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Sequence based prediction of 
enhancer regions from DNA 
random walk
Anand Pratap Singh, Sarthak Mishra & Suraiya Jabin   

Regulatory elements play a critical role in development process of eukaryotic organisms by controlling 
the spatio-temporal pattern of gene expression. Enhancer is one of these elements which contributes 
to the regulation of gene expression through chromatin loop or eRNA expression. Experimental 
identification of a novel enhancer is a costly exercise, due to which there is an interest in computational 
approaches to predict enhancer regions in a genome. Existing computational approaches to achieve 
this goal have primarily been based on training of high-throughput data such as transcription factor 
binding sites (TFBS), DNA methylation, and histone modification marks etc. On the other hand, 
purely sequence based approaches to predict enhancer regions are promising as they are not biased 
by the complexity or context specificity of such datasets. In sequence based approaches, machine 
learning models are either directly trained on sequences or sequence features, to classify sequences 
as enhancers or non-enhancers. In this paper, we derived statistical and nonlinear dynamic features 
along with k-mer features from experimentally validated sequences taken from Vista Enhancer Browser 
through random walk model and applied different machine learning based methods to predict whether 
an input test sequence is enhancer or not. Experimental results demonstrate the success of proposed 
model based on Ensemble method with area under curve (AUC) 0.86, 0.89, and 0.87 in B cells, T cells, 
and Natural killer cells for histone marks dataset.

More than 98% of the human genome constitutes the non-coding region with most of the regulatory elements 
falling in this region. Regulatory region plays an important role in gene regulation and it occupies a centre stage in 
understanding the gene expression1. Regulatory regions do not code for proteins instead control the expression of 
other coding regions. These regions can be classified as promoter, enhancer, silencer, and insulator etc. Promoters 
occur in the vicinity of coding regions and they bind to transcription factor protein that initiates DNA transcrip-
tion2. Enhancers are regions situated distant from transcription start site. These can not only be found upstream 
or downstream of gene but also within introns3. The identification of novel enhancers is a challenging task for 
several reasons. First, number of enhancer sequences is very small as compared to the size of human genome. 
Second, their location relative to their target gene (or genes) is highly variable as they do not necessarily act on the 
respective closest promoter but can bypass neighbouring genes, to regulate genes, located more distantly along a 
chromosome. Third, in contrast to the well-defined sequence code of protein-coding genes, the general sequence 
code of enhancers, if one exists at all, is poorly understood4. Enhancers share core properties with promoters but 
the RNA produced by them may differ. Enhancers produce eRNA, which are sensitive to exome-mediated decay. 
They are relatively short, unspliced, non-polyadenylated, and are retained in the nucleus. Whereas, promoter 
upstream antisense transcripts (PROMPTs) are heterologous in length and they are produced only upstream of 
the promoters of active protein coding genes. Enhancers and promoters are similar in having transcription factor 
binding sites. Enhancers play an important role during development and in the regulation of cellular processes 
during an organism’s lifetime2. They behave in cell specific manner; few enhancers are active in differentiated cell 
at a particular time, while the others are in an inactive state3. This feature of enhancer makes it a good candidate 
to differentiate cell types.

