomena in HAI titers against later exposed viruses,
resultant ferret antibodies showed gradually enhanced avidity for different H3/hemagglutinin. Increased antibody avidity was found

to be inversely correlated with decreased antigenic differences among H3 viruses characterized.

Conclusions.

Our results suggest that repeated H3 exposures imprinted not only antibody quantity but also antibody quality.

The “naive” ferret model currently used for vaccine strain selection does not recapitulate the complexity of human preexisting immu-
nity. Vaccine strains identified hereby may not provide coverage sufficient for those who were frequently infected and/or vaccinated,

leading to the reduced VE observed.
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Annual vaccination is the main preventive strategy for control of
seasonal influenza, the recommendation of which was first intro-
duced in 1960 for older adults and immunocompromised indi-
viduals at high risk for severe influenza-like illness [1]. Since 2010,
the annual vaccination policy has been expanded to include all
healthy persons aged =6 months in the United States [2], and a
similar policy has also been adopted by many countries world-
wide. Thus, a child born after 2010 would expect to be vacci-
nated >70 times during an average 75-year life expectancy. The
annual vaccination policy is made largely due to virus evolution
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resulting in frequent antigenic drift or shift, which in turn requires
seasonal vaccine strains to be updated yearly to match with cir-
culating viruses. Even in seasons without vaccine strain changes,
concerns of vaccine-induced immunity waning also necessitate
revaccination [2]. This allows individuals with frequent vacci-
nations to develop influenza antibody repertoires that are read-
ily recalled on later exposure to antigenically similar or related
viruses. However, recent epidemiologic studies have reported that
lower vaccine effectiveness (VE) was observed in individuals with
repeated annual vaccination than those who were not vaccinated
in previous season(s) [3-10]. A potential negative effect of prior
vaccination was found more pronounced for H3N2-specific VE
[3, 4, 6, 9]. These reports suggest that seasonal vaccine-induced
protection may be dampened in frequent vaccinees, prompting
questions about the benefits of annual vaccination policy.

Annual vaccine strain evaluation and selection organized by
the World Health Organization (WHO) is key to controlling sea-
sonal vaccine performance. In this complex process, standard
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antisera raised in seronegative ferrets infected with represen-
tative influenza strains are used to antigenically characterize
circulating viruses and play a decisive role in identifying final
vaccine strains [11-13]. However, influenza-specific immunity
in humans is greatly shaped by previous exposures including
natural infections and annual vaccinations, the complexity of
which cannot be recapitulated by seronegative ferrets infected
with a single influenza strain [12, 14-21]. Antigenic distances
derived by a seronegative ferret model have been found to cor-
relate poorly with both H1- and H3-specific VE in humans [20,
22, 23]. This fundamental difference is one of the major factors
responsible for the 2014-2015 Northern Hemisphere vaccine
strain mismatch and poor vaccine performance [12]. Even in
humans, preexisting immunity is also highly variable due to age
and infection/vaccination histories [14-19, 24]. In vaccine trials
or VE studies, however, the preexisting background of recruited
subjects is seldom explicitly determined or analyzed. This is also
a problem for annual vaccine strain selection, in which anon-
ymous postvaccination sera provided by courtesy of interna-
tional government/industry partnerships are used for human
serology [12, 18].

In this study, we demonstrated that repeated H3 expo-
sures imprinted both antibody quantity and antibody quality,
thus significantly affecting virus antigenic characterization.
To improve seasonal vaccine performance, we must take into
account of human preexisting immunity during vaccine strain

selection.

METHODS

Viruses

All H3N?2 viruses were propagated in 9- to 10-day old embry-
onated eggs, including (1) clade 1 A/Uruguay/716/2007X175C
(175C); (2) clade 3C.1 A/Texas/50/2012 (TX/50); (3)
clade 3C.2a A/Hong Kong/4801/2014 (HK/4801), A/
Singapore/KK934/2014 (SGPKK934), A/Fiji/2/2015
(Fiji/2), A/South  Australia/09/2015 (SA/09), A/South
Australia/21/2015 (SA/21), A/Victoria/503/2015 (Vic/503),
A/Brisbane/47/2015  (Bris/47), and A/Brisbane/82/2015
(Bris/82); (4) clade 3C.3 A/New York/39/2012 (NY/39); (5)
clade 3C.3a A/Switzerland/9715293/2013 (SWZ/13), A/North
Carolina/13/2014 (NC/13), and A/Palau/6759/2014 (PA/14);
(6) clade 3C.3b A/Victoria/511/2015 (Vic/511).

