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Pelvic orthosis effects on posterior 
pelvis kinematics An in-vitro 
biomechanical study
Stefan Klima1,2, Ronny Grunert2,3, Benjamin Ondruschka4, Mario Scholze5,6, Thomas Seidel   7,  
Michael Werner3 & Niels Hammer2,3,5

The sacroiliac joint (SIJ) is a well-known source of low back pain, with increasing interest for both 
conservative and surgical treatment. Alterations in pelvis kinematics are hypothesized as a contributor 
to SIJ pain and pelvic orthoses one treatment option, but their effects on the pelvis are poorly 
understood. Alterations in movement patterns induced by the application of pelvic orthoses were 
determined in five human cadaveric pelvises. Deformations were obtained from the lumbosacral 
transition and the bilateral SIJ, using digital image correlation and a customized routine to compute 
the movements within the pelvis. Significant alterations were found for the movements at the SIJ, in 
particular a vast increase in axial (x-axis) rotation, accompanied by increased inferior (y-) translation 
of the sacrum relative to the ilium. Movement patterns at the lumbosacral transition changed, causing 
increases in axial rotation and decreased inferior translation of L5 relative to S1. Using a physiologic 
mode of load application gives novel insights into the potential effects of pelvic orthoses. The results 
of these in-vitro experiments vary markedly from previous experiments with loading limited to two or 
less axes. Furthermore, the influence of pelvic orthoses on the lumbosacral transition warrants further 
investigation.

The sacroiliac joint (SIJ) has been identified as an important source of pelvic girdle and low back pain1–4. 
Alterations in pelvic ring kinematics are partially made responsible for this pain entity, with particular focus on 
the ligaments of the posterior pelvis5–7. Previous studies have pointed out the role of ligaments in maintaining 
SIJ kinematics in close limits4,8,9, being a link between both form and force closure2,10,11. There appears to be a 
correlation between impaired pelvic ligament function and the onset of SIJ pain11–14. However, sparse scientific 
evidence exists proving this theory.

There is recent experimental data that impaired ligament function may alter pelvic ring kinematics, both 
mechanically15 and potentially also clinically16. Mechanoreceptors and free nerve endings have been described 
in the ligaments and adjacent cartilage of the posterior pelvis17–21. These fibers could be involved in neuro-
muscular feedback loops22–24 and be responsible for sustained pain in the posterior pelvis as a consequence of 
mechanically-induced irritation.

An established non-surgical approach to treat the painful SIJ is to apply pelvic orthoses14,25–29. A number of 
experimental studies have postulated that orthoses may relieve pelvic ligaments7,30,31 or decrease laxity of the SIJ, 
defined as an unphysiologic excessive movement within the joint7,14,23,26. These findings have been correlated to 
clinical findings on beneficial outcomes of orthosis applications27–29. However, to date, no study has shown how 
specifically SIJ kinematics become altered under orthosis application, and if the changes induced by orthoses are 
different in the healthy condition compared to the condition with insufficient ligaments.

The given study aimed at investigating the effects of pelvic orthosis on lumbopelvic kinematics using a human 
cadaveric model. Changes induced by orthoses were examined in the intact osteoligamentous lumbopelvises with 
physiologic load in a double-leg stance scenario.
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It was found that the application of pelvic orthoses results in increased movements at the SIJ and altered kin-
ematics of the lumbosacral transition as a consequence.