De novo characterization of an enhancer is a challenging task, despite constantly reducing cost of performing 
site directed mutagenesis and analysis of its transcriptional impact. As non-coding DNA are present in high 
proportion in eukaryotes, computational methods to identify novel enhancers have become handy to filter can-
didates from the non-coding regions. This problem of enhancer prediction can be simply stated as: Given a DNA 
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sequence, determine if it can function as enhancer5. Various computational methods have been used with dif-
ferent features or combination of features to characterize enhancer regions. These features primarily categorize 
DNA sequences with three sets of properties namely genomic sequence conservation, histone marks, TFBS, and 
high-resolution analysis6,7. Both traditional and Deep learning8 based algorithms have been used for predicting 
enhancers from genomic features or sequences alone. For example, an integrated approach by combining mul-
tiple datasets was developed by deriving feature vectors and then making use of these feature vectors to train 
machine learning based models to predict enhancers8–18. Similarly, histone marks like H3K4me3, H3K4me1, 
and H3K27ac have been used as positive set to classify through ensemble techniques like Adaboost and random 
forest13,16. These features are not flawless and have some serious limitations. For example, it is now known that the 
enhancer regions are not particularly conserved. Similarly, the presence of histone marks and occurrence of TFBS 
do not assure the site is an enhancer region19,20. Problem is further complicated as all enhancer regions are not 
available for binding in different cell types21, leading to inconsistencies with genomic features described in these 
methods. Enhancer identification using computational methods is a tricky task, as different kinds of challenges 
are associated with it. For example, enhancers are not evolutionarily conserved, so evolutionary methods do not 
help much. Enhancer sequences vary in length and location is not fixed (spread over intergenic region, also it 
can be found in intronic regions). Transcription factor binding sites also face conservation problem and tran-
scription factors are not specific to enhancers. The framework, used by existing computational methods, includes 
integration of NGS data, creation of feature vector, and prediction of annotation (enhancer or non-enhancer). 
The feature vector contains transformed values from TFBS, CHiP-Seq (Chromatin immunoprecipitation with 
massively parallel DNA sequencing) data22, chromatin accessibility information derived from DNase-I hypersen-
sitivity sites or any combination of these datasets. Methods which use mostly NGS data (Chip-seq, DHS) or TFBS 
data show good prediction but are limited to specific cell types. These methods have lower generalization capa-
bility if given unknown cell data e.g., CSI-ANN (based on artificial neural network)23, RFECS (random forest)16, 
and DELTA (Adaboost)13. Some methods used combination of sequence features, TFBS and NGS data to attain 
generalization and better accuracy e.g., EMERGE (elastic logistic regression)24, PEDLA (deep Neural network)10 
and EnhancerDB (Deep Belief network)25.

To overcome some of the inconsistencies in genomic feature based prediction of enhancers, sequence features 
can be readily used, as they offer the advantage of overcoming the limitation of cell type specific enhancers8,12. 
Histone marks data is cell or tissue specific and if we train a machine learning based model on histone dataset, 
naturally the model tends to become biased towards that specific cell type for which it is trained and it may fail 
badly to do correct predictions for other cell types. By preparing training dataset using ‘gold standard enhancers’ 
from VISTA Enhancer Browser26 for the proposed model, we attempted to solve problem of classifying DNA 
sequences into enhancers and non-enhancers irrespective of tissue specificity, and the results suggest the success 
of the proposed model. The common features used in sequence based approaches are k-mer17 frequency but as the 
length of k-mer increases, the frequency of k-mer decreases progressively, while the dimensionality of the model 
grows [8, 11, and 13]. As soon as the length of k-mer string crosses 6, the frequency matrix may become really 
sparse which results in overfitting of the machine learning based model14. For the proposed work, we calculated 
feature vector based on k-mer with length ranging from 1 to 6 along with statistical and nonlinear features cal-
culated from DNA random walk model. In this paper, we investigate if sequence features obtained on the basis of 
DNA random walk model and k-mer features can be used as an alternative model for predicting enhancer regions 
and it looked promising as long range correlations have also been observed in non-coding DNA sequences in pre-
vious studies15. DNA random walk models show promises to classify regulatory sequences. The proposed method 
captured dynamics of DNA through one dimensional random walk by using purine-pyrimidine model. We devel-
oped machine learning model based on sequence features extracted from DNA random walk model at genomic 
scale along with k-mer features. Bagged Tree based Ensemble method outperformed other machine learning 
methods such as Quadratic Support Vector Machine (SVM)23,27, Levenberg-Marquardt Backpropagation28 and 
Bayesian regularized Feed-forward Neural Network (FFNN)29 in classification task of enhancers. The other meth-
ods that performed comparable are Convolutional Neural Network (CNN)30–32, and RUSBoosted Tree based 
Ensemble method33 which is a hybrid sampling/boosting algorithm. The proposed method overcomes the limi-
tation of other enhancer prediction methods, as combination of sequence features improves prediction accuracy. 
This method is not at all dependent on histone marks, so we hypothesize to predict more complete set of enhanc-
ers. The proposed method is an attempt to classify enhancer sequences with better accuracy and generalizability 
than the existing methods in literature.

Materials and Methods
The Fig. 1 shows the flow chart of the proposed system and the following sub-sections explain the system.

Sources of Datasets.  In total, 1798 experimentally validated human non-coding elements with gene 
enhancer activity, as assessed in human cell lines were collected from the VISTA Enhancer Browser26. From 
non-coding fragments obtained, 900 elements were defined as enhancers that exhibit reproducible pattern in 
at least three different embryos, whereas 898 elements were defined as enhancers that exhibit non-reproducible 
pattern in at least three different embryos. These 898 elements are considered as weak enhancers.

