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Abstract

Purpose: The majority of ovarian carcinomas are of high-grade serous histology, which is 

associated with poor prognosis. Surgery and chemotherapy are the mainstay of treatment, and 

molecular characterization is necessary to lead the way to targeted therapeutic options. To this end, 

various computational methods for gene expression-based subtyping of high-grade serous ovarian 

carcinoma (HGSOC) have been proposed, but their overlap and robustness remain unknown.

Experimental Design: We assess three major subtype classifiers by meta-analysis of publicly 

available expression data, and assess statistical criteria of subtype robustness and classifier 

concordance. We develop a consensus classifier that represents the subtype classifications of 

tumors based on the consensus of multiple methods, and outputs a confidence score. Using our 

compendium of expression data, we examine the possibility that a subset of tumors are 

unclassifiable based on currently proposed subtypes.

Results: HGSOC subtyping classifiers exhibit moderate pairwise concordance across our data 

compendium (58.9%-70.9%, p < 10−5) and are associated with overall survival in a meta-analysis 

across datasets (p < 10−5). Current subtypes do not meet statistical criteria for robustness to re-

clustering across multiple datasets (Prediction Strength < 0.6). A new subtype classifier is trained 
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on concordantly classified samples to yield a consensus classification of patient tumors that 

correlates with patient age, survival, tumor purity, and lymphocyte infiltration.

Conclusion: A new consensus ovarian subtype classifier represents the consensus of methods, 

and demonstrates the importance of classification approaches for cancer that do not require all 

tumors to be assigned to a distinct subtype.

Introduction

Ovarian carcinoma is a genomically complex disease, for which the accurate 

characterization of molecular subtypes is difficult but is anticipated to improve treatment and 

clinical outcome(1). Substantial effort has been devoted to characterize molecularly distinct 

subtypes of high-grade serous ovarian carcinoma (HGSOC) (Table 1). Initial large-scale 

efforts to classify HGSOC of the ovary did not reveal any reproducible subtypes(2). Tothill 

et al(3) reported four distinct HGSOC subtypes: (i) an immunoreactive expression subtype 

associated with infiltration of immune cells, (ii) a low stromal expression subtype with high 

levels of circulating CA125, (iii) a poor prognosis subtype displaying strong stromal 

response, correlating with extensive desmoplasia, and (iv) a mesenchymal subtype with high 

expression of N/P-cadherins. The Cancer Genome Atlas (TCGA) project also identified four 

subtypes characterized by (i) chemokine expression in the immunoreactive subtype, (ii) 
proliferation marker expression in the proliferative subtype, (iii) ovarian tumor marker 

expression in the differentiated subtype, and (iv) expression of markers suggestive of 

increased stromal components in the mesenchymal subtype, but did not report differences in 

patient survival(4). Further experimental characterization revealed an increased number of 

samples with infiltrating T lymphocytes for the immunoreactive subtype, whereas 

desmoplasia, associated with infiltrating stromal cells, was found more often for the 

mesenchymal subtype(5). Konecny et al.(6), independently evaluated the TCGA subtypes 

and also reported the presence of the four transcriptional subtypes using a de novo clustering 

and classification method.

However, robustness and clinical relevance of these subtypes remain controversial(7). The 

previous subtyping efforts have assessed prognostic significance in different patient cohorts, 

and have taken different approaches to validate these subtypes in independent datasets. A 

recent review of HGSOC subtyping schemes highlighted the difficulty of comparing results 

of studies that used different subtyping algorithms, and that better general agreement on how 

molecular subtypes are defined would allow more widespread use of expression data in 

clinical trial design.(1)

Assessing the generalizability of subtyping algorithms is challenging as true subtype 

classifications remain unknown. This challenge is evident in the lack of published validation 

of the proposed HGSOC subtypes. Subsequent efforts have performed de novo clustering of 

new datasets and noted similarity in the clusters identified, but they have not reported 

quantitative measures such as classification accuracy or rate of concordance with previously 

published algorithms(8). In this article, we address these limitations by re-implementing 

three major subtyping methods(3,5,9) and assess between-classifier concordance and across-

dataset robustness in a widely used database containing 1,770 HGSOC tumors(10), whose 
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curation and data consistency has been independently validated(11). We show that each pair 

of subtype classifiers are significantly concordant, and are virtually identical for tumors 

classified with high certainty. However, the subtypes do not meet established standards of 

robustness to re-clustering(12) and only approximately one-third of tumors are classified 

concordantly by all three subtype classifiers. Using this core set of tumors concordantly 

classified by each method, we develop consensusOV, a consensus classifier that has high 

concordance with the three classifiers, therefore providing a standardized classification 

scheme for clinical applications.

Materials and Methods

Datasets

Analysis was carried out on datasets from the curatedOvarianData compendium; details of 

curation and of grading systems used by individual studies are described elsewhere (10). 

