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BACKGROUND: Drug-drug interaction (DDI) alerts in
electronic health records (EHRs) can help prevent adverse
drug events, but such alerts are frequently overridden,
raising concerns about their clinical usefulness and con-
tribution to alert fatigue.
OBJECTIVE: To study the effect of conversion to a com-
mercial EHR on DDI alert and acceptance rates.
DESIGN: Two before-and-after studies.
PARTICIPANTS: 3277 clinicians who received a DDI alert
in the outpatient setting.
INTERVENTION: Introduction of a new, commercial EHR
and subsequent adjustment of DDI alerting criteria.
MAIN MEASURES: Alert burden and proportion of alerts
accepted.
KEY RESULTS: Overall interruptive DDI alert burden
increased by a factor of 6 from the legacy EHR to the
commercial EHR. The acceptance rate for themost severe
alerts fell from 100 to 8.4%, and from 29.3 to 7.5% for
medium severity alerts (P < 0.001). After disabling the
least severe alerts, total DDI alert burden fell by 50.5%,
and acceptance of Tier 1 alerts rose from 9.1 to 12.7%
(P < 0.01).
CONCLUSIONS: Changing from a highly tailored DDI
alerting system to a more general one as part of an
EHR conversion decreased acceptance of DDI alerts
and increased alert burden on users. The decrease in
acceptance rates cannot be fully explained by differ-
ences in the clinical knowledge base, nor can it be
fully explained by alert fatigue associated with in-
creased alert burden. Instead, workflow factors prob-
ably predominate, including timing of alerts in the
prescribing process, lack of differentiation of more
and less severe alerts, and features of how users
interact with alerts.
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BACKGROUND

Adverse drug events (ADEs) represent a major cause of harm
in healthcare.1–4 Many ADEs are preventable,5–7 and comput-
erized provider order entry (CPOE) with clinical decision
support (CDS) reduces the frequency of ADEs.8, 9 Preventable
ADEs have myriad causes, including prescribing medications
that a patient is allergic to, prescribing nephrotoxic drugs in the
setting of renal dysfunction, making dosing errors, or prescrib-
ing multiple interacting drugs.6 Numerous CDS systems have
been implemented to reduce harm from each of these causes,
but the most widely used type of CDS is drug-drug interaction
(DDI) checking.10, 11 DDI checking has reduced the rate of
ADEs and is a critical tool to support safe prescribing in
electronic health records (EHRs).9, 12–14 Use of DDI checking
is also a certification and attestation requirement in all three
stages of the United States Meaningful Use incentive program
for EHRs.15

A DDI is considered present when one drug alters the
effects of another. Some DDIs cause ADEs that would not
have occurred if either of the drugs had been prescribed by
itself. Mechanisms for drug interactions may include
pharmacokinetic interactions, where Bone drug affects the
absorption, distribution, metabolism, or excretion of another^
and pharmacodynamic interactions, where Btwo drugs have
additive or antagonistic pharmacologic effects.^16 Automated
DDI checking in EHRs checks medication orders against a list
of known DDIs and alerts clinicians when they prescribe two
drugs together that are on the list of known DDIs. At the
extremes—the most severe and least severe DDIs—there is
consensus about which are important and unimportant.17, 18

However, for many of the DDIs in between, there is no broad
consensus about their level of importance or which ones merit
alerts. Various commercial knowledge bases cataloging poten-
tial DDIs are available, but there is little agreement about the
drug pairs to include, and there is a paucity of primary litera-
ture supporting many purported interactions.18, 19

Consequently, over the last two decades, Brigham and
Women’s Hospital (BWH) developed a highly targeted knowl-
edge base and alerting system for DDIs focusing on key
interactions and minimizing the burden of over-alerting.20

The customized and highly tailored knowledge base was
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designed by a team of pharmacists and physicians.21 Com-
pared to most commercially available drug knowledge bases
as typically installed, the homegrown BWH knowledge base
triggers alerts much less frequently. The alerting system,
which was built into BWH’s legacy EHRs, the Longitudinal
Medical Record (LMR) and the Brigham Integrated Computer
System, strongly differentiates between various severity tiers
for DDIs; for example, contraindicated drug pairs could not be
ordered at all, while the least severe interactions were infor-
mational and did not interrupt workflow.20

BWH recently adopted the Epic commercial EHR system
(Verona, WI). In this study, we evaluated the effect of the
transition from our internally developed LMR to our imple-
mentation of Epic on DDI alerting behavior during medication
order entry, including alert burden, acceptance rate, and alert
fatigue. All evaluation and discussion of Epic in this paper
applies to the specific implementation of Epic at BWH, which
may differ from Epic implementations at other institutions.

