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Abstract

Helminth parasites are complex metazoans that belong to different taxonomic
families but that collectively share the capacity to downregulate the host
immune response directed toward themselves (parasite-specific
immunoregulation). During long-standing chronic infection, these helminths
appear able to suppress immune responses to bystander pathogens/antigens
and atopic, autoimmune, and metabolic disorders. Helminth-induced
immunoregulation occurs through the induction of regulatory T cells or Th2-type
cells (or both). However, secreted or excreted parasite metabolites, proteins, or
extracellular vesicles (or a combination of these) may also directly induce
signaling pathways in host cells. Therefore, the focus of this review will be to
highlight recent advances in understanding the immune responses to helminth
infection, emphasizing the strategies/molecules and some of the mechanisms
used by helminth parasites to modulate the immune response of their hosts.
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Introduction

Helminth parasites belong to a diverse group of complex
metazoans from different taxonomic families. Collectively,
helminth infections are a major public health problem
worldwide, and recent estimates suggest that 1.5 billion people
have one or more of the common helminth infections (Table 1),
most of whom reside in low- and middle-income countries in
the endemic areas of Asia, Latin America, the Caribbean, and
sub-Saharan Africa'.

These many helminths each have significant differences in
their biological life cycles along with marked variation in tissue
tropism. These differences are reflected in the differences in

F1000Research 2018, 7(F1000 Faculty Rev):1685 Last updated: 23 OCT 2018

clinical outcomes seen among the helminth parasites. Pathologic
consequences of most helminth infection have been associated
with both the parasite intensity (or burden) and the relative
acuteness or chronicity of the infection.

Despite these helminth species-specific differences, helminths
as a group have been shown to modulate/regulate the host
response to themselves (parasite-specific immunoregulation)”.
However, with long-standing chronic infection, these parasites
can alter the immune response to bystander pathogens/
antigens™®, including vaccines’®, and allergens™'"’. In addition,
they have been associated with modulation of the severity of

inflammatory bowel disease (IBD)'!, diabetes'”, and arthritis'’.

Table 1. Human helminth infections of public health importance.

Helminth species

humans
Nematodes
Ascaris lumbricoides Ascariasis
Ascaris suum
Trichuris trichiura Trichuriasis

Enterobius vermicularis

Visceral or ocular larva
migrans

Toxocara canis

Necator americanus Necatoriasis

Ancylostoma duodenale Ancylostomiasis
Ancylostoma ceylanicum
Strongyloides stercoralis Strongyloidiasis
Wuchereria bancrofti Lymphatic filariasis
Brugia malayi or Brugia timori

Onchocerca volvulus Onchocerciasis (river

blindness)
Trichinella spiralis Trichinellosis

Trematodes

Disease or condition in

Enterobiasis (Oxyuriasis)

Estimate prevalence Habitat of adult worm

Schistosoma mansoni

Schistosoma haematobium

Schistosoma japonicum
Fasciola hepatica
Clonorchis sinensis
Opisthorchis spp.
Paragonimus spp.
Cestodes

Echinococcus granulosus
Echinococcus multilocularis

Cysticercus cellulosae
(Taenia solium larva)

Taenia solium

Intestinal schistosomiasis

Urogenital schistosomiasis

Intestinal schistosomiasis
Fascioliasis
Clonorchiasis
Opisthorchiasis

Paragonimiasis

Hydatid disease
Alveolar echinococcosis

Cysticercosis and
Neurocysticercosis

Intestinal taeniasis

worldwide in humans
804 million Small intestine
477 million Large intestine
>200 million
Unknown N/A
472 million Small intestine
30-100 million
44 million Lymphatic vessels
17 million Subcutaneous tissue
0.066 million Small intestine
206 million Mesenteric veins
Venous plexus of urinary
bladder
Mesenteric veins
80 million Bile ducts
Bile ducts and gall
bladder
Lungs
0.8 million N/A
0.019 million N/A
1 million N/A
0.38 million Small intestine

N/A, not applicable. There is no development of adult worms in humans.
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Because of the helminths’ capacity to regulate the host
immune response, a regulation that can be partially reversed by
anthelmintic therapy, there has been widespread interest in
understanding the mechanisms underlying helminth-induced
immune regulation along with those parasite-encoded
molecules that may be driving such regulation. In particular,
the so-called excretory/secretory (ES) products from helminth
parasites have gained the most attention, as they may be targets
for anthelmintic vaccines, diagnostics, and drugs or they could
be useful as potential therapeutics for inflammatory and autoim-
mune disorders. Therefore, the focus of this review will be to
highlight recent advances in understanding the immune responses
to helminth infection, emphasizing the strategies/molecules
used by helminth parasites to modulate the immune response of
their hosts.