Datasets were additionally processed using the MetaGxOvarian package(13) 

(Supplementary Information). Analysis was restricted to datasets featuring microarray-based 

whole-transcriptome studies of at least 40 patients with late stage, high-grade, primary 

tumors of serous histology. This resulted in 15 microarray studies, providing data for 1,774 

patients (Table 2). Duplicated samples identified by the doppelgangR package were 

removed(14). Survival analysis was performed for 13 of these datasets, which included 

1,581 patients with annotated time to death or last time of follow-up.

Implementation of Subtype Classifiers

Subtype classifiers were re-implemented in R(15) using original data as described by 

Konecny(6), Verhaak(5), and Helland(9). These classifiers are based on nearest-centroids(6), 

subtype-specific single-sample GSEA(5), and subtype-specific linear coefficients(9), 

respectively. Implementations were validated by reproducing a result from each of the 

original publications (Supplemental File, Section ‘Reproduction of Published HGSOC 

Subtype Classifiers’).

Survival Analysis

Subtype calls from all included datasets were combined to generate a single Kaplan-Meier 

plot for each subtyping algorithm (stratified by subtype). Hazard ratios for overall survival 

between subtypes was estimated by Cox proportional hazards, and statistical significance 

was assessed by log-rank test using the survcomp R package(16). Hazard ratios were 

calculated using the lowest-risk subtype as the baseline group, and stratification by dataset 

was performed for hazard ratios and significance testing.

Prediction Strength

Prediction Strength(12) is defined as a measure of the similarity between pairwise co-

memberships of a validation dataset from class labels assigned by (1) a clustering algorithm 

and (2) a classification algorithm trained on a training dataset (Supplementary Figure 1). The 

quantity is an established measure of cluster robustness with the following interpretation: a 

value of 0 or below indicates poor concordance, and a value of 1 indicates perfect 

concordance between models specified from training and validation data. Tibshirani and 

Chen et al. Page 3

Clin Cancer Res. Author manuscript; available in PMC 2019 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Walther(12), and subsequent applications of Prediction Strength(17), have considered a 

value of at least 0.8 to be an evidence of robust clusters. Prediction Strength was computed 

as implemented in the genefu Bioconductor package(18).

The tumors in each dataset were clustered de novo using our reproduced implementations of 

the algorithms of Konecny, TCGA/Verhaak, and Tothill (Supplemental File, Section 

‘Reproduction of Subtype Clustering Methods’). Each dataset was also classified using 

implementation of the originally published subtype classifiers. This produced two sets of 

subtype labels for each sample in each validation dataset; these labels were used to compute 

Prediction Strength.

Concordance Analysis

For each pair of classifiers, subtypes were mapped based on the observed concordance 

suggested in the original studies: Subtype C2 from Tothill corresponding to Immunoreactive 

in TCGA/Verhaak and C1_Immunoreactive-like in Konecny; C4 corresponding to 

Differentiated and C2_Differentiated-like; C5 corresponding to Proliferative and 

C3_Proliferative-like; and C1 corresponding to Mesenchymal and C4_Mesenchymal-like. 

Statistical significance of pairwise concordance was assessed by Pearson’s Chi-squared test, 

and Cramer’s V was assessed to evaluate the strength of concordance. Two-way 

concordance was defined as the proportion of patients that were classified as the same 

mapped subtype across methods. Similarly, overall three-way concordance was defined as 

the proportion of tumors sharing the same mapped subtype across all three classifiers. 

Subtype-specific three-way concordance was defined as the number of tumors concordantly 

classified as that subtype by all three classifiers, divided by the number of tumors classified 

to that subtype by at least one method.

Filtering tumors by classification margin

Each subtype classifier outputs for each patient a real-valued score for each subtype. 

Marginally classifiable tumors were identified based on the difference between the top two 

subtype scores, denoted as the ‘margin’ value. Thus, a higher margin indicates a more 

confident classification. For each pair of subtype classifiers, classification concordance was 

assessed on both the full dataset and considering only patients classified with margins above 

a user-defined cutoff.

Building a consensus classifier

The consensusOV classifier was implemented using a Random Forest classifier trained on 

concordantly-subtyped tumors across multiple datasets. The Random Forest method has 

previously been used for building a multi-class consensus classifier to resolve 

inconsistencies among published colorectal cancer subtyping schemes(19). In order to avoid 

normalizing expression values across datasets, binary gene pair vectors were used as feature 

space, as recently applied for breast cancer subtyping(20,21). To address differences in gene 

expression scales due to different experimental protocols, consensusOV first standardizes 

genes in each dataset to the same mean and variance, and computes binary gene pairs from 

standardized expression values. Since the feature size of this classifier increases 

quadratically with respect to the size of the original gene set, we used the smallest gene set 
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of the original subtype classifiers (the gene set of Verhaak et al.(5