The positive set i.e., the set of enhancer sequences, is constructed using the experimentally validated human 
non-coding fragments taken from the VISTA Enhancer Browser. The length of validated human enhancer ranged 
from 428 to 8061 base pairs (bp) with median of 1334 bp. We considered length of 1500 bp and truncated the 
sequences longer than that.

The negative set i.e., the set of non-enhancer sequences, is generated from hg19 reference genome with similar 
length distribution and GC content. Set of non-enhancer sequences are generated randomly similar to positive 
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set with matched repeat. The genNullSeqs() function from package gkmSVM34 in R was used to generate null 
sequences (negative set) with matching repeat and GC content as the input bed file for positive set regions17.

Feature Extraction.  To extract feature vector from positive and negative sets, we generated permutation 
of bases at position 1 to 6 and then calculated the frequencies of each permutation for each sequence. For other 
features, we generated the random walk of each sequence according to purine-pyrimidine model, and calculated 
statistical features and non-linear features.

The feature vector is formed by calculating k-mer with length ranging from 1 to 6 (a total of 5460 k-mer fea-
tures) along with statistical and non-linear features calculated from DNA random walk35,36.

Statistical Features.  The basic features such as max, min, skewness, kurtosis or generic patterns such as 
peaks are usual measures to describe time series. In addition, we also calculated interquartile range, zero crossing 
rate, mean crossing rate, pairwise correlation and spectral entropy of each timeseries obtained from random walk.

Nonlinear dynamic features from sequences through DNA random walk model.  In order to 
study dynamics of the DNA sequences, we first introduce graphical representation of DNA sequences as shown 
in Fig. 2, which we call as the DNA walk. For the conventional one-dimensional random walk model35,36, a walker 
moves either left [x(i) = +1] or right [x(i) = +1] a single unit length for each step i of the walk. For the case of an 
uncorrelated walk, the direction of each step is independent of the previous step. For the case of a correlated ran-
dom walk, the direction of each step depends on the history (“memory”) of the walker. The DNA walk is defined 
by the rule that the walker steps left [x(i) = +1] if a pyrimidine occurs at position a linear distance i along the 
DNA chain, while the walker steps down [x(i) = −1] if a purine occurs at position i. The DNA walk is generated 
for each sequence in dataset from such a model.

Random walk is a non-stationary time series, therefore nonlinear methods are used in this study to extract 
features such as Hurst exponent37, sample entropy, Lyapunov exponent38 and deterrent fluctuation analysis39. 

Figure 1.  Flow Chart of the Proposed system.

Figure 2.  Random walk in enhancers.
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A complete list of 5468 features (including all k-mer features) used in this paper to design enhancer prediction 
model can be referred in the supplementary information S1.

Sample entropy is a useful measure to investigate the dynamics of time series. It is defined as the negative 
natural logarithm of the conditional probability, that the subseries of length m remains similar at the next point, 
excluding self-matches. A lower value for the sample entropy therefore corresponds to a higher probability indi-
cating more self-similarity.

The Hurst exponent is used in fractal and random walk analysis. It is used as a measure for the long-term mem-
ory i.e., the long statistical dependencies in the data that do not originate from cycles. It was developed by H.E. 
Hursts for studying the problem of long-term storage in water reservoirs.

Hurst exponent is estimated by dividing time series of full length to a number of shorter time series and res-
caled range is calculated for each of the smaller time series. The rescaled range and chunk size follow a power law 
and the Hurst exponent is given by the exponent of this power law.

σ
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In this equation, K is called the Hurst exponent. Its value is 0.5 for a purely Brownian motion, but it takes a greater 
value for time series that exhibits a bias in one direction.

Lyapunov exponent quantifies the exponential divergence of initially closed state trajectories and estimates the 
amount of chaos in the system. The dynamics of the data are reconstructed using a delay embedding method with 
a lag, such that each value xi of the data is mapped to the vector:

= … …+ + ∗ + − ∗X x x x x[ , , , , ] (2)i i i lag i lag i emb im lag2 ( 1)d

For each such vector Xi, we find the closest neighbor Xj using the Euclidean distance. We know that, as we fol-
low the trajectories from Xi and Xj in a chaotic system, the distances between Xi+k and Xj+k denoted as di(k) will 
increase according to power law di(k) = c * eλ*k, where λ is a good approximation of the highest Lyapunov expo-
nent, because the exponential expansion along the axis associated with this exponent will quickly dominate the 
expansion or contraction along other axes.