Acuteness and chronicity of infection drive distinct
immune profiles

The complexity of the life cycles of helminth parasites that
have multiple developmental stages of the parasite each with a
distinct antigenic repertoire and often distinct tropisms for
particular organ systems (for example, intestinal and airway
mucosa in larval Ascaris lumbricoides and hookworm infec-
tions; skin/subcutaneous tissue and draining lymph nodes in
Onchocerca volvulus infection; the hepatic portal system for
Schistosoma mansoni; and the muscle and the brain for
Taenia solium cysticerci) makes it difficult to generalize about
helminths as a single group’. Normally, however, infection
occurs through the ingestion of eggs or exposure to infective
larvae. Once in contact with their mammalian hosts, the
parasite progressively develops during the migration of the lar-
val stages through the host’s systems/organs that culminate in
their maturation into adult worms within a specific habitat that
reflects each helminth’s tropism for a particular anatomical
niche. As these developmental transitions and migration occur
over a period of time (from weeks to years, depending on the
parasite and its particular mammalian host), immune responses
are often regulated differently on the basis of the resident tissue or
perhaps by the life span of the parasite.

One example of the complex developmental and migratory
processes that occur following helminth infection is that caused
by the roundworms A. lumbricoides, a parasite that, by current
estimates, is harbored by more than 800 million people
worldwide'’. Human infection occurs following the ingestion
of parasite eggs containing the third-stage infective larvae (L3)
that hatch in the small intestine. After penetrating the intestine
at the level of the caecum or proximal colon, these L3 migrate
through the portal vessels to the liver and subsequently to the
lungs. There they migrate through the lung parenchyma and
penetrate into the alveolar spaces, causing a range of symp-
toms, including wheezing, dyspnea, cough, and substernal
pain'>'®. This early/acute phase of infection has been called
larval ascariasis'’. These migrating Ascaris larvae induce a local
inflammatory response in the lungs of humans (causing a
Loffler’s-like syndrome'®) and of experimentally infected mice.
In mice, the inflammation has been characterized as a type 2
response (dominated by IL-4 and IL-13 and some IL-5). Tumor
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necrosis factor-alpha (TNF-a) and interleukin-1 beta (IL-1()
levels are also seen in the lung induced by larval migration. At
the peak of Ascaris larval migration (~8 days post-infection),
there is a marked production of IL-6, thought to be related to the
prominent neutrophil infiltration'”. When the larvae start to
leave the lung tissue to migrate back to the small intestine to
complete their life cycle, the neutrophil infiltrate in the lung is
replaced by both alternatively activated (or M2) macrophages
(AAM) (Fizz1+, Arginase-I+) and eosinophils that play a key
role in tissue remodeling and prevention of re-infection”’. Once
back in the small intestine, the larvae mature into adult worms,
establishing a long-term chronic infection characterized by a
profoundly diminished helminth-specific response”**.

Over the last 20 years, several experimental studies using
intestinal nematodes of rodents such as Heligmosomoides
polygyrus or Nippostrongylus brasiliensis have provided a
detailed description of a “protective” immune response associ-
ated with worm expulsion”—°. Although the mechanisms of larval
killing are less well-studied, it is known that early in infection,
prior to adult worm development and establishment, mucosal
epithelial sensor cells secrete a group of alarmins—for example,
IL-25, thymic stromal lymphopoietin (TSLP), and IL-33—
that promote the activation and differentiation of innate and
adaptive type 2 cells, leading to the secretion of a myriad of
cytokines, including IL-4, IL-5, 1IL-9, and IL-13%*". These type
2-associated cytokines result in goblet cell hyperplasia, mucus
hyper-secretion, and smooth muscle contraction and other
immunological changes such as eosinophilia and the differentia-
tion of AAM macrophages”**.

Recently, a novel subset of epithelial cells, termed tuft cells,
was identified in the small intestine. These tuft cells consti-
tutively express IL-25. Von Moltke et al.”’ and Gerbe et al.’
showed that after infection by the rodent hookworm N. brasil-
iensis, tuft cells produce IL-25 that in turn activates type 2 innate
lymphoid cells (ILC2s) to produce IL-13 that subsequently acts
on epithelial crypt progenitors to promote differentiation and
increased frequency of both tuft and goblet cells. As reviewed
by Grencis and Worthington®!, this tuft cell-ILC2 circuit loop
orchestrates a rapid and effective anti-helminth immune effector
response that leads to worm expulsion.

