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Abstract
Purpose of the Study: Prior studies showed posttraumatic 
stress disorder (PTSD)-related alterations in white matter in-
tegrity, but most of these studies have used region-based 
approaches. We address this limitation by investigating the 
relationship between PTSD severity and fractional anisotro-
py (FA) using a tract-based approach. Procedures: Structural 
and diffusion magnetic resonance imaging were acquired 
from 67 combat-exposed US Veterans and processed using 
FSL/FreeSurfer TRActs Constrained by UnderLying Anatomy. 
Partial correlations were conducted between PTSD severity 

and FA of the cingulum and uncinate fasciculi covarying for 
age, sex, and head motion. Results: Only FA of the left cin-
gulum angular bundle (CAB) was positively correlated with 
PTSD symptom severity (r = 0.433, p = 0.001, df = 57) and re-
mained significant after Bonferroni correction. Conclusions: 
This finding may imply greater organization of the CAB with 
increasing PTSD severity. The CAB connects directly to the 
cingulate cortex and the hippocampal subiculum, critical 
nodes of the default mode network, as well as being impli-
cated in neurodegeneration pathology, decision-making, 
and executive functions, which may help explain previously 
shown alterations in this network in PTSD. Message of the 
Paper: Further study of white matter tract integrity in PTSD 
is warranted, particularly to investigate whether the CAB 
connections with both higher-order cognitive functioning 
and emotion processing regions contribute to the patho-
physiology and comorbidity of PTSD.

© 2018 S. Karger AG, Basel
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Introduction

Despite decades of psychiatric research, a comprehen-
sive understanding of the network disruptions [1] predis-
posing and underlying posttraumatic stress disorder 
(PTSD) is still emerging [2, 3]. While the majority of neu-
roimaging investigations have focused on structural [4] 
and functional [5] aspects of PTSD, there is a growing 
body of literature regarding white matter integrity related 
to the disorder. Using diffusion-weighted magnetic reso-
nance imaging (dMRI), researchers can use methods such 
as diffusion tensor imaging (DTI) and fiber tractography 
to estimate the density and directionality of neural and 
membrane integrity, using the proxy measures of frac-
tional anisotropy (FA) and mean diffusivity [6–8]. 

Although other regions of interest (ROI) have been 
implicated, analyses using DTI and tractography have 
most consistently demonstrated microstructural altera-
tions of the cingulum and the uncinate fasciculus (UNC) 
in PTSD [9–19]. However, there have been inconsisten-
cies in the literature in the directionality and extent of 
alterations. These inconsistencies are highlighted by a 
meta-analysis of DTI studies in PTSD, which identified 
clusters of both increased and decreased FA in the bilat-
eral cingulum [20]. Among other reasons, it is possible 
that these inconsistencies may be due to methodological 
differences and limitations. Prior literature has focused 
primarily on region-based, rather than tract-based, FA 
assessment. In this study, we attempted to address this 
potential gap in the literature by examining the relation-
ship between PTSD severity and cingulum/UNC FA in 
combat-exposed US Veterans, using a tract-based ap-
proach termed TRActs Constrained by UnderLying 
Anatomy (TRACULA) [21].

The cingulum and UNC are fiber bundles of the fron-
to-limbic circuit. The cingulum hugs the corpus callosum 
and is predominantly comprised of short fibers that con-
nect the cingulate cortex, and nearby regions of the fron-
tal, parietal, occipital, and temporal lobes [22]. Of par-
ticular relevance to PTSD, the cingulum connects the cin-
gulate cortex and the hippocampus [15], 2 regions 
implicated in the pathophysiology of PTSD [23–26], 
which, if impaired, may delay or prevent recovery after 
exposure to trauma due to their respective roles in learn-
ing, memory, and fear processing [27]. The UNC con-
nects portions of the temporal lobe with the inferior fron-
tal gyrus [18]. This connection facilitates communication 
between the amygdala and the medial prefrontal cortex, 
a relationship that is critical for appropriate fear expres-
sion and threat response [28].