METHODS

BWH transitioned from LMR to Epic on May 31, 2015. As
part of the transition, BWH switched from using a highly
tailored DDI knowledge base to a widely used commercial
knowledge base from First Databank produced by Hearst
Corporation (South San Francisco, CA) with minimal custom-
ization. This is a frequently used approach—typically with the
implementation of commercial EHRs; one of several commer-
cial drug knowledge bases sold by third parties is selected and
used.
Figure 1 shows the strongly tiered alerting system that was

used in LMR, and the three tiers are described in Table 1.
Figure 2 shows the weakly tiered alerting system that is used in
the Epic implementation at BWH. Although both systems use
three tiers of drugs, the drugs contained in each tier differ, and
the difference in alerting between tiers is less strong in Epic
than in LMR. In our implementation of Epic, all DDI alerts are
interruptive regardless of tier and may be overridden if de-
sired, with room for an optional override reason. Unlike in
LMR (where users were prohibited from ordering the most
severe drug combinations while the least severe combinations
resulted in only a passive alert), Epic at BWH does not use
hard stops (which make co-prescription of interacting drugs
impossible) or passive alerts. Thus, the severity of tiers in Epic
is differentiated only by color, icon, and label.
Additionally, placement of DDI alerts within provider

workflow changed significantly with Epic (see Fig. 2). While
DDIs were shown as soon as a medication was selected in
LMR, in Epic as implemented at BWH, the DDI alerts are
shown in one batch at the time of signing. Thus, in LMR,
providers see the alert at the beginning of the ordering process,
while in Epic, providers see the alert at the end of the ordering
process. The result is that, in our implementation of Epic, users
may see many medication alerts at once, since multiple orders

can be signed at the same time, and the DDI alerting checks all
the pairs at once. Furthermore, in our implementation of Epic,
users may override all alerts with a single click—there is no
requirement to review or interact with each alert separately, as
was required in LMR.
We extracted data on outpatient medication orders and alert

firing and acceptance in LMR from our enterprise data ware-
house from November 28, 2014, to May 29, 2015—the last
6 months that LMR was used at BWH. We also extracted
outpatient Epic data from June 1, 2015, to November 30,
2015—the first 6 months that Epic was used. Although Epic
is used in both the inpatient and outpatient setting, we limited
our analysis to outpatient alerts because LMR was used only
in the outpatient setting. BWH employed a Bbig bang^ ap-
proach to the system implementation, converting all outpatient
clinics and inpatient areas on the same day. Because we
transitioned from LMR to Epic on a Sunday morning, we
excluded the Saturday and Sunday surrounding the cutover.
We defined alert burden as the number of alerts per 100

orders, and we defined clinician acceptance rate as the propor-
tion of DDI alerts leading to either the cancelation of the
proposed drug order or discontinuation of the incumbent
interacting drug. Note that we did not attempt to assess the
appropriateness of the clinical response to the DDI alert. For
example, while many less severe DDI drug pairs may be safely
prescribed so long as the patient is monitored, we did not
attempt to include monitoring in our definition of alert accep-
tance. Additionally, we did not attempt to control for instances
where a user accepted or overrode an alert but, in practice did
something else, either by continuing to prescribe a drug after
accepting an alert or temporarily discontinuing a drug after
overriding an alert. We looked only at the action the user took
on the DDI alert itself to evaluate the impact of the two
different alerting systems.
We compared the alert burden and the alert acceptance rates

in the last 6 months of LMR use to the first 6 months of Epic
use. We compared alerts overall, by tier, and for the most
commonly alerted drug pairs in each system. As described in
the BResults^ section, our leadership disabled Tier 3 alerting in
Epic onMarch 1, 2016, so wewere also able to further analyze
alert fatigue by comparing alert burden and acceptance rates
before and after this change. This analysis was done using a
separate time period, usingAugust 31, 2015, through February
29, 2016, as the Bbefore^ period, and March 2, 2016, through
August 31, 2016, as the Bafter^ period.