Long range correlation in non-coding DNA sequences are observed through detrended fluctuation analysis. 
Detrended fluctuation analysis is used same as the Hurst component, to find long term statistical dependencies 
in time series. The time series is divided into windows and standard deviation of each window is calculated. The 
local trends are removed for each window separately by fitting a polynomial pn,i to the window Wn,i and then 
calculating Wn,i − pn,i (element-wise subtraction). The standard deviation std(X, n) is then calculated as before, 
only using the detrended window.

Enhancers are generally present in non-coding sequences of human genome where they are spread across 98% 
non-coding region, and this contributes towards large search space to identify enhancer sequences19. Number of 
enhancer sequences are small in comparison to sequences which do not show enhancer activity40. Hence, while 
preparing the training dataset, we maintained this ratio between positive and negative samples of the prepared 
dataset, with the aim to evolve a robust model. This resulted in class imbalanced training dataset created for 
enhancer prediction in this study and we successfully handled it using Ensemble methods.

Classification methods for proposed model.  We experimented with a number of classifiers for training 
the model on prepared dataset. In this section we report methods that were highly effective for training the model.

Ensemble methods.  An ensemble combines a series of k learned models (or base classifiers which is deci-
sion tree for the proposed model), M1, M2,…Mk, with the aim of creating an improved composite classification 
model, M*. A given data set, D, is used to create k training sets using bootstrap sampling, D1, D2,….Dk, where Di 
(1 ≤ i ≤ k − 1) is used to generate classifier Mi. The bootstrap method samples the given training tuples uniformly 
with replacement. That is, each time a tuple is selected, it is equally likely to be selected again and re-added to the 
training set. Given a test tuple to classify, it collects the class label predictions returned from the base classifiers 
and outputs the class in majority. The base classifiers may make mistakes, but the ensemble will misclassify test 
tuple only if over half of the base classifiers are in error. Ensembles yield better results when there is significant 
diversity among the models. The bagged classifier often has significantly greater accuracy than a single classifier 
derived from D, the original training data. Ensemble method will not be considerably worse as compared to single 
classifier and is more robust to the effects of noisy data and overfitting41.

RUSBoost33 is hybrid sampling/boosting algorithm, which uses random undersampling (RUS) that removes 
examples (randomly) from the majority class until the desired balance is achieved. While many data sampling 
techniques are designed specifically to address the class imbalance problem, boosting is a technique that can 
improve the performance of any weak classifier (regardless of whether the training data is imbalanced). The 
most common boosting algorithm is AdaBoost42, which iteratively builds an ensemble of models. During each 
iteration, example weights are modified with the goal of correctly classifying examples in the next iteration, which 
were incorrectly classified during the current iteration. Upon completion, all constructed models participate in 
a weighted vote to classify unlabelled examples. Such a technique is particularly effective at dealing with class 
imbalance because the minority class examples are most likely to be misclassified and therefore given higher 
weights in subsequent iterations.

Convolutional Neural Network (CNN).  CNNs are very similar to Feedforward Neural Networks (FFNN) 
with explicit assumption that the inputs are images, by having neurons in each layer arranged in 3 dimensions, 
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connected to a small region of the layer before it, which makes the forward function more efficient to implement 
and vastly reduce the count of parameters in the network. CNN is the most suitable model for image processing 
with first layer being convolutional layer but we modified CNN model to make it suitable for our data by selecting 
specific parameters. CNN is especially useful for solving problems that involve spatial or temporal dependency in 
the dataset whereas FFNN is a suitable choice for a dataset with independent variables. For many basic kinds of 
vision jobs, CNN has been shown to outperform humans30.

Results and Discussion
General statistics of selected features.  In order to form the training and test datasets, the broad catego-
ries of features extracted from positive and negative sequences are given below:

-Dynamic/Statistical features (8 features)
-K-mer features (5460)
Some of the features extracted are namely: k-mer with length ranging from 1 to 6 (a total of 5460 k-mer fea-

tures), standard deviation (sd), deterrent fluctuation analysis (dfa), autocorrelation with lag 200 (ac_200), auto-
correlation with lag 300 (ac_300), autocorrelation with lag 100 (ac), sample entropy (sampen), hurst exponent 
(hurst), ratio value number to time series length (rvntsl) etc.