To address the limitations of deterministic, local trac-
tography, including seed and target selection, and to fa-
cilitate comparison of voxel-wise data across subjects and 
populations, Yendiki et al. [21] developed TRACULA, a 
probabilistic, global method to automate reconstruction 
of white matter pathways while incorporating informa-
tion from anatomical priors. This method may yield more 
robust, clinically relevant biomarkers of PTSD severity 
because it is standardized, automated, and constrained by 
underlying anatomy [21]. Based on prior studies, we pre-
dicted that PTSD symptom severity would be correlated 
with FA of the cingulum and uncinate tracts. In addition, 
to inform future studies, we conducted a number of ex-
ploratory analyses investigating other white matter tracts, 
as well as differences in these tracts by group (i.e., PTSD 
vs. combat control [CC]).

Methods

Participants
Sixty-seven US Veterans consented into a study approved by 

the Institutional Review Boards of the Yale School of Medicine and 
the VA Connecticut Healthcare System. All 67 participants were 
combat-exposed, of which 33 PTSD subjects and 34 CCs were well 
matched in terms of age, sex, and IQ. This group of participants 
has been discussed in prior publications from our group, in which 
we reported on PTSD associations with: gray matter integrity [29, 
30], volumetric alterations [31], and functional dysconnectivity 
[32]. In this manuscript, we present the first DTI results from this 
cohort. Eligibility was specific to the parent study, which excluded 
psychotic, bipolar, learning, attentional, and major neurological 
disorders; moderate or severe traumatic brain injury; MRI safety 
concerns; and use of benzodiazepines. To improve generalizabili-
ty, comorbidities common to PTSD were permitted in the study, 
such as depression, anxiety, substance and alcohol disorders, and 
stable antidepressant use.

Clinical Measurement
The Clinician Administered PTSD Scale for the DSM-IV 

(CAPS) [33] was used to ascertain PTSD diagnosis and symptom 
severity, and psychiatric comorbidities were assessed using the 
Structured Clinical Interview for the DSM-IV [34]. The Combat 
Exposure Scale [35] and the Wechsler Test of Adult Reading [36] 
were used to estimate trauma exposure and premorbid IQ respec-
tively. 

Neuroimaging Acquisition and Processing
All subjects completed structural MRI (sMRI) and dMRI 

MRI, which were acquired in a Siemens TIM Trio 3 Tesla mag-
net with a 32-channel head coil. Structural MRI included 2 T1-
weighted MPRAGE scans (TR = 2,530 ms; TE = 2.71 ms; TI = 1,200 
ms; Flip = 7°; Voxel = 1.0 × 1.0 × 1.0 mm) and dMRI were ac-
quired with diffusion weighting (b = 1,000 s/mm2) along 128 vec-
tors (TR = 7,400 ms; TE = 115 ms; Flip = 90°; Voxel = 1.7 × 1.7 × 
3.0 mm). The first image was acquired without diffusion weighting 
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(b = 0 s/mm2). Consistent with prior literature [21, 32, 37, 38], 
and  described in greater detail in the online supplementary Mate-
rials (for all online suppl. material, see www.karger.com/
doi/10.1159/000490464), DTI processing was conducted using 
FMRIB Software Library (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwi-
ki) [39], and TRACULA (FreeSurfer; https://surfer.nmr.mgh.har-
vard.edu) [40].

Statistical Analysis
Online supplementary Table S1 provides a summary of per-

sonal and clinical characteristics as well as dMRI head motion vari-
ables for comparison of PTSD and CC participants. CAPS score, 
age, sex, head motion, and all white matter data were evaluated 
for normality and were log-transformed if the variable was high-
ly skewed or kurtosed. We conducted 2-tailed partial correlation 
analyses (1) to probe for associations between PTSD symptom 
 severity and FA of the cingulum angular bundle (CAB), cingulum 
cingulate gyrus endings, and UNC; (2) to explore the other TRAC-
ULA-defined fasciculi; and (3) to inform on possible methodolog-
ical differences with tensor-based ROI similar to those used in past 
literature. Analyses are further described in the supplement. 