RESULTS

As shown in Figure 3, the number of interruptive DDI alerts
(which included Tiers 1 and 2 in LMR, and all three tiers
during the initial period in Epic) increased substantially after
the switch to Epic, while total volume of medication orders
stayed about the same. Because each system logs edits to
medication orders and refills differently, the medication
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volume is similar but not exactly comparable between sys-
tems. It does however suggest that prescription volumes were
not substantially different after the switch from LMR to Epic.
In the final 6 months of LMR, there were approximately 2
interruptive DDI alerts per 100 orders, while in the first
6 months of Epic implementation, there were about 11 inter-
ruptive DDI alerts per 100 orders. Both systems also display
many other types of medication alerts, including warnings for
high and low doses, drug and therapeutic duplication, potential
drug-allergy issues and pregnancy, geriatric and pediatric pre-
cautions. In LMR, DDI alerts comprised 19.2% of all medi-
cation alerts, leading to a total alert burden of about 9 medi-
cation alerts per 100 medication orders. In our instance of

Epic, DDI alerts comprised about 29.8% of all medication
alerts, leading to a total alert burden of about 36 medication
alerts per 100 medication orders.
The acceptance rate for interruptive DDI alerts overall

(Tiers 1 and 2 in LMR and Tiers 1, 2, and 3 in Epic) fell from
30.7% in LMR to 6.2% in Epic (P < 0.001 using Pearson’s
chi-squared test for independence). A comparison is not pos-
sible for Tier 3 because these alerts were passive in LMR.
Comparing only Tiers 1 and 2 in each system, the overall
acceptance rate fell from 30.7% in LMR to 7.6% in Epic
(P < 0.001). As shown in Figure 4, the acceptance rate fell
for DDIs in both Tiers 1 and 2. One possible explanation for
this substantial drop in DDI acceptance is that many less
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Fig. 1 Screenshots of DDI warnings in LMR show. (A) Tier 1 (most severe) alert for azathioprine and febuxostat. User workflow is interrupted,
and user must cancel one of the drugs. (B) Tier 2 (moderate) alert for citalopram and phenelzine. User workflow is interrupted, and user is given
the option to cancel one of the drugs. (C) Tier 3 (least severe) alert for citalopram and ondansetron. Text in red passively notifies user of potential

interaction without interrupting user workflow.



Table 1 Three Tiers of Interaction Severity Are Used in LMR

Tier Severity Alerting strategy Examples

1 Most severe interactions;
contraindicated

A red alert box is shown to the prescriber, who
cannot proceed without discontinuing one or the
other drug—this is a hard stop, and co-prescribing
is not possible.

• Phenelzine and dextroamphetamine (together these drugs
may cause hypertensive crisis)

• Febuxostat and azathioprine (febuxostat can increase the
effect of azathioprine, leading to bone marrow
suppression22)

2 Medium severity, but still
potentially serious
interactions

An interruptive yellow alert box is shown to the
prescriber, who must provide a reason before
being allowed to proceed; reasons include BWill
adjust dose as recommended,^ BWill monitor as
recommended,^ BPatient has already tolerated
combination,^ and BNo reasonable alternatives.^

• Clarithromycin and digoxin (clarithromycin can cause
digoxin toxicity)

• Sulfamethoxazole/trimethoprim and warfarin
(sulfamethoxazole/trimethoprim inhibits warfarin
clearance which can lead to supratherapeutic
anticoagulation23)

3 Lower severity
interactions

Rather than displaying an interruptive Bpop up^
alert, information about the potential interaction is
shown at the top of the ordering screen, and no
response from the user is required (or possible).