Human Sera

Archived human sera were obtained from healthy subjects
administered the 2015-2016 egg-based inactivated, nonadju-
vanted, trivalent or quadrivalent influenza vaccines and ana-
lyzed anonymously as part of a public health, nonresearch,
regulatory activity in support of WHO annual influenza vaccine
strain selection, which is exempt from human subjects review.
Postvaccination sera from children (8-30 months of age)
and adults (28-74 years of age) showing high seroconversion

(=16-fold rise in postvaccination hemagglutination inhibi-
tion [HAI] titers against the 2015-2016 H3 vaccine prototype
virus- SWZ/13) were selected to assess the HAI cross-reactivity
against a panel of previous and recent H3N2 viruses.

Ferret Infection Experiments

Seronegative male ferrets (Triple F Farm) at 15-16 weeks old
were anesthetized with ketamine/xylazine mixture followed
by intranasal inoculation with H3N2 viruses individually or
sequentially at 2-week intervals: (1) HK/4801 only (HK); (2)
SWZ/13 followed by HK/4801 (SWZ/HK); (3) TX/50 followed
by SWZ/13 and then HK/4801 (TX/SWZ/HK); and (4) 175C
followed by TX/50, SWZ/13, and then HK/4801 (175C/TX/
SWZ/HK). Blood was collected at 14 days postinfection imme-
diately before each new inoculation. All the procedures were
carried out in accordance with the protocol approved by the
Institutional Animal Care and Use Committee of the Center
for Biologics Evaluation and Research, US Food and Drug
Administration.

HAI Assay

The HAI assays were performed using 8 hemagglutinin (HA)
units/50 pL of stock viruses and 0.75% guinea pig erythro-
cytes in the presence of 20 nM oseltamivir for H3N2 viruses,
or 0.5% turkey erythrocytes for HIN1 and type B viruses
as described previously [12, 18]. Following treatment with
receptor-destroying enzyme (Denka-Seiken), prevaccina-
tion and postvaccination sera were serially 2-fold diluted for
HATI testing. HAI titers represent the reciprocal of the highest
serum dilution that yielded a complete HA inhibition. A titer
5 was assigned if no inhibition was observed at the starting
1:10 serum dilution. HAI geometric mean titers (GMTs) were
calculated.

Microneutralization Assay

An enzyme-linked immunosorbent assay (ELISA)-based
microneutralization (MN) assay was performed as previ-
ously described [25, 26]. Receptor-destroying enzyme-
treated sera were incubated with one hundred 50% tissue
culture infectious dose at 37°C, 5% carbon dioxide for 1
hour, and then were added to Madin-Darby canine kidney-
SIAT1 cells (Sigma). After overnight incubation, infected
cells were detected using influenza A nucleoprotein-specific
monoclonal antibodies (Millipore). MN titers represent the
reciprocal of the highest serum dilution resulting in >50%
neutralization.

Ferret Inmunoglobulin G Purification

Immunoglobulin G (IgG) antibodies in ferret antisera were puri-
fied using the NAb™ Protein A Plus Spin Kit (ThermoFisher).
Total amount of purified ferret IgG was quantitated using
reducing agent-compatible Pierce microplate bicinchoninic
acid protein assay kit (ThermoFisher).
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Anti-HA ELISA and Avidity Assays