Results

PTSD Severity and FA in Probabilistic  
Tracts (TRACULA)
FA of the left CAB was positively correlated with 

PTSD symptom severity for the full group (r = 0.433, p = 
0.001, df = 57) and the PTSD group (r = 0.534, p = 0.005, 
df = 57; Fig. 1) but was not correlated with severity in the 
CC group (p = 0.492). Significant correlations remained 
after adjusting the alpha threshold for multiple compar-
ison using Bonferroni (corrected alpha = 0.008; 6 com-

parisons). There were no associations between PTSD se-
verity and the right CAB, or with the cingulate gyrus 
endings or UNC in either hemisphere (Table 1). There 
was no significant association between PTSD severity 
and any other probabilistic white matter tract (Table 2). 
See online supplementary Table S2 for results of a mul-
tivariate GLM comparing FA in all tracts between PTSD 
and CC groups. 

PTSD Severity and FA in Tensor-Based ROI 
In this full-group analysis, FA in the left corticospinal 

tract was negatively correlated with PTSD symptom se-
verity (r = –0.266, p = 0.040, df = 58). However, this cor-
relation failed to retain significance after adjusting the 
alpha threshold for multiple comparison using Bonfer-
roni (corrected alpha = 0.0008; 62 comparisons). There 
were no correlations between PTSD severity and any 
other ROI (see Table 3 for all correlations). Several 
trend-level associations were noted prior to Bonferroni 
correction: a negative trend with the splenium of the 
corpus callosum (r = –0.232, p = 0.074, df = 58), a nega-
tive trend with bilateral corticospinal tract (r = –0.239, 
p = 0.065, df = 58), a positive trend with the right IFO 
(r = 0.231, p = 0.076, df = 58), and a positive trend with 
the bilateral (L+R composite) IFO (r = 0.241, p = 0.063, 
df = 58). 

Discussion

The results of this study partially confirmed our hy-
potheses. More specifically, we found that PTSD symp-
tom severity was associated with integrity of the left 
CAB, although we did not find significant associations 
between PTSD symptoms and other cingulum tracts or 
the UNC. The CAB is connected with brain regions un-
derlying both higher-order cognitive functioning and 
emotion processing and implicated in neurodegenera-
tion pathology [41]. Moreover, associations have been 
reported between CAB integrity and functioning in epi-
sodic memory, decision-making, and executive control 
[42, 43]. The CAB has also been shown to directly con-
nect the posterior cingulate cortex and the subiculum of 
the hippocampus [44], both of which are critical nodes 
in the default mode network shown to be altered in 
PTSD [1, 45]. The CAB connects the hippocampus and 
other regions of the medial temporal lobe with the pos-
terior cingulate [43], an area that has been shown to ex-
hibit alterations of gray matter integrity (thinning) in 
this group of participants [30]. Of similar relevance, we 
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Fig. 1. PTSD Severity is Associated with Fractional Anisotropy 
(FA) in the Left Cingulum Angular Bundle (CAB). Plotted CAPS 
score and FA values are residuals after controlling for age, sex, an-
tidepressant status, and motion.
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have previously reported various associations between 
PTSD symptom severity and the anterior hippocampus, 
including differences in morphometry [29], lower vol-
ume of the hippocampus-amygdala transition area [31], 
and both structural and anatomical dysconnectivity 
[32]. Given the purported associations with key regions 
of emotion, memory, and cognition, it is interesting to 
consider the implications of altered CAB integrity in the 
context of our earlier work with this cohort. While fur-
ther study would be necessary to draw conclusions 
about a relationship between the current and past find-
ings, the cumulative evidence from this cohort may pro-

vide further insight into the widespread neural altera-
tions observed in PTSD and other stress-based disor-
ders, and highlight the importance of continued study 
of the role of the cingulum in the pathophysiology of 
PTSD. 