• Omeprazole and voriconazole (may lead to increased
levels and toxicity of voriconazole24)

• Warfarin and simvastatin (may increase INR25)
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Fig. 2 Screenshots of DDI warnings in Epic show. (A) Tier 1 (most severe) alert for sumatriptan and phenelzine. User workflow is interrupted,
and users are given the option of canceling one of the drugs. (B) Tier 2 (moderate) alert for warfarin and ciprofloxacin, and two Tier 3 (least
severe) alerts for aspirin and warfarin, and ciprofloxacin and oxycodone. In both cases, user workflow is interrupted, and users are given the
option of canceling one of the drugs. Due to concerns about excessive alerting and overrides (discussed below), Tier 3 alerts were altered on
March 1, 2016. Before March 1, 2016, Tier 3 alerts were automatically displayed. After March 1, 2016, Tier 3 alerts are displayed to the user

only when the user selects a checkbox to view them.



important DDI alerts are shown by Epic and that these alerts
are more likely to be overridden. This is certainly true,
given that the knowledge base paired with Epic is much
larger than the knowledge base paired with LMR. However,
if this were the only cause, then we would expect identical
pairs of interacting drugs that are present in both databases
to have similar override rates in Epic and LMR. To explore
this explanation, we looked at key identical DDI pairs in
both systems to compare acceptance rates (shown in
Table 2).
The three most common Tier 1 (most severe) alerts that

fired in LMR were for ciprofloxacin and tizanidine,26

clarithromycin and simvastatin,27, 28, and erythromycin and
simvastatin.28 These alerts were accepted 100% of the time in

LMR by design, but only 21.6, 18.0, and 15.6% of the time,
respectively, in Epic.
When we evaluated Tier 2 DDIs, which are presented more

similarly in Epic and LMR (i.e., they are interruptive but can
be overridden in both systems), we found significant differ-
ences between clinician responses in the two systems. The
three most common Tier 2 (medium severity) DDIs in LMR
were citalopram and omeprazole29 which fell from 29.6%
acceptance in LMR to 8.9% in Epic, amlodipine and simva-
statin30 which fell from 20.6 to 5.8%, and ciprofloxacin and
warfarin31 which fell from 31.7 to 17.9%.
Given the substantial drop in acceptance rates for DDI

alerts, the Partners HealthCare CDS Committee hypothesized
that the increased alert burden, particularly of Tier 3 alerts,
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Fig. 3 (A) Number of DDI alerts and accepted DDI alerts over time, before and after the EHR transition, and after Tier 3 alerts were disabled.
(B) Number of medication orders over time, before and after the EHR transition. Medication orders are logged differently in the two systems,

but total volume per day is comparable.



contributed to alert fatigue and the lower acceptance of Tier 1
and 2 alerts. The Committee decided to filter Tier 3 alerts so
they would not be displayed unless specifically requested by
the user. This change was implemented onMarch 1, 2016, and
represents a natural experiment in alert fatigue. After the
change, the interruptive DDI alert burden in Epic fell by
50.5%, as shown in Figure 3. Including other types of medi-
cation alerts (such as allergy or pregnancy), the total medica-
tion alert burden decreased from about 35 medication alerts
per 100 orders to about 28 medication alerts per 100 orders in
the 6 months before and after Tier 3 DDI alerts were disabled.
After the change, Tier 1 alert acceptance rose from 9.1 to
12.7%, while Tier 2 acceptance rose from 6.9 to 9.2%. Though
modest, these differences were statistically significant in both

tiers using Pearson’s chi-squared test for independence
(P < 0.01 for Tier 1 and P < 0.001 for Tier 2).

DISCUSSION

We found a sixfold increase in the interruptive DDI alert firing
rate when converting from a legacy system with a highly
tailored drug knowledge base to a commercial system with a
standard commercially available knowledge base. Even after
disabling Tier 3 alerts, there were still almost three times as
many interruptive DDI alerts in Epic as in LMR. This increase
in alert burden was associated with a much higher override rate
by providers. The increase in overrides was seen across severity

Table 2 Acceptance Rates for the Most Commonly Occurring DDI Alerts in LMR Are Shown, Along with the Corresponding Acceptance Rates
in Epic. Acceptance Rates for Individual Drug Pairs Have Decreased from LMR to Epic. 1Tier 1 LMR Acceptance Is 100.0% Because

Providers Are Prohibited from Prescribing Both Drugs Together

Drug pair LMR Epic

Tier Acceptances/alerts Acceptance rate1 (%) Tier Acceptances/alerts Acceptance rate (%)