Methods
Tissues and mechanical setup.  Six cadaveric pelvises were retrieved from human body donors after their 
passing. While alive, the body donors gave written and informed consent to the donation of their tissues for 
research and teaching purposes. All tissues were obtained in accordance to the the Saxonian Death and Funeral 
Act (version 2014). The mean age was 81.3 ± 10.0 years (3 males, 3 females). None of the tissues showed disease 
with impact on the musculoskeletal system and all were used in a fresh condition to exclude mechanical altera-
tions on the bones and ligaments32,33. The pelvises were grossly removed from soft tissues, leaving the L5-sacrum 
transition and the pelvic ring intact with all adjacent ligaments as shown before34,35. For physiologic load appli-
cation onto the pelvis mimicking double-leg stance, the L5 endplate and both acetabula served as contact points 
(DYNA-MESS, Aachen, Germany). An area measuring 1 cm2 was removed from the endplate of L5 before a 
metal pin was inserted into the vertebral body and cemented in with ceramic powder-reinforced polyurethane 
(RenShape solutions, Huntsman International LLC, Salt Lake City, USA). An indentation plate was mounted onto 
the metal pin. This construction was further connected with a spherical stamp component to the mechanical test-
ing device. Adjustable AO titanium plates were further implanted to the iliac crest on both sides with AO standard 
screws of varying length. Steel wires attached to the titanium plates at the iliac crest were used to simulate muscle 
traction of the erector spinae and of the abdominal wall muscles. Match-sized femoral heads were used for both 
acetabula. Following 20 cycles of preconditioning ranging between 0 N and 20% of each donor’s body weight, 12 
loading cycles between 0 N and 100% body weight were conducted at 150 N/sec. The experiments were conducted 
without pelvic orthosis and repeated with a size-matched commercially available orthosis mounted to the pelvis 
at a tension of 50 N7,30.

A Limess digital optical image correlation (DIC) system was utilized (Krefeld, Germany; precision 0.01 pixel 
or 1 µm, 5 fps, FOV 2.0 megapixels). Speckle markers were attached to the L5 vertebra, the sacrum and the ilium 
bilaterally. The image correlation was synchronized with the crosshead displacements of the testing machine. 
Rotations and translations were computed, aligning the optical data in local coordinate systems (Istra4D, Dantec, 
Skovlunde, Denmark), and a custom-programmed approximate approach routine (MATLAB, Mathworks, 
Natick, MA, USA). Data were evaluated for 20%-increments from 0 to 100% body weight of rotations and trans-
lations in x-, y- and z-axes. Positive values were defined as lateral in the x-axis, cranial in the y-axis and anterior 
in the z-axis. Movement thresholds for rotation and translation were defined as ≥ 0.1° or ≥ 0.1 mm, respectively. 
Fig. 1 summarizes the experimental setup.

Data evaluation.  MATLAB (v2017a, MathWorks, Inc., Natick, MA, USA) was applied to import the coor-
dinates and displacements of marked triangle points (one triangle per region respectively three points per region 
– sacrum/L5/ilium) in both conditions, with and without orthosis. Furthermore, these digital triangles were set 
at exactly the same positions in both conditions, with and without orthosis, to maintain comparability. The cor-
responding displacements of the points were corrected for rigid body movement (rigid body motion removed, 
RBMR) at each time step directly in the DIC-software prior to export. The displacement-data sets were first 
noise-filtered by a moving mean filter with a centered window spanning 25 steps and for each triangle, the center 
of mass (centroid, C) was calculated. The relative displacement srel of a triangle A with respect to a second triangle 
B was defined as the difference in centroid displacements:

= ∆ − ∆ = − − − .s C C x x y y z z( , , )rel A B C A C B C A C B C A C B, , , , , ,

An overview of the regions used for the evaluation and a schematic movement of triangles is summarized in 
Fig. 2. The displacements were used to compute both load- and body-weight dependent displacements as RBMR 
functions for the SIJ and the lumbosacral transition. Additionally, for each pair of triangles A and B, rotation of 
B around the centroid of A was calculated. The center of the Cartesian coordinate system was identified with the 
centroid of A. The points of B were registered for each time step relative to step 0 using the Iterative Closest Point 
Method algorithm implemented in MATLAB (pcregrigid). The transformation matrix was decomposed to obtain 
rotations around the x-, y- and z-axes. Both translations and rotations were solved from the rotation matrix in the 
order Z-Y-X. Body-right sited SIJ motions were mirrored to a body-left coordinate system under the assumption 
of a symmetric pelvis (translation in X direction and rotations around Y and Z multiplied by -1). The deformation 
curves were then scanned and evaluated via a second MATLAB routine. Movements were retrieved from the 12 
load cycles as relative changes at a preload (50 N) = 0%, 20%, 40%, 60%, 80% and 100% of the cadavers’ body 
weight and as absolute changes at a preload (50 N), 100 to 500 N in 100-N steps. Data were further corrected for 
offsetting to each of the previous preloaded step. Means and standard deviations were calculated from the sam-
pled points for every single region.