Figures 3 and 4 show histograms and box plots for comparing and analysing distribution of specific features 
over the two class labels enhancer and non-enhancer.

Table 1 summarizes different parameters such as standard deviation (SD), mean, and p-value etc., chosen for 
comparison of four features namely ‘GGCAG’, ‘TGTT’, dfa, and rvntsl, against positive and negative class samples 
of the prepared dataset. Unpaired two tailed T-test is performed on positive and negative class samples, consid-
ering them as two different datasets to be compared. T-test is used to compare two samples to compute whether 
they are different from each other, and if they are different, how significantly they differ. For the four specific 
features chosen, p-value is much less than the value 0.05; so with great evidence, we reject the null hypothesis 
of identical means or high similarity of features from positive and negative samples of the prepared dataset. 
Therefore, we can conclude that the training data set is robust enough for successful training of a classifier to 
predict enhancer or non-enhancer.

Experimental Design and Preparation of datasets.  Figure 5 shows the experimental design of the 
proposed system for enhancer prediction and the following sub sections explain each part.

Figure 3.  Comparison of features of training dataset using Histograms.
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Training Dataset.  Training dataset is prepared by extracting k-mer features, statistical features, and non-
linear dynamic features through random walk model from positive and negative sequences, taken from VISTA 
Enhancer Browser. The prepared training dataset suffers from the class imbalance problem as the main class of 
interest (enhancer) is represented by fewer tuples as compared to the other class (non-enhancer). There are total 
15,588 training samples, out of which only 1,798 are positive samples and 13,790 are negative samples. Each sam-
ple has 5,468 features in the prepared training dataset (Supplementary Dataset.csv). Ensemble methods are the 
most suitable methods for such class-imbalanced dataset. A test data set was formed by separating 25% of training 
dataset of size 15,588 samples, in order to evolve the best classifier while training of the classifiers.

Test or Validation Datasets.  In order to validate and evaluate the performance of the proposed model, 
we prepared three test datasets. Histone modification data for three cell types namely B cells, T cells, and Natural 
killer cells were downloaded from ENCODE. The bed tools with intersect and subtract command is used to 
extract overlapped regions. We extracted overlapped regions between H3K4me1 and H3K27ac histone modi-
fication marks as positive set (set of enhancer sequences)29 and protein coding sequences as negative set (set of 
non-enhancer sequences) for preparation of validation set to judge the performance of the proposed model.

Training of Classifier.  The foremost objective of training machine learning based model is to keep a good 
trade-off between simplicity of the model and the performance accuracy. The classifiers were trained on the 

Figure 4.  Comparison of features of training dataset using Box Plot and P-value.

Feature 
name

For positive samples 
(i.e. enhancer)

For negative samples 
(i.e. non-enhancer) Test 

Statistic p-valueSD Mean SD Mean

‘GGCAG’ 3.63 2.88 2.37 1.99 13.95 5.77e-44

‘TGTT’ 7.31 10.76 6.82 9.45 7.55 4.55e-14

Dfa 0.05 1.57 0.06 1.60 −16.98 4.67e-64

Rvntsl 0.03 0.07 0.05 0.10 −27.71 5.04e-165

Table 1.  Comparison of features of Positive and Negative samples.
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features calculated from DNA random walk which include statistical features and non-linear features along 
with k-mer feature of length ranging from 1 to 6. A number of experiments were performed using classifica-
tion methods such as Bagged Tree based Ensemble method41, RUSBoosted Tree based Ensemble method33, and 
Convolutional Neural Network (CNN)30, for training the model and to choose the parameters (listed in Table 2) 
of machine learning based methods in order to obtain the most accurate classifier. Different experimental results 
suggest that Ensemble learning method based on bagging is the most suitable method in comparison to other 
methods on the prepared training dataset.

The choices of input parameters for implementation of different classifiers are summarized in Table 2. For the 
implementation of Bagged Tree based Ensemble methods, value of k i.e., number of learners, was set as 30.