Ciprofloxacin-tizanidine 1 56/56 100.0 1 8/37 21.6
Clarithromycin-simvastatin 1 44/44 100.0 1 11/61 18.0
Erythromycin-simvastatin 1 44/44 100.0 1 5/32 15.6
Gemfibrozil-simvastatin 1 18/18 100.0 1 1/27 3.7
Eplerenone-spironolactone 1 10/10 100.0 N/A N/A N/A
Prevpac-simvastatin 1 10/10 100.0 1 3/16 18.8
Citalopram-omeprazole 2 212/716 29.6 2 158/1773 8.9
Amlodipine-simvastatin 2 125/608 20.6 2 139/2391 5.8
Ciprofloxacin-warfarin 2 133/419 31.7 2 61/341 17.9
Cyclobenzaprine-tramadol 2 99/277 35.7 2 69/567 12.2
Levofloxacin-warfarin 2 71/265 26.8 2 16/161 9.9
Sildenafil-tamsulosin 2 42/256 16.4 2 20/452 4.4
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Fig. 4 Alert acceptance rates in LMR and Epic, by severity tier. Since the systems use different knowledge bases, the drugs contained in each
tier differ according to the system. Acceptance rates are given as a percentage with the denominator in the axis label. The difference between
rates in Tier 1 is statistically significant structurally with P = 0.0. The difference between acceptance rates in Tier 2 is statistically significant

with P < 0.001 using Pearson’s chi-squared test for independence.



levels, but particularly affected the most serious interactions,
representing an important safety concern. The override rate for
even the most severe warnings was about nine out of ten.

Factors Potentially Contributing to the Drop in
Acceptance Rate

There are several possible explanations for the drop in inter-
ruptive DDI alert acceptance rates after this transition. First,
interruptive DDI alerts fired 5.5 times more frequently in our
initial implementation of Epic than they did in LMR. If a larger
proportion of the Epic alerts are less clinically important, users
may override a greater number of them appropriately, leading
to an overall reduction in acceptance rate, even though users
are still complying with clinically appropriate DDI alerts. This
explanation probably plays a role in the overall acceptance
rates, as the knowledge base used in LMR is smaller than that
used in our implementation of Epic. However, given that
acceptance rates also fell for identical drug pairs from LMR
to Epic, including pairs in the most severe tier that an expert
panel had deemed Bnever^ interactions, this does not fully
explain our observed results.
A second possibility is that the increased number of alerts

may reduce acceptance rates by causing alert fatigue.17, 32

Under one common conceptualization of alert fatigue, a high
volume of DDI alerts distracts users from noticing more
clinically important DDIs in a frequency-dependent fashion:
as the number of less important alerts increases, the odds of
missing a more important alert should increase. We explored
this possibility with our natural experiment and found that
reducing the interruptive DDI alert burden by more than half
resulted in a modest increase in acceptance rates for the
remaining alerts, lending support to this formulation of alert
fatigue. Under another definition of alert fatigue, in addition to
simply distracting users with noise, the increased number of
alerts may also negatively affect users’ perceptions of the
reliability of the alerting system. As mistrust in the validity
of alerts increases, users may begin to devote less attention to
alerts or ignore them entirely. Once credibility is lost, users
may disregard even the most important alerts.33–35 In this
scenario, decreasing alert burden after credibility has already
been lost may not be enough to regain users’ trust. Evaluating
this hypothesis will require further study.
A third potential reason is that other aspects of the interface

or workflow affect alert acceptance. There were many differ-
ences in workflow between the two systems:

1. LMR alerts behaved differently based on tier. Tier 1
alerts were hard stops, Tier 2 alerts were interruptive
with required override reason, and Tier 3 alerts were
non-interruptive. This tiering was designed to focus users
on the most severe DDI alerts (which they could not
override), while deemphasizing the least severe. In our
implementation of Epic, all three tiers are interruptive
alerts with no override reason required. Although it is
possible to configure Epic to require an override reason,

our organization chose not to do so. It is currently not
possible to configure hard stops or non-interruptive DDI
alerts in Epic.

2. LMR displays DDI alerts at the moment a medication is
selected, while Epic displays them much later, at the time
of signing. At this point, providers may be more
Bcommitted^ to the drug, given that they completed
considerable additional work. Thus, it is possible that
showing alerts at the time of order signing increases the
override rate versus showing alerts at the time of
medication selection.