Surprisingly, we did not replicate prior results using 
region-based FA. It is possible that the failure to replicate 
past results is due to the nature of this cross-sectional 
study, which was optimized for a dimensional analysis of 
PTSD severity versus differences between diagnostic 
groups. Of note, Olson et al. [46] also failed to identify 
dimensional differences using TRACULA. Our control 

Table 1. Partial correlation of fractional anisotropy with PTSD severity: cingulum and uncinate tracts

Tract/FA CAPS score
(full group)

CAPS score
(PTSD only)

CAPS score
(combat controls)

r p df r p df r p df

CAB (LH) 0.433 0.001* 57 0.534 0.005* 24 0.141 0.492 24
CAB (RH) –0.050 0.709 57 0.031 0.882 24 –0.067 0.744 24
CCG (LH) –0.037 0.780 57 –0.190 0.352 24 –0.324 0.106 24
CCG (RH) –0.061 0.648 57 –0.073 0.725 24 –0.194 0.343 24
UNC (LH) 0.002 0.986 57 –0.072 0.727 24 –0.048 0.817 24
UNC (RH) –0.036 0.787 57 –0.287 0.155 24 –0.025 0.905 24

* Indicates significance if p ≤ 0.008.
Bonferroni method was used to adjust alpha threshold for multiple comparison (0.05/6 = 0.008).
FA, fractional anisotropy; LH, left hemisphere; RH, right hemisphere; CAPS, Clinician Administered PTSD 

Scale for DSM-IV; r, partial correlation controlling for age; sex, head motion, and antidepressant use; CAB, cin-
gulum angular bundle; CCG, cingulum cingulate gyrus endings; UNC, uncinate fasciculus. 

Table 2. Partial correlation of PTSD severity with fractional anisotropy in other probabilistic white matter tracts

Tract CAPS score
x LH FA

CAPS score
x RH FA

CAPS score
x Bilateral FA

r p df r p df r p df

fmajor – – – – – – –0.077 0.563 57
fminor – – – – – – 0.098 0.461 57
ATR –0.037 0.778 57 –0.193 0.143 57 – – –
CST 0.047 0.722 57 0.061 0.646 57 – – –
ILF 0.097 0.465 57 0.001 0.996 57 – – –
SLFP 0.091 0.492 57 –0.028 0.834 57 – – –
SLFT –0.092 0.490 57 0.075 0.571 57 – – –

FA, fractional anisotropy; LH, left hemisphere; RH, right hemisphere; CAPS, Clinician Administered PTSD 
Scale for DSM-IV; r, partial correlation controlling for age; sex, head motion, and antidepressant use; fmajor, 
corpus callosum forceps major; fminor, corpus callosum forceps minor; ATR, anterior thalamic radiations; CST, 
corticospinal tract; ILF, inferior longitudinal fasciculus; SLFP, superior longitudinal fasciculus parietal endings; 
SLFT, superior longitudinal fasciculus temporal endings. Bonferroni method was used to adjust alpha threshold 
for multiple comparison (0.05/12 = 0.004). No results were significant, before or after correction.
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group was not fully asymptomatic, and this variance 
would have been lost if the data was reduced to make 
categorical inferences. Other reasons for the failure to 
replicate may be related to FA changes over the course 
of the illness. There is mounting evidence of increased 
FA early in the course of illness [9, 12, 17, 47], and re-
duced FA in chronic or complex PTSD (often featuring 
comorbid depression, brain injury, or alcohol use disor-
der) [10, 11, 15, 16, 19, 48]. Homogenous samples with 
early onset or highly chronic cohorts might be more suc-
cessful at demonstrating a relationship between PTSD 
and FA. 