Statistical evaluation.  Data analysis was conducted using Microsoft Excel 2016 (Redmond, WA, USA), 
Prism 7 (Graphpad Software Inc., La Jolla, CA, USA) SPSS 23.0 (IBM, IL, USA). The D’Agostino-Pearson omni-
bus normality test was used to assess normal distribution, followed by the Friedman test and Dunn’s test for 
multiple comparison with post-hoc adjustment. P-values of 0.05 or less were considered as statistically significant.

Results
Five pelvises gave results on the load-deformation behavior in the DIC in both conditions, i.e. without the orthosis 
and with the orthosis attached. From one pelvis (male 75-year-old), accurate load-deformation data was obtained 
only in the intact condition without the orthosis. With the orthosis attached, speckle markers were covered by the 
pelvic orthosis in this specimen, which required exclusion of the corresponding data set. The failure loads of the 
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pelvises averaged 2145 ± 389 N (range 1941 to 2700 N), corresponding to 281 ± 13% body weight (range 249 to 
346%), respectively. Sacral fractures were the primary cause of material failure in four pelvises and an L5 vertebral 
body fracture was the cause of failure in the fifth pelvis. Movements and movement alterations were observed in 
the sub-degree and sub-millimeter range and with a markedly high inter-individual variation, but equally high 
consistency of the movement cycles within each of the cadaveric pelvises. Measurement precision for the SIJ 
was 0.04 mm and 0.13°, 0.08 mm and 0.22°, and 0.04° and 0.09° in the x, y and z direction, respectively. For the 

Figure 1.  Summary of the experimental setup without pelvic orthosis attached (left top) and with applied 
pelvic orthoses. The right set of images shows the corresponding deformation data obtained with no orthoses 
(top right) and with an orthosis attached (bottom right). Peak deformations were observed at the lumbosacral 
transition and the sacroiliac joint, indicated by the deformation fields in the speckle markers from image 
correlation.

Figure 2.  Overview of the regions used for the evaluation and a schematic movement of triangles under load. A 
displacement of the centroids as well as a rotation of the triangles were calculated from defined marker points. 
SIJ motions from the right body site were mirrored to the contralateral site.
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lumbosacral transition, measurement precision was 0.01 mm and 0.41°, 0.31 mm and 0.11°, and 0.12 mm and 
0.08° in the x, y and z direction, respectively.

A non-linear behavior was observed for all motions, with an increase in the amplitude of motion at increasing 
loading. Relative changes of the individual movements are summarized in Fig. 3. Figure 4 gives an overview of 
the translations and rotations at 100% body weight loading and summarizes these movement alterations graph-
ically. Figure 5 gives the mean values and standard deviations for all movements at 60% and 100% of the indi-
vidual cadavers’ body weight. Supplement Figs 1–3 present the corresponding data under absolute loads ranging 
in 100-N steps until 500 N. Post-measurement precision was as follows at 500 N: Tx = 0.04 mm, Ty = 0.07 mm, 
Tz = 0.04 mm, Rx = 0.13°, Ry = 0.22°, Rz = 0.09° for the SIJ, and Tx = 0.01 mm, Ty = 0.31 mm, Tz = 0.12 mm, 
Rx = 0.41°, Ry = 0.11°, Rz = 0.08° for the lumbosacral transition. These values were used as reference for evident 
movement.