Nunc MaxiSorp microtiter plates (ThermoFisher) were coated
with 0.2 pg/mL of recombinant HA (Protein Sciences) in pH 9.5
bicarbonate/carbonate coating buffer at 4°C overnight followed
by 2 hours’ room temperature blocking in blocking buffer (pH
7.4 phosphate-buffered saline [PBS] containing 1% bovine
serum albumin [BSA] and 5% sucrose). Ferret antisera or puri-
fied antibodies were serially diluted in assay buffer (pH 7.4 PBS
containing 0.1% BSA and 0.05% Tween 20) and incubated on
blocked plates at 37°C for 90 minutes. For avidity assays, the
plates were washed and overlaid with 100 pL/well of 4 M urea
for 15 minutes [27]. After thorough washing, the plates were
reblocked in blocking buffer for another hour. Bound anti-
body was detected using peroxidase-conjugated goat antiferret
IgG (Abcam) followed by 1-Step Ultra TMB-ELISA substrate
(ThermoFisher). Absorbance values were measured at 450 nm
in a Victor V multilabel reader (PerkinElmer). Avidity index
was calculated based on the area of the entire antibody titration
curve as previously reported [28].

Antigenic Cartography and Correlation Coefficient Analysis

The 2-dimensional antigenic maps with multidimensional scal-
ing were constructed based on human or ferret HAI titers using
AntigenMap (http://sysbio.cvm.msstate.edu/AntigenMap) with
each horizontal or vertical gridline representing 1 antigenic unit
distance corresponding to a 2-fold difference in HAT titers [12,
29, 30]. The correlation coefficient for any 2 sets of antigenic
distances derived from antigenic cartography was also deter-
mined with 1 indicating a perfect positive correlation and -1
denoting a perfect negative correlation, respectively [18].

Statistical Analysis

HA-specific ferret IgG binding affinity was analyzed using non-
linear regression curve fit (Prism 6.02, GraphPad). P <.05 deter-
mined by 2-way analysis of variance was considered statistically
significant.

RESULTS

Preexisting Immunity Affected Human H3-Specific HAI Cross-reactivity

Because of lack of infection/vaccination records, selected
pediatric or adult postvaccination sera were grouped as pre-
viously reported [12, 14, 15, 18]: (1) undetectable H3-specific
preexisting immunity (prevaccination HATI titer of <40 against
SWZ/13), and (2) detectable H3-specific preexisting immunity
(prevaccination HAI titer of >40 against SWZ/13). Compared
to the pediatric or adult group with undetectable preexisting
immunity, the corresponding age group with detectable preex-
isting immunity responded more evenly to all H3 viruses tested
(Figure 1A and 1B). When these same postvaccination HAT titers
were visualized using antigenic cartography (Figure 1C-F),
interestingly, the groups with detectable preexisting immunity,
regardless of ages, had difficulties in distinguishing different H3

clades as compared to the groups with undetectable preexisting
immunity (Figure 1C vs 1D and Figure 1E vs 1F). For instance,
clade 3C.2a (green) and clade 3C.3a (red) viruses were well sep-
arated in the antigenic map derived from pediatric postvaccina-
tion sera with undetectable preexisting immunity, indicative of
distinct antigenicity (Figure 1C). However, in the antigenic map
derived from pediatric postvaccination sera with detectable
preexisting immunity, these 2 clades tended to cluster together
and were not distinctly separated (Figure 1D). Similar phenom-
ena were observed in the maps derived from adult postvacci-
nation sera with and without detectable preexisting immunity
(Figure 1E vs 1F). In particular, clade 3C.2a and clade 3C.3a
viruses became completely indistinguishable in the adult map
with detectable preexisting immunity (Figure 1F). The smaller
antigenic distances in pediatric or adult map with detectable
preexisting immunity indicated smaller antigenic differences
among H3 viruses characterized (1.2763 vs 1.4629 and 0.8339
vs 1.0340 in children and adults with undetectable preexisting
immunity, respectively; Figure 1G). Correlation coefficient
analysis also showed that the maps with detectable preexisting
immunity correlated poorly with those with undetectable pre-
existing immunity (Figure 1G). These results indicated that the
postvaccination sera from the subjects with detectable preexist-
ing immunity had different cross-reactivity toward H3N2 vari-
ants from those with undetectable preexisting immunity.