For helminth infection in humans, the immune response during
the early/acute phase of infection involves the induction of type
2-associated cytokines (IL-4, IL-5, IL-9, and IL-13) first by
innate lymphocytes (ILC2) and later by effector antigen-specific
polyfunctional CD4 T cells*”. This relatively early phase also
induces high antigen-specific IgG4 and IgE levels as well as
peripheral and tissue eosinophilia and expanded populations of
AAM*H,

In peripheral blood, this polarized type 2 response occurs at the
time of patency when egg laying (for example, S. mansoni)”
or microfilarial release (for example, Wuchereria bancrofti)
from adult females occurs®, resulting in a significant modula-
tion of Thl responses (IL-2 and interferon-gamma [IFN-y]).
However, this persistent dominant Th2 response over the course
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of the helminth infection also induces expansion of natural®’~*’
and helminth-induced”' regulatory T (Treg) cells and immu-
noregulatory monocytes*”~; this same response drives B-cell
class-switching to IgG4*. This new regulatory environment,
characterized by low parasite antigen-specific lymphocyte
proliferation, higher antigen-specific IgG4/IgE ratios, and
increased levels of the regulatory cytokines IL-10 and trans-
forming growth factor-beta (TGF-B), is the hallmark of an
asymptomatic, chronic infection**.

In chronic filarial infections, microfilaremia is observed in
clinically asymptomatic patients. Interestingly, T cells
from these filarial-infected asymptomatic patients show the
following: a muted/anergic parasite-specific lymphoproliferative
response’’?; an increased parasite-specific IL-4/IFN-y ratio®;
dysfunctional antigen-presenting cells (APCs)™; expanded
natural Treg (nTreg) cells expressing CTLA-4, PD-1, and GITR
(molecules associated with regulatory functions on nTreg cells)’;
and elevated IL-10 levels***°. In contrast, infected patients with
progressive and often symptomatic infection, such as elephan-
tiasis, fail to suppress (or be tolerant to) filarial antigen-driven
inflammation. This relative immune hyper-responsiveness is
associated with microfilarial clearance but also consequent
morbidity™. Furthermore, anthelmintic therapy that leads to
clearance of the microfilariae or in vitro blockade of IL-10 can
result in a recovery of many of the parasite antigen-specific
responses, suggesting that they were actively inhibited in the
presence of the parasites or of circulating parasite antigens™”’.

Traditionally, it has been shown that, beyond attenuating
parasite-specific response, helminths can suppress the immunity to
bystander pathogens or to vaccines’”. It is known that the
induction of the regulatory response by helminths is associated
with the downmodulation of Thl response*®, considered
crucial for the immunological control of viral, bacterial, or
protozoal infections (Figure 1). Immuno-epidemiological studies
suggest that coincident infection with helminths has a strong
potential to significantly influence the course of viral or
protozoan infections, especially in those infections where
protective immunity depends on a strong Th1/Th17 immune
response® . In addition, several recent studies have provided
insight into how helminths and helminth-derived molecules
(ES products) regulate some of the inflammatory responses that
underlie allergic, autoimmune, or metabolic disorders.

Helminth-derived excretory/secretory products: the
era of the extracellular vesicles

Helminth-induced immune responses have long been postu-
lated to be directed at the ES products from living parasite
stages during the infection. Some of the soluble proteins, lipids,
and carbohydrates present in the ES products have been shown
to have immunomodulatory activity®**. The list of helminth-
derived immunomodulatory molecules that evoke a regulatory
phenotype among innate and adaptive immune cells has been
increasing over the last decade”'%#!-¢+=¢¢,

The relatively recent discovery of extracellular vesicles (EVs)
secreted by helminths has suggested a new paradigm in the
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study of host—parasite interaction”®*. EVs are released from
most cell types and from a diverse group of pathogens, including
parasitic helminths®’’. At homeostasis, EVs represent a mecha-
nism by which cell-to-cell communication occurs through the
transfer of genetic material, proteins, and lipids®. In parasitic
infections, EVs can function by transmitting signals between
parasites, from parasite to host cells, or from the host to the
environment®.