As the training data has 5468 features, we used Principal Component Analysis (PCA)43 as a pre-processing 
technique before giving training dataset to ensemble methods. PCA is used to reduce a large set of variables to a 
small set that still contains most of the information in the large set. It basically transforms a number of (possibly) 
correlated variables into a (smaller) number of uncorrelated variables called principal components. The first prin-
cipal component accounts for as much of the variability in the data as possible, and each succeeding component 
accounts for as much of the remaining variability as possible.

PCA is keeping enough components to explain 95% variance. After training, 3 components were kept with 
explained variance per component in order: 82.5%, 8.7%, 4.3%, 1.2%, 0.3%, 0.2%, 0.2%, 0.1%, 0.1%, 0.1%. 
Variance of least important components is not reported.

Another classifier that also performed comparable along with ensemble methods on the prepared train-
ing data set is Convolutional Neural Network (CNN). CNN was implemented (Keras library of Python with 
Tensorflow as backend) with 3 layers; namely an input dense layer, one or more hidden dense layer (s) but only 
one is taken for the proposed model along with an output layer. The input dense layer of CNN can have maximum 
of 5468 units as the same number of features are present in the prepared training dataset. The input dense layer 

Figure 5.  Experimental Design of Proposed System.

Bagged Tree based Ensemble method
RUSBoosted Tree based Ensemble 
method CNN

Classifier: Bagged Trees
Ensemble method: Bag
Learner type: Decision tree
Number of learners: 30
Prediction speed: ~1300 observations/sec
Training Time: 348.56 secs
PCA: enabled

Ensemble method: RUSBoost
Learner type: Decision tree
Number of learners: 30
Learning Rate: 0.1
Prediction speed: ~3000 observations/
sec
Training Time: 267.94 secs
PCA: enabled

Input dense layer of CNN has 50 units, hidden 
dense layer has 10 neurons and activation function 
‘tanh’, output layer has 2 neurons (1 for each classs 
with activation function ‘softmax’
optimizer = ‘rmsprop’
batch size = 512
Max epochs = 50
dropout = 0.25
Stopping criteria = Minimum validation error 
achieved with 10-fold cross validation

Table 2.  Features selected for Implementation of Computational Methods.
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consisted of 50 neurons and the activation function was chosen as ‘tanh’ (Hyperbolic tangent) with a dropout 
value of 0.25. The hidden dense layer consisted of 10 neurons with the activation function ‘tanh’ and dropout of 
0.25. The dense layer is a fully connected layer that has every neuron in it connected to every neuron in the next 
layer. Every dense layer is using a dropout layer that is a regularization technique, which aims to reduce the com-
plexity of the model with the goal to prevent overfitting. Dropout randomly deactivates certain units (neurons) 
in a layer with a certain probability p (here 25%) i.e., 25% of the activations of a layer are set to zero. Hence, the 
neural network doesn’t tend to rely on particular activations in any given feed-forward pass during training. As 
a consequence, the neural network learns different redundant representations and the network doesn’t rely on 
particular neurons, hence there is no dependence on combination (or interaction) of these to be present. Another 
advantage is that training becomes faster.

The output layer has 2 neurons (1 for each class i.e., enhancer and non-enhancer) with activation function 
‘softmax’ (normalized exponential function). The model is trained on 75% of the training data with 10-fold cross 
validation. The rest 25% data has been used for testing the model. Training is done for maximum number of 50 
epochs on the batch size of 512, with the stopping criterion being achievement of minimum validation error. It 
simply divides training data samples into a set of 512 samples and each set is used for training the network one 
by one. An epoch is completed, once all the sets are exhausted. With different batches of samples, the network 
trains faster, uses fewer samples at a time, and also requires lesser memory. But the batch size chosen should be 
optimum i.e., not too small or not too big.

For implementation of CNN method for the proposed model, the first layer chosen is dense layer and not the 
convolutional layer. The reason for not using the convolutional layer as first layer is that the input layer did not 
seem to have any positive effect on the performance of the model on test data. Multiple experiments were per-
formed to choose these parameters of CNN model in order to obtain the most accurate model.

To compare the performance of different classifiers for the proposed model, we plotted Receiver Operating 
Characteristic Curves (ROCs) on the test data formed by separating 25% of training data which is basically 
combination of POSITIVE and NEGATIVE enhancers as ‘gold standard enhancers’, summarized in Table 3. 
Additionally, the corresponding AUC was computed. Figure 6 shows performance of model for different classifi-
ers on the prepared test data.