Prior H3 Exposures Affected Both Quantity and Quality of Ferret Antibodies
We then investigated how prior H3 exposures may affect anti-
body development in a ferret model. Seronegative ferrets were
either exposed to a single HK/4801 (clade 3C.2a) infection or
sequentially infected with antigenically drifted 175C (clade
1), TX/50 (clade 3C.1), or SWZ/13 (clade 3C.3a) followed
by HK/4801. As expected, ferret antisera raised from single
HK/4801 infection showed much higher HAI titers against the
homologous virus (GMT = 557) than drifted H3N2 variants
(Figure 2A and Supplementary Table 1). In contrast, ferret anti-
sera derived from sequential H3N2 infections showed better
HALI responses toward first encountered H3N?2 virus than later
exposed HK/4801 (Figure 2A-D). For instance, ferret 175C/
TX/SWZ/HK antisera exhibited higher HAI response toward
the first exposed 175C virus (GMT = 226), but much lower
titers against later infected HK/4801 (GMT = 80) (Figure 2D),
indicating a typical “original antigenic sin” (OAS) [31]. Yet the
OAS phenomena were less pronounced in ferret MN titers
against the same set of viruses (Supplementary Figure 1).
Despite lower HALI titers against later exposed viruses, fer-
ret IgG purified from antisera with repeated H3 exposures in
general exhibited enhanced binding affinity for both early and
late exposed HA antigens as compared to ferret IgG elicited by
single HK/4801 infection (Figure 3A-D). Using urea as the cha-
otrope, we then measured antibody avidity which detects the
total strength of multivalent interactions between antibody and
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Different antigenic patterns of human postvaccination sera with or without detectable H3-specific preexisting immunity. A and B, Normalized hemagglutination
inhibition (HAI) geometric mean titers (GMTs) in pediatric (A) or adult (B) subjects with or without detectable H3-specific preexisting immunity. Postvaccination HAI GMTs were
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(175C); clade 3C.1, A/Texas/50/2012 (TX/50); clade 3C.2a, HK/4801, A/Singapore/KK934/2014 (SGPKK934), A/Fiji/2/2015 (Fiji/2), A/South Australia/09/2015 (SA/09), A/
South Australia/21/2015 (SA/21), A/Victoria/503/2015 (Vic/503), A/Brisbane/47/2015 (Bris/47), and A/Brisbane/82/2015 (Bris/82); clade 3C.3, A/New York/39/2012 (NY/39);
clade 3C.3a, A/Switzerland/9715293/2013 (SWZ/13), A/North Carolina/13/2014 (NC/13), and A/Palau/6759/2014 (PA/14); clade 3C.3b, A/Victoria/511/2015 (Vic/511).
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Figure 2. H3 virus-specific hemagglutination inhibition (HAI) responses in fer-
rets with different exposure histories. Sera from ferrets infected with A/Hong
Kong/4801/2014 (HK/4801) only (HK; A), or A/Switzerland/9715293/2013 (SWZ/13)
followed by HK/4801 (SWZ/HK; B), or A/Texas/50/2012 (TX/50) followed by SWZ/13
and then HK/4801 (TX/SWZ/HK; 0), or A/Uruguay/716/2007X175C (175C) followed
by TX/50, SWZ/13, and then HK/4801 (175C/TX/SWZ/HK; D) were assessed for
virus-specific HAI titers. Individual ferret titers with geometric mean titers (GMTs)
(bar graphs) are shown.

antigen, instead of a specific interaction between one antigenic
epitope and one antibody binding site detected by antibody
affinity. As shown in Figure 4, antibodies induced by single
HK/4801 infection had the lowest avidity index not only against
the homologous HA but also against drifted H3 HA. In contrast,
repeated H3 infections gradually enhanced the avidity of the
resulting ferret antibodies; for example, ferret 175C/TX/SWZ/
HK antisera had the highest avidity index against all 4 H3 HA
antigens tested (Figure 4A-D). Apparently, the more prior H3
exposures, the higher H3-specific antibody avidity.

These results suggest that prior H3 exposures not only affect
the quantity but also the quality of ferret HA-specific antibod-
ies, and the impact seems to depend on the number of previous
exposures.