In general, it is felt that helminth EVs have immunoregula-
tory effects on host cells’’”. For a group of helminths, the
analysis of the composition of these EVs has identified proteins
previously described in ES products along with microRNAs
(miRNAs), a highly conserved group of small, non-coding
RNA molecules that can control gene expression. Among the
proteins identified as components of helminth EVs are cysteine
protease inhibitors (cystatins), serine protease inhibitors
(serpins), metabolic enzymes such as enolase, GAPDH, and
aldolase, and the well-known exosome components Hsp70, Hsp90,
and annexins’’.

Recently, it has been shown that EVs secreted by both the
parasite and the host can influence the outcome of an infection.
With an experimental murine model for a chronic helminth
infection (H. polygyrus), it was shown that EVs secreted by the
H. polygyrus are internalized by murine macrophages and, as a
consequence of this internalization, suppress the activation of
both M1 and M2 macrophages’. In contrast, with the infective
stage of the filarial parasite Brugia malayi, it has been shown
that these parasites secrete EVs containing parasite protein and
miRNAs, which are also internalized by macrophages but
which elicit/induce macrophage (M1) activation™. Finally, with
H. polygyrus and rodent filarial nematode Litomosoides
sigmodontis, it was shown that these parasites secrete EVs
containing miRNAs, which when administered prior to allergic
sensitization in an experimental allergy-asthma model in mice
actually suppressed the allergen-induced type 2 innate immune
response in vivo''.

Notwithstanding the data demonstrating EV-induced suppres-
sion of host inflammation and immune response, some groups
have advocated the use of helminth-derived EVs for the identifi-
cation of targets to be used in vaccines against some helminth
infections®*”. Indeed, EVs isolated from the ES products of
Trichuris muris (a whipworm of mice) can induce protective
immunity, reducing about 60% of parasite burden, in a murine
model when administered as a vaccine without adjuvant,
generating a strong EV-specific antibody response’. Moreover,
helminth-derived EVs induced protection to H. polygyrus larval
challenge in mice’.

Interestingly, there has been a suggestion that helminth-
derived EVs could be used as therapeutics to regulate inflam-
mation in the context of allergic, autoimmune, and metabolic
disorders”"""*. As suggested by Siles-Lucas er al.”®, specific
molecules from helminth exosomes could be delivered in
artificial exosomes to host cells with the aim of regulating
pathologic inflammatory responses. How to target specific cells, to
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Figure 1. Acuteness and chronicity of helminth infection drive distinct immune profiles. Early in infection, normally during the larval
migration through the lungs or intestinal mucosa, prior to adult worm development and establishment, epithelial cells secrete a group of
alarmins—thymic stromal lymphopoietin (TSLP) and interleukin-33 (IL-33), including IL-25-producing tuft cells—that promote the activation
and differentiation of type 2 innate lymphoid cells (ILC2) and polyfunctional CD4 T helper 2 (Th2) cells, leading to the secretion of a myriad
of cytokines, including IL-4, IL-5, and IL-13. These type 2-associated cytokines result in goblet cell hyperplasia, mucus hyper-secretion,
peripheral and tissue eosinophilia, and differentiation of M2 macrophages and also induce high antigen-specific IgG1 and IgE levels. Helminth
early/acute responses generally associate with an allergy-like response. The persistent exposure to helminth parasites and helminth-derived
excretory/secretory (ES) antigens over the course of the infection lead to a modified type 2 response resulting in a significant modulation of
T helper 1 (Th1) response—IL-2 and interferon-gamma (IFN-y)—and also induce the expansion of natural regulatory T (nTreg) cells expressing
CTLA-4, PD-1, GITR, and regulatory dendritic cells (regDCs) and monocytes, which are all sources of IL-10. This same response drives
B-cell class-switching to IgG4. Chronic infection with helminth also alters the composition of intestinal bacterial communities leading to more
microbial-derived short chain fatty acids (SCFAs) that also activate and promote the expansion of Treg cells. Collectively, this new regulatory
environment is the signature for the establishment of an asymptomatic chronic long-standing infection, characterized by a muted/anergic
parasite-specific lymphoproliferative response but also a suppressed immunity to bystander pathogens, allergens, vaccines, or non-related
inflammatory, autoimmune—inflammatory bowel diseases (IBDs) and type 1 diabetes (T1DM)—or metabolic diseases. DC, dendritic cell;
EOS, eosinophil; EV, extracellular vesicle; TGF-, transforming growth factor beta.

stabilize these EVs, and to find the correct dosage are challenges
that will need to be addressed.