Pelvic orthosis induce alterations in the movement patterns in particular in the axial rotation 
of the SIJ.  Comparison of the individual changes in the pelvises’ movement at the SIJ yielded the following 
results for 100% of body weight: The inferior (y-) translation of the sacrum increased by 52%, axial (x-) rotation 
increased vastly by 416% in the sense of a counter-nutation (extension movement of sacrum), and (z-) rotation 
increased by 6% in the condition with an orthosis compared to no orthosis, respectively (Fig. 3). In spite of the 
high inter-individual variation in the movement patterns and the given sample size, the change in axial rota-
tion was statistically significant at 100% body weight (p = 0.038), causing the changes in the minute rotations to 
become evident. Similar observations were made comparing the mean values averaged for all pelvises, showing 
inferior (y-) translations of the sacrum of 0.32 ± 0.31 vs. 0.45 ± 0.31 mm, axial (x-) rotations of 0.01 ± 0.05 vs. 
-0.55 ± 0.32°, and (z-) rotations of 0.16 ± 0.14 vs. 0.20 ± 0.13° in the conditions without and with orthosis, respec-
tively (Figs 4 and 5).

Corresponding changes to the SIJ were observed at the lumbosacral transition with decrease in 
axial rotation.  At the same time at the lumbosacral transition, the following relative alterations in mean tran-
sition movements were observed: The inferior (y-) translation of L5 decreased by 26%, the anterior translation 
changed minutely by 6%, and axial rotation (flexion) decreased by 87% in the condition with an orthosis com-
pared to no orthosis, respectively (Fig. 3). Similar observations were made comparing the mean values averaged 
for all pelvises, showing inferior (y-) translations of L5 of −0.97 ± 0.55 vs. −0.90 ± 0.41 mm and axial rotations of 
1.82 ± 1.04 vs. 1.55 ± 0.84° in the conditions without and with orthosis, respectively (Figs 4 and 5). The anterior 
translation of 0.11 ± 0.47 vs. −0.04 ± 0.35 mm was evident but on the verge of measurement precision (threshold 
0.12 mm)

Discussion
Pelvic orthosis application does alter SIJ and lumbosacral kinematics.  This study aimed at quan-
tifying the influence of pelvic orthoses on SIJ motion using a highly accurate in-vitro biomechanical model with 
physiologic loading. The model confirms published observations that SIJ motion is being altered by the applica-
tion of pelvic orthoses and gives detailed insights in how this takes place. Moreover, it was observed that move-
ment patterns at the lumbosacral transition are also altered as part of this complex chain of movement segments.

Pelvic morphology appears to be largely decisive for SIJ kinematics, and there is evidence for 
innervated ligaments being potential target sites for treatment.  It has been described that the SIJ 
does not have direct muscle attachments, but a range of muscles exerting compressional and torsional effects, 

Figure 3.  Bar graph summarizing the averaged data (absolute values) from changes induced by pelvic belt 
application in each of the pelvises under 100% body weight loading for the sacroiliac joint (SIJ) and the 
lumbosacral transition (L5-S1). The bars indicate the mean, the whiskers standard deviations. The quality and 
direction of the change in motion is seen in Figs. 4 and 5.
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including erector spinae, piriformis, gluteus maximus and the long head of biceps femoris36,37, acting onto the 
posterior pelvis predominantly via the posterior sacroiliac and the sacrotuberous ligament. Rotations and trans-
lations have been found to be the predominant movements occurring at the pelvis8,38,39. These movements are 
minute, and unlikely to be detected clinically40. The dense SIJ ligaments and the SIJ cartilage are limiting this 
movement. Changes in the SIJ cartilage, which would be indicative of degeneration or osteoarthritis in other 
joints, occur at a much earlier time point than in other joints both histologically41,42 and radiologically42,43. While 
it is well known that these changes in cartilage morphology are part of an adaption process to bipedalism, it is 
to date unclear if these changes are also related to the onset of SIJ pain. Differences in the osseous, cartilaginous 
and ligamentous morphology are likely to be related to different movement patterns, as could be observed in this 
given study.