Repeated Prior H3 Exposures Expanded Ferret HAI Cross-reactivity

As expected, ferret antisera raised from single infection
mainly cross-reacted with homologous viruses (Figure 5A
and Supplementary Figure 2). When ferrets were sequentially
infected with SWZ/13 followed by HK/4801, the resulting SWZ/
HK antisera had HAI cross-reactivity extend to clade 3C.1,3C.3,
3C.3a, and 3C.3b viruses by showing >50% rise in HK/4801-
specific HAI GMT (Figure 5B). Similarly, TX/SWZ/HK anti-
sera induced by sequential TX/50, SWZ/13, and HK/4801
exposures broadened HAI cross-reactivity to clade 3C.1, 3C.3,
3C.3a, and 3C.3b viruses, including the 2 clade 3C.2a viruses,
SGP/KK943 and VIC/503 (Figure 5C), in which HK and SWZ/
HK antisera showed >50% reduction in HAI GMT (Figure 5A
and 5B). When ferrets had been sequentially exposed to 175C,
TX/50, and SWZ/13 followed by HK/4801, the resulting 175C/
TX/SWZ/HK antisera expanded the HAI cross-reactivity to all
6 H3N2 clades tested including clade 1 virus (Figure 5D).

When these same ferret HAI titers were plotted using anti-
genic cartography, it became obvious that different H3N2 clades
were less distinguishable by antisera raised from ferrets with
increased exposure histories (Figure 5E-H). For example, clade
3C.2a (green) and clade 3C.3a (red) were well separated in the
map derived from ferret antisera raised after single HK/4801
infection (Figure 5E). However, the antigenic differences
between clade 3C.2a and clade 3C.3a viruses became smaller in
the map derived from the TX/SWZ/HK antisera (Figure 5G).
Eventually clade 3C.2a and 3C.3a groups clustered together and
became antigenically indistinguishable as determined by the
175C/TX/SWZ/HK antisera (Figure 5H). The average antigenic
distances in individual ferret maps decreased when the number
of previous H3N2 infections increased (Figure 5I).

The correlation analysis showed that the antigenic maps
derived by ferret antisera with previous H3N2 infections cor-
related poorly with the map derived by ferret antisera with sin-
gle HK/4801 infection: more prior H3N2 exposures, smaller
correlation coeflicients (Figure 5I).

Ferret Antibody Avidities Inversely Correlated With Antigenic Distances
of H3N2 Viruses Characterized

We then correlated the avidity indexes of individual ferret anti-
sera in Figure 4 with the average antigenic distance derived
by corresponding ferret antisera in Figure 5I. It showed that
reduced average antigenic distances inversely correlated with
increased antibody avidities in ferrets with multiple prior H3N2
exposures (R* = 0.5765, P = .0006): higher antibody avidity and
shorter antigenic distances (Figure 6). These results suggest
that repeated H3N2 exposures enhance antibody avidity, thus
affecting virus antigenic characterization.
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Figure 3.  H3-specific immunoglobulin G (IgG) affinity in ferrets with different exposure histories. Sera were collected from ferrets infected with HK (A), SWZ/HK (B), TX/
SWZ/HK (C), or 175C/TX/SWZ/HK (D). Purified ferret IgG was assessed and analyzed for hemagglutinin-specific binding affinity using nonlinear regression (curve fit). Please
see the Figure 2 legend for descriptions of influenza virus strains. Abbreviations: HA, hemagglutinin; IgG, immunoglobulin G; OD, optical density.

DISCUSSION

Current vaccine strain selection uses seronegative ferret
model without influenza-specific preexisting immunity to
detect epidemic viruses that are antigenically different from
vaccine strains [11-13]. However, accumulated evidence indi-
cates that early life exposure to influenza can leave an imprint
on human antibody repertoires, and resulted residual protec-
tion may last a lifetime [15, 16, 21, 31-35]. Intensified global
connectivity helps to spread antigenically drifted influenza
strains [36]. Repeated annual vaccination also contributes
to widespread influenza preexisting immunity in humans.
Virtually all humans have been exposed—asymptomatically
or symptomatically—to influenza, and there exist no such
“influenza-naive” persons except newborns. As shown in this
study, the H3 viruses representing different genetic clades
were “seen” as antigenically related by human postvaccina-
tion sera with detectable H3 preexisting immunity, rather
than antigenically distinguishable by those with undetectable
H3 preexisting immunity. This difference is not due to poor
vaccination response as all human postvaccination sera used
in this study had >16-fold seroconversion after seasonal vac-
cination. Rather, our results confirm that the background of
previous exposures—whether by natural infections or annual
vaccinations—can significantly change human postvaccina-
tion antibody cross-reactivity [18].