To assess the performance and validate the model, we used the constructed validation set to calculate AUC 
and plot ROCs on the prepared test datasets. We used three test datasets each with sizes of 53564 samples 
(38564+, 15000−) with input sequences from histone marks (for three cell types namely B cells, T cells, and 
Natural killer cells downloaded from ENCODE) for positive samples, and protein coding sequences for negative 
samples. Figure 7 shows ROCs obtained using Bagged Tree based Ensemble classifier on three test datasets of 
histone marks for B cells, T cells, and Natural killer cells. The results for Bagged Tree based Ensemble method and 
other classifiers on histone test datasets are summarized in Table 4.

Classification Methods

On true enhancer data from 
VISTA Enhancer Browser

AUC Accuracy

Bagged Tree based Ensemble method 0.91 93.3%

RUSBoosted Tree based Ensemble method 0.90 91.3%

Convolutional Neural Network (CNN) 0.90 92.4%

Table 3.  Performance Comparison of Proposed Model with different classifiers.

Figure 6.  Performance of Model for different Classifiers on test data from VISTA Enhancer Browser.
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We obtained AUC 0.86, 0.89, and 0.87 in B cells, T cells, and Natural killer cells respectively with Bagged Tree 
based Ensemble method, which was the best amongst three used for training the classifier of the proposed model.

Comparison of proposed method with other enhancer prediction methods in the literature.  A 
comparison of most closely related and recent enhancer prediction tools existing in literature of last 6 years in 
terms of datasets used, features, classification methods, and accuracy with the proposed method in order to bring 
out peculiarities and specific contribution of this work, is shown in Table 5.

Our approach basically takes experimentally validated enhancer sequences from VISTA Enhancer Browser 
to generate the proposed model and then validates the model on histone data as test data. We obtained accuracy 
of 93.3% for proposed method based on Ensemble method (Bagged Tree) with multiple k-mer and more elab-
orate set of features. The tool BiRen8 follows the similar approach for preparing their train and test datasets but 
they applied deep learning method31,32 to automatically extract the features from the sequences alone. However, 
the rest of the models listed in Table 5, follow an approach of taking the histone data to generate the model with 
different machine learning methods, and then reporting the accuracy of their model by testing it on data from 
VISTA Enhancer Browser. Experimental results demonstrate that the proposed method is conducive for enhancer 
prediction and gives new insights into role of descriptive set of features.

Flow chart of the designed Enhancer Prediction tool.  A bioinformatics tool is also developed and 
made available for the readers to test their reference sequences using the proposed model (Bagged Tree based 
Ensemble method) for classifying it as enhancer or non-enhancer. Flow graph for this tool is shown in Fig. 8. This 
tool is available on the following link: https://github.com/atger/enhancer_prediction.

Conclusions
In this study, we present a model based on one-dimensional DNA random walk to precisely identify enhancer 
elements on a genomic scale using only the DNA sequences as input. To resolve the problem of cell specificity 
and requirement of high throughput dataset for enhancer prediction, the proposed method adopts time series 
based feature extraction using experimentally validated non-coding elements derived from the VISTA Enhancer 
Browser, that have gene enhancer activity, as assessed in human genome. The model integrates the nonlinear 
features and Ensemble method (Bagged Tree) for handling the long-range correlation in non-coding DNA to 
successfully resolve the challenge of the identification of enhancers using the DNA sequence. While comparing 
the performance of proposed model with existing methods in literature especially with the most recent ones such 
as BiRen8, PEDLA10, and EnhancerDB25, we observed that the proposed method obtained accuracy of 93.3% and 
AUC 0.91 on gold standard enhancer test dataset which is comparable. While assessing the performance of the 
proposed model on constructed validation set of histone marks, we obtained AUC 0.86, 0.89, and 0.87 in B cells, 
T cells, and Natural killer cells respectively. The experimental results suggest that the nonlinear dynamic features 
of the DNA random walk are good candidates for classifying DNA sequences into enhancer or non-enhancer. The 

Figure 7.  Performance of Model (Bagged Tree based Ensemble method) on Histone test data.