Our findings underline multiaxial changes in pelvis movement including both the lumbosacral transition and 
the SIJ, with the effects of altered ligament loading. This change, however, appears not to be an exclusive limitation 
in the movements of the lumbopelvis, as especially the axial rotations increase at the SIJ in the context of a counter 
nutation movement (extension). One may hypothesize that the external loading to the pelvis causes decreased 
loading of the pretensioned SIJ ligaments and facilitates SIJ axial rotation and inferior translation of the sacrum 
relative to the ilium under loading. As a consequence, the inferior movement of L5 decreases, given that less of 
the inferior translation at the SIJ has to be compensated for, and potentially as a result of the load distribution via 
both the axial SIJ rotation and the complementary lumbosacral axial rotation.

Figure 4.  Graphical summary of the changes induced by pelvic orthoses under 100% body weight loading. The 
grey arrows indicate the initial movement, the interrupted red arrows indicate the extent of motion. The right 
side summarizes the loading-dependent deformation for 20% increments in body weight loading. (A) sacroiliac 
joint, (B) lumbosacral transition. I = ilium, L5 = fifth lumbar vertebra, S = sacrum; cd = caudal, cr = cranial, 
l = left, r = right; R = rotation, T = translation.
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Do pelvic orthoses alter the ligament loading with potential effect on pain fibers?.  Both ven-
tral44 and dorsal17,18,44–46 spinal nerve rami innervate the SIJ, predominantly via the L4-S1 segments, thereby 
forming a fine network44. Further inputs are provided by the gluteal47,48, obturator17 and the pudendal nerve48. 
The cartilage21 and the ligaments19,22 are densely innervated, predominantly by mechanoreceptors19–21 and noci-
ceptors20,21. Takasaki et al.24 and Jung et al.23 determined the effects of compression forces at the pelvis, ranging 
between 0 and 100 N on muscle firing patterns, and observed altered activity of the gluteus maximus and biceps 
femoris with increasing force. Different recruitment strategies appear to exist49. Kiapur et al. found that even 
small leg length changes may cause peak stress at the SIJ cartilage50.

Two potential scenarios could be the consequence for the innervation patterns and SIJ-related pain demon-
strated by our results. The altered kinematics may either cause decreased pain receptor activation due to the less 
tensed ligaments, or the decreased movements at the lumbosacral transition may form part of the pain relief. 
This second scenario underlines the necessity to consider the SIJ not as an individual joint, but a component of a 
kinematic chain, which our experimental setup has considered.

Load alterations induced by pelvic orthoses differ markedly from previous experimental and 
in-silico findings.  There is published evidence that the force induced via pelvic orthoses decreases SIJ laxity 
and pain assumed to originate from altered lumbopelvic kinematics24,26. However, limited evidence exists that 
pelvic orthosis application reduced sacral mobility25. Previous biomechanical experiments have investigated the 
effects on the pelvis during both injury and surgical as well as non-surgical treatment, including cadaveric, virtual 
biomechanical and patient-control studies. Vleeming and coworkers30 investigated pelvic orthosis effects using a 
similar cadaveric setup as the given one with orthoses applied with a 50 N tensional load in bilateral stance. They 
found a significant decrease in axial rotation, accounting for 19%, which cannot be confirmed by our findings. 
Vleeming et al. furthermore hypothesized that ‘slackening’ of the dorsal ligaments may be a cause. The underly-
ing conceptual model of ‘slackened ligaments’, however, is to date lacking in a morphological correlate, including 
altered ligament mechanics or changes in morphology related to SIJ pain. The experimental model used here 
was chosen according to previous observations on pelvic belt effects, regarding the mode of load application and 
tensional effects14,30,51. Our results on the effects of orthosis application show that SIJ translational and rotational 
movements increase. These experimental findings provide evidence that a slackening of the ligaments may not 
be exclusively causative, but rather overly stiff ligaments. This may potentially exert compression on the anterior 
joint regions, and consequently, may be relieved with increased axial motion.