Similarly, preexisting immunity also can influence virus
antigenic characterizations in ferrets. Clade 3C.2a and clade
3C.3a viruses were antigenically well separated by ferret anti-
sera stimulated by single H3 infection, whereas their anti-
genic difference diminished as determined by ferret antisera
with increased prior H3 exposures. This is because repeated
H3 infections extended the cross-reactivity of resultant fer-
ret antibodies from clade 1 to clade 3C.X, in contrast to
strain-specific antibodies elicited by single H3 infection.
Consequently, clade 3C.2a and clade 3C.3a viruses were no
longer “seen” antigenically distinct by ferret antisera with
repeated H3 exposures.

The broadened breath of ferret antibody cross-reactiv-
ity apparently occurred at the expense of absolute HAI titers
against more recent viruses—an OAS phenomenon that has
traditionally been considered detrimental to contemporary
vaccine performance [31-34]. Human preexisting influen-
za-specific antibody levels have been found to inversely cor-
relate with postvaccination titers [35-37]. In individuals with
high prevaccination antibody titers, vaccination is found to
primarily boost preexisting influenza-specific repertoires rather
than to induce de novo antibody clonotypes [37]. Many pre-
existing antibodies are cross-reactive and can help to restrict
subsequent infections caused by antigenic variants of influ-
enza [37, 38]. Correspondingly, a suppressed de novo antibody
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SWZ/HK (@), or 175C/TX/SWZ/HK (D). Hemagglutinin-specific ferret IgG avidity was determined in the presence of 4M urea. Please see the Figure 2 legend for descriptions

of influenza virus strains.

response specific for later exposed virus may occur. In this
study, we observed that repeated H3 infections induced more
pronounced OAS phenomena in ferret HAT titers than in ferret
MN titers. This could be because some preexisting antibodies
with broad cross-reactivity have no HAI activity [37].

Our current study also suggests that repeated H3 expo-
sures resulted in improved quality of recall antibodies, which
might be partially via OAS induction. Antibodies from fer-
rets primed with 175C may target HA antigenic sites that are
also conserved by later H3 strains. When the same ferrets
were repeatedly infected with evolved but still antigenically
related TX/50, SWZ/13, and HK/4801, preexisting cross-re-
active antibodies responded to limit viral infections, lead-
ing to reduced HAI titers against recall viruses. This may
also give opportunities to B cells specific for other antigenic
sites to expand [39]. Hence, the resulting pool of ferret anti-
bodies had diversified specificities against a wide range of
H3 viruses. Because individual viruses have different anti-
genic sites to play a dominant role in immune system [40],
repeated exposures to different H3 viruses may not necessar-
ily increase the binding affinity of resultant antibodies for a
specific antigenic determinant. However, their avidity—the
multivalent binding capacity for all antigenic sites—was

enhanced along with increased virus encounters, thus result-
ing in less distinguishable antigenic differences between H3
variants characterized.

Taken together, our study shows that repeated influenza
exposures imprinted not only antibody quantity but also anti-
body quality. The naive ferret model currently used for vaccine
strain selection does not reflect the complexity of human expo-
sure history. Whether viruses appear antigenically identical or
drift to naive ferrets may not hold true for individuals with fre-
quent exposures. This could lead to misidentifying a strain that
indeed is antigenic drift to repeatedly vaccinated individuals
[20]. Vaccine strains selected hereby may not provide cover-
age sufficient for those with frequent vaccinations/infections,
resulting in the compromised VE observed. To improve sea-
sonal vaccine performance, we should take the widespread
human preexisting immunity into consideration during vac-
cine strain selection, and select vaccine strains that are optimal
for populations with different immune backgrounds.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online.
Consisting of data provided by the authors to benefit the reader, the posted
materials are not copyedited and are the sole responsibility of the authors,
so questions or comments should be addressed to the corresponding author.
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