Conclusion

Our findings provide important information regard-
ing the potential importance of the CAB in PTSD. The 
study also underscores the lack of consistency in diffusiv-
ity alterations in PTSD. Investigations addressing some 
of the current study’s limitations, in particular enrolling 
early course vs. chronic PTSD populations, will be valu-
able to further advance our understanding of alterations 
in white matter tracts in PTSD. Specifically, such study 
may elucidate the role the CAB, which has been impli-
cated in both higher-order cognitive function and emo-

Table 3. Partial correlation of PTSD severity with fractional anisotropy in 24 DTI ROI

ROI CAPS score
x LH FA

CAPS score
x RH FA

CAPS score
x single/bilateral FA

r p df r p df r p df

CR –0.052 0.692 58 –0.124 0.344 58 –0.093 0.481 58
ACR –0.087 0.510 58 –0.162 0.218 58 –0.132 0.313 58
PCR 0.033 0.802 58 0.006 0.961 58 0.020 0.878 58
SCR –0.032 0.811 58 –0.090 0.495 58 –0.064 0.628 58
IC 0.002 0.991 58 –0.030 0.821 58 –0.015 0.909 58
ALIC –0.119 0.363 58 –0.085 0.518 58 –0.108 0.413 58
PLIC 0.051 0.697 58 0.047 0.723 58 0.051 0.701 58
RLIC 0.052 0.691 58 –0.049 0.710 58 –0.005 0.967 58
EC –0.011 0.932 58 0.092 0.485 58 0.042 0.749 58
CC – – – – – – –0.159 0.224 58
BCC – – – – – – –0.166 0.206 58
GCC – – – – – – 0.041 0.756 58
SCC – – – – – – –0.232 0.074 58
CGC –0.044 0.740 58 –0.042 0.750 58 –0.045 0.730 58
CGH 0.055 0.676 58 –0.057 0.665 58 0.001 0.995 58
CST –0.266 0.040* 58 –0.150 0.252 58 –0.239 0.065 58
FX – – – – – – –0.215 0.099 58
FXST 0.086 0.511 58 0.054 0.683 58 0.080 0.543 58
IFO 0.174 0.185 58 0.231 0.076 58 0.241 0.063 58
PTR 0.111 0.397 58 –0.131 0.320 58 –0.026 0.845 58
SFO –0.019 0.885 58 0.018 0.891 58 0.003 0.981 58
SLF 0.186 0.155 58 0.109 0.409 58 0.157 0.232 58
SS 0.031 0.815 58 –0.046 0.725 58 –0.011 0.935 58
UNC –0.132 0.314 58 –0.070 0.596 58 –0.104 0.428 58

* p ≤ 0.05. No results reached significance at the level of p ≤ 0.0008.
ROI, region of interest; FA, fractional anisotropy; LH, left hemisphere; RH, right hemisphere; CAPS, Clini-

cian Administered PTSD Scale for DSM-IV; r, partial correlation controlling for age, sex, head motion, and an-
tidepressant use; CR, corona radiata; PCR, posterior corona radiata; ACR, anterior corona radiata; SCR, supe-
rior corona radiata; IC, internal capsule; ALIC, anterior limb of internal capsule; PLIC, posterior limb of internal 
capsule; RLIC, retrolenticular part of internal capsule; EC, external capsule; CC, corpus callosum; BCC, body of 
corpus callosum; GCC, genu of corpus collosum; SCC, splenium of corpus callosum; CGC, supra-genual cingu-
late bundles; CGH, cingulum of the hippocampal region; CST, corticospinal tract; FX, fornix; FXST, fornix/stria 
terminalis; IFO, inferior fronto-occipital fasciculus; PTR, Posterior thalamic radiation; SFO, superior fronto-
occipital fasciculus; SLF, superior longitudinal fasciculus; SS, sagittal stratum; UNC, uncinate fasciculus. Bonfer-
roni method was used to adjust alpha threshold for multiple comparison (0.05/62 = 0.0008).
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tion processing. It will also be valuable to examine the 
potential role of alterations in the CAB relative to cogni-
tive impairment in PTSD, perhaps especially so in older 
adults, as PTSD is associated with cognitive dysfunction 
and is a known risk factor for dementia [49, 50]. Future 
studies using high-density fiber tracking, “brain bank” 
data, and multi-modal imaging techniques may better 
elucidate the relationship between both gray and white 
matter integrity alterations in PTSD. 
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