3. LMR required the user to accept or override each DDI
alert on a pair-by-pair basis. In our implementation of
Epic, when multiple alerts are displayed at one time, the
user can override all of them with a single click. Further,
since providers can sign medication orders in batch in
Epic, alerts for many medications may appear at the
same time and thus be overridden all together.

Based on results from a prior study of tiered DDI alerts in
LMR,36 we believe that workflow differences (particularly the
difference in tiering) likely play the most significant role in the
drop in acceptance rates. The first version of LMR, like Epic,
presented all three tiers of DDIs interruptively and required an
override reason for all tiers. When tiering was added to LMR,
acceptance rates increased from 34 to 100% for Tier 1 alerts
(due to the hard stop that prevented co-prescription of both
drugs) and from 10 to 29% for Tier 2 alerts.36 This dramatic
change in acceptance rates after tiering is consistent with our
experience in Epic, which moved in the opposite direction,
strongly supporting the hypothesis that the lack of differenti-
ation among tiers in Epic is a major driver of the overall drop
in alert acceptance rates.

Implications

Our study has several important implications. First, it suggests
that changing from a highly tailored DDI alerting system to a
more general one as part of an EHR conversion can decrease
the acceptance rate of DDI alerts and increase alert burden on
users. Second, it provides a quantification of the impact of
alert fatigue. Though alert fatigue has been described frequent-
ly in the literature, it has not previously been quantified
experimentally. Our data from before and after Tier 3 suppres-
sion in Epic suggests that the effects of alert fatigue are real
but, in our case, outweighed by other differences.

Strengths and Limitations

A key strength of our study is the before-after design at one
institution, suggesting that the observed changes in alert bur-
den and acceptance rates were due to the change in the EHR
rather than population change. Further, the natural experiment
and prior data comparing tiered and non-tiered alerting allow
for a comprehensive analysis of potential underlying causes of
these changes, including a novel quantification of the effect of
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alert fatigue. Our study also has several limitations. First, it
was done only at a single site, and with a single commercial
EHR—further study with other systems would be informative.
Second, it looks at only the initial 1-year period after imple-
mentation of the new commercial EHR system; alert accep-
tance may still increase or decrease after a longer period of
stabilization (although as of 2-year post-implementation, there
is no trend in the data to suggest that this will spontaneously
happen). Third, the study does not investigate ADE rates
before and after the change in system and thus does not
provide a direct measure of the change on patient outcomes.
Fourth, there were a number of differences between the EHR
user interfaces, and we did not attempt to study each feature
separately. A randomized trial of different alerting features
(including tiering, workflow, user interface, and knowledge
base) would be the gold standard for determining the relative
contribution of each of these features. Finally, there were
artifacts in the data we were unable to explain, such as changes
in the number of alerts that fired for a single drug pair. Despite
these limitations, the increase in alert burden and reduction in
alert acceptance is quite substantial.

CONCLUSION

In summary, understanding the effects of alert design and alert
fatigue for DDI and other medication alerts is crucial to
implementing effective alerts that reduce ADEs and make
patients safer. We found that switching from a homegrown
EHRwith strongly tiered interruptive DDI alerting driven by a
highly customized knowledge base to a widely used commer-
cial EHR with weakly tiered interruptive DDI alerting driven
by a third-party knowledge base without customization result-
ed in a significant increase in alert burden and decrease in alert
acceptance rates. The decrease in acceptance rates cannot be
fully explained by the difference between the drug pairs pres-
ent in each knowledge base since the decrease in acceptance
rates is also observed for matched individual drug pairs. Fur-
thermore, the decrease in acceptance rates cannot be neatly
explained simply by the alert fatigue associated with the
increased alert burden in the new system. Disabling more than
50% of the DDI alerts in the new system only marginally
improved acceptance rates. Based on a prior study which
showed much larger acceptance rate increases after introduc-
ing carefully delineated severity tiers,36 the loss of strongly
differentiated tiering in the new system may also be a driving
factor behind the drop in acceptance rates. It is likely that each
of these factors plays a role. Organizations creating changes to
their DDI alerting interface should monitor the impact on alert
burden and acceptance rates.
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