Classification Method

B cells T cells Natural killer cells

AUC Accuracy AUC Accuracy AUC Accuracy

Bagged Tree based Ensemble method 0.86 77.8% 0.89 78.6% 0.87 78.1%

RUSBoosted Tree based Ensemble method 0.66 66.4% 0.73 72.0% 0.67 68.3%

Convolutional Neural Network (CNN) 0.75 74.3% 0.72 73.6% 0.71 71.0%

Table 4.  Performance of Proposed Model for histone test dataset.

https://github.com/atger/enhancer_prediction
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Authors Datasets used Features used Method used AUC/Accuracy (Acc)

Bu, H., Gan, Y., Wang, 
Y., Zhou, S., & Guan, J.25 
EnhancerDBN25

Histone modification
DNA sequence compositional
features, DNA methylation (GC content and 
DNA methylation)

Deep Belief Network Acc 92.0%

Yang, B., Liu, F., Ren, C., 
Ouyang, Z., Xie, Z., Bo, X., & 
Shu, W.8 BiRen8

Human and mouse noncoding fragments in the 
VISTA Enhancer Browser DNA sequence alone

Deep-learning-
based hybrid
architecture 
that integrates a 
Convolutional 
Neural Network 
(CNN) and a GRU-
BRNN

AUC 0.956

Liu, F., Li, H., Ren, C., Bo, X., 
& Shu, W.10. PEDLA10

Histone modifications (ChIPSeq),
TFs and cofactors (ChIP-Seq), chromatin 
accessibility (DNase-Seq), transcription (RNA-
Seq), DNA methylation
(RRBS), CpG islands, evolutionary conservation, 
sequence signatures, and occupancy of TFBS.

1,114-dimensional
heterogeneous features in H1 cells, 22 training 
cell types/tissues

Deep learning Acc 97.65%

Kim, S. G., Harwani, M., 
Grama, A., & Chaterji, S.11. 
EP-DNN11

Chromatin features

p300 binding sites, as enhancers, and TSS and 
random non-DHS sites, as non-enhancers. We 
perform same-cell and cross-cell predictions 
to quantify the validation rate and compare 
against two state-of-the-art methods, DEEP-
ENCODE and RFECS

Deep neural 
network (DNN) Acc 91.6%

Liu, B., Fang, L., Long, R., 
Lan, X., & Chou, K. C.15 
iEnhancer-2L15

Chromatin state information of nine cell lines, 
including H1ES, K562, GM12878, HepG2, 
HUVEC, HSMM, NHLF, NHEK and HMEC

Physical structural
property of inucleotide (Rise P1, Roll P2, Shift 
P3, Slide P4, Tilt P5, Twist p6)

SVM classification 
with RBF kernel 
function

Acc 76.89%,
AUC 0.85

Kleftogiannis, D., Kalnis, P., 
& Bajic, V. B.9 DEEP9 Histone modification marks Sequence characteristics Ensemble SVM Acc 90.2%

Rajagopal, N., Xie, W., Li, 
Y., Wagner, U., Wang, W., 
Stamatoyannopoulos, J., & 
Ren, B.12, RFECS12

24 Histone modifications in two distinct human 
cell types, embryonic stem cells and lung fibroblasts
(H1 and IMR90 datasets)

p300 ENCODE data in H1
and made enhancer predictions in 12 
ENCODE cell-types using the
three marks H3K4me1, H3K4me3 and 
H3K27ac
Multiple chromatin marks

Random forests Acc 95%

Fernandez, M., & 
Miranda-Saavedra, D.23 
ChromaGenSVM23

Histone epigenetic marks
Optimum combination of Epigenetic profiles
computed at various
window sizes (1, 2.5, 5, 7.5, 10, 12.5 and 15 kb).

Genetic algorithm 
optimized Support 
vector machines

Acc 85.1% AUC 0.966

Proposed method VISTA Enhancer Browser (experimentally 
validated hg19)

K-mer frequency, Statistical and Non-linear 
features (sd, dfa, hurst, sampan, ac, rvntsl, 
ac_200, ac_300)

Ensemble Method 
(Bagged Tree)

Acc 93.3%, AUC 0.91 
on test data from 
VISTA Enhancer 
Browser

Table 5.  Performance Comparison with other Methods in literature (with different dataset used in the 
proposed work).

Figure 8.  Flow graph of designed Enhancer prediction tool.
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proposed approach promises to aid in deciphering the transcriptional regulatory code located in the four-letter 
‘alphabet’ of enhancer sequences in human genome.
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