Allergic diseases and helminth infection

Allergies are inflammatory disorders that result generally from
inappropriate immune responses to environmental allergens.
Allergic sensitization or atopy is driven by allergen-specific
responses initiated by CD4* Th2 cells that ultimately drive the
production of allergen-specific IgE”. Although the hygiene
hypothesis suggests that the lack of exposure in children early
in their development to helminth parasites or other microbial

products (as seen in high- and middle-income countries) may
drive the increased incidence of allergic diseases seen in these
countries, there are conflicting sets of studies in humans and in
experimental models®* that have called this particular hypoth-
esis into question. Leonardi-Bee ef al.** demonstrated, in a
meta-analysis, that chronic infection by the hookworm Necator
americanus protects against asthma but that A. [lumbricoides
infection aggravates the clinical symptoms of this allergic
condition. Interestingly, children living in a helminth-endemic
region of Ecuador had a lower risk of allergies when compared
with non-parasitized children in the same region®. Moreover,
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repetitive anthelmintic treatment in endemic areas has been
shown to increase the prevalence of allergen skin test reactivity in

children®.

The differences among these studies likely reflect differences
in the timing of parasite infection in relationship to immune
maturation or sensitization, although the species of the helminth,
the intensity of the helminth infection, or the nature of the
allergic disease assessed (or a combination of these) may also
play a role in driving the outcomes seen. The most compelling
explanation relates to the relative acuteness of the helminth
parasitic infection, with early exposure to helminths driving an
enhanced allergic inflammatory response’ and long-term chronic
infections attenuating the host allergic response’™.

Among the various hypotheses put forward to explain the
modulatory influence of helminth infection on allergic effector
responses in humans and murine models, the IL-10-induced sup-
pression of Th2-effector responses and the expansion of natural
and parasite-induced Treg cells™** have been the leading
candidates. One possible mechanism is the IL-10-induced
inhibition of IgE signaling (key players in allergic diseases) in
basophils®**. Over the last decade, it has been shown that,
in human parasitic infection and in experimental models of
helminth infection, helminth parasites can induce B cells to
differentiate into IL-10-producing regulatory B cells that may
play a role in the suppression of the immune response that leads
to an expansion of Treg cells’'.

Other studies have suggested that helminths potentiate the
functional effect of Treg cells by the secretion of parasite-
derived TGF-f3 mimics. Helminth-derived TGF-B-like molecules
can bind to TGF-B receptors and trigger FoxP3* Treg cell
expansion™™. These data notwithstanding, new data suggest
(based on H. polygyrus infection in mice) that the suppression
of the type 2 allergic immune response in helminths is driven
by a Hp-secreted protein (HpARI) that actively inhibits IL-33
release, thereby inhibiting the allergic response”’.

As reviewed recently, the ability of helminths to induce
parasite-reactive Treg cells and IL-10 production may occur
through parasite ES products®. In addition, these helminth-
derived products likely modulate bystander inflammatory
responses, particularly the development of allergy™'**. The
molecular basis of this suppression has yet to be defined.

Recently, a novel mechanism underlying the helminth suppres-
sion of the allergic response has been suggested that implicates
an interaction between helminth-derived proteins and the local
microbiome”. This concept stems from the “barrier regulation
hypothesis of allergy” whereby, in the healthy state, a microbi-
ome replete with mucosa-associated taxa stimulates the intesti-
nal mucosa (mediated by IL-22) to produce a protective mucous
layer and to produce anti-microbial peptides” that, in turn,
regulate the abundance of particular bacterial communities. These
bacteria-induced barrier-protective functions reduce the abil-
ity of allergens to cross the epithelial barrier’””. Compositional
shifts within bacterial communities through dietary changes or
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antibiotic use can induce alterations in these bacteria-induced
barrier-protective responses, thereby driving allergen-induced
ILC2- or Th2-associated inflammation or both'”. A slight
variation on this theme suggests that in an environment with
chronic microbial exposure, the lung and gut microbiome
stimulates the formation of regulatory dendritic cells that
promote the differentiation of allergy-specific Treg cells that
suppress allergen-induced Th2-associated inflammation”.

Whether it is the helminth infection per se or helminth-derived
proteins, changes in microbial composition/abundance/diversity
appear to contribute indirectly to the modulation of the
allergic response in the host'”. Indeed, it has been shown
that chronic infection with H. polygyrus altered the intestinal
bacterial communities'’’ and, in so doing, increased the amount
of microbial-derived short chain fatty acids (SCFAs) that in turn
suppressed house dust mite-induced allergic inflammation”.