Previous computational analyses have found that pelvic motion was largely influenced by ligament stiffness 
with site- and direction-dependent effects52,53. Here, beneficial effects of pelvic compression were determined, 
both by means of pelvic orthoses7,31 and surgical intervention54–58. While it is beyond the scope of the present 
study to focus on pelvic belt effects, it could be shown that our previous findings in finite elements simulation 
showing decreased SIJ axial motion and increased rotation around a sagittal axis may not be true in reality. Our 

Figure 5.  Bar charts summarizing the mean translation and rotation data prior to and following pelvic 
orthosis application under 60% and 100% body weight loading for the sacroiliac joint (SIJ) and the lumbosacral 
transition (L5-S1). The boxes indicate the mean, the whiskers standard deviations. Significant differences were 
observed for the axial (x-axis) rotation of the SIJ in spite of the large inter-individual variations in movements. 
*p values significantly different for Rx (60%) = 0.013, Rx (100%) = 0.038.
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results here furthermore indicate that our previous computer model may need further refinement to reflect the 
complex kinematics of the pelvis, and that movements in the relevant axes are likely to be at least one magnitude 
higher than assumed previously in the computer models31.

Do pelvic orthoses have comparable effects like other intervention techniques? Experimental 
evidence.  Injection techniques are commonly used to diagnose and treat the painful SIJ59–65, with 
fluoroscopy-guided techniques being more accurate66. Peripheral nerve stimulation67,68 and low-level laser ther-
apy69 have evolved as treatment options. Similarly, nerve ablation techniques70–75 and surgical interventions using 
both open76–78 and minimally-invasive approaches55–58,79 have yielded promising results concerning patient out-
comes80. However, comparative studies between the surgery and non-surgery groups found little advantage in 
long-term follow-up81, and surgery was accompanied by significant complication rates, especially infections82,83 
and non-unions84. Here, pelvic orthoses appear to have certain advantages over invasive procedures.

Clinically, pelvic orthosis application appears to decrease pelvic laxity23,26. Moreover, beneficial effects of 
orthoses have been reported concerning decreases in pain perception27, health-related quality of life and pos-
tural steadiness29. Tension appears to have less effect than position14, and changes to pelvic morphometry overall 
appear to be minute28. The range of motion detected in our experiments confirms these findings, and sheds light 
on the lumbosacral transition as an integral part of posterior pelvis kinematics. Our results are consequently 
in line with previous experimental and clinical findings showing beneficial effects of pelvic orthoses to treat 
SIJ-related pain29. The results presented here, however, speak in favor of increased movement at the SIJ as a conse-
quence of orthosis application, which is a novel finding that has previously only been postulated anecdotally. The 
clinical implications of this additional movement are largely hypothetical at this stage. They could be beneficial 
in regards to pain reduction, facilitating a more physiologic movement at the posterior pelvis, which is being 
impaired following (partial) failure of the SIJ ligament. Moreover, the effects on the lumbosacral transition should 
be considered carefully in light of potential lumbogenic causes of SIJ pain. An application of pelvic orthosis could 
alter the range of motion at the lumbar spine, to the effect that degenerative processes might be facilitated in this 
load-bearing region. This might even explain the anecdotal reports of increased pain following the application of 
pelvic orthoses. Such conclusions, however, remain largely hypothetical. In light of our experimental findings, the 
indication of pelvic orthoses should be set critically, following a thorough clinical examination under no influence 
of analgesics to rule out potentially negative effects. Future studies will need to investigate the clinical implications 
of the effects of pelvic orthoses on the lumbar spine in more detail.

Limitations.  The given experiments have a few limitations. Though the tissues were obtained in a supravital 
condition, removal of the soft tissues may have influenced lumbopelvic kinematics. The age of the body donors 
at death and the small sample size further limits the generalizability of the results, and our results warrant further 
quantification under conditions of impaired bone and ligament stability in a younger population, which is at 
higher risk of developing SIJ related pain. This study has not included the effects of pelvic belts on induced rota-
tions to the lumbar spine and sacroiliac joint and this should be addressed in future.
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