Helminth infections and autoimmune and metabolic
disorders

Epidemiologic evidence demonstrates that while the prevalence
of helminth infections is declining worldwide, the prevalence
of autoimmune diseases—including IBDs and type 1 diabetes
(TIDM)—and metabolic disorders is increasing rapidly. This
phenomenon has led many to infer that there is a relationship
between exposure to helminth infection and protection from
autoimmune diseases—for example, Crohn’s disease (CD),
ulcerative colitis (UC), and multiple sclerosis—and metabolic
disorders. But how helminths regulate the group of varied
inflammatory disorders, autoimmune diseases, and metabolic
disorders remains unknown.

Using experimental model approaches, many authors have
shown that helminth infection itself or treatment with
helminth ES products is sufficient to suppress inflammation in
numerous models of inflammatory diseases, including the
dextran sodium sulfate (DSS)-induced colitis model in mice.
ES products of Ancylostoma ceylanicum (human, cat, dog, and
rodent hookworm)'”, A. caninum (dog hookworm)'”, Trichinella
spiralis (carnivorous animal roundworm)'”, and S. japonicum
(human blood fluke) have each been shown to attenuate the
severity of DSS-induced colitis in mice'”. In addition, EVs of
N. brasiliensis and T. muris”" and the recombinant B. malayi
protein rBmALT2 and cystatin'"*'"’ have been shown to modu-
late colitis in experimental animal models. A common aspect
of all of these studies has been the presence of increased
levels of Th2-associated and regulatory cytokines (IL-10 and
TGF-B) and a concomitant reduction in the inflammatory
cytokines IL-6, IL-1B, IFN-y, and IL-17a, known to be associ-
ated with the colitis-induced pathology. Concomitantly, two
major species of helminths have been tested in more than 10
placebo-controlled clinical trials that have looked at Trichuris
suis ova for the treatment of active UC and CD'"™ or infec-
tion with N. americanus for the treatment of celiac disease in
humans'"''"°. " As recently reviewed by Smallwood et al.'',
the results of the clinicals trials in humans are still controversial
depending on the nature of the IBD or parasite evaluated, but, for
some of them, there was some clinical improvement' %112,

Page 7 of 12



It has been shown that helminth infection can prevent T1DM
based on the non-obese diabetic (NOD) mouse model. The data
suggest that the immune switch from a Thl to either a Th2 or a
regulatory response is the primary mechanism through which
TI1DM is ameliorated'>'"". In addition, it has been shown
that helminth-derived proteins inhibit the initiation of auto-
reactive T-cell responses and prevent diabetes in the NOD
mouse model'*. Interestingly, it has been postulated that the
presence of these type 2 or regulatory cells in the pancreas of
NOD mice has to take place before the bulk of beta cell mass is
compromised by autoimmune attack''>. With a filarial infec-
tion in IL-4-deficient NOD mice, it was demonstrated that,
despite the absence of a type 2 immune shift, filarial infection in
IL-4-deficient NOD mice prevented the onset of TIDM and was
accompanied by increases in CD4*CD25'Foxp3* Treg cells®.
Moreover, blocking TGF-B signaling prevented the beneficial
effect of helminth infection on T1DM, suggesting that skewing
the immune response to a Th2 and regulatory environment could
elicit suppression of the diabetogenic Th1 response.

Finally, when investigators evaluated the beneficial impact
of helminth on protecting against the development of meta-
bolic disorders, including obesity and dyslipidemia, commonly
associated with insulin resistance and type 2 diabetes, parasite-
induced IL-10 and the type 2 immune responses seem to act to
improve insulin sensitivity'', thereby ameliorating the meta-
bolic syndrome (MetS)-associated morbidity''’. In this context,
it has been shown that helminths have an important beneficial
role by skewing this inflammatory response toward one with
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IL-4-producing eosinophils, M2 macrophages, and Treg cells that
maintain insulin signaling and sensitivity''*.

Future directions

Helminths are potent regulators of type 1 immune response
induced by bystander pathogens or inflammatory disorders or
both. Understanding the mechanisms underlying this interaction
and identifying the potential molecular targets are the current
challenges and areas that need to be investigated further to
develop novel strategies to prevent or delay allergic, inflammatory,
autoimmune, or metabolic disorders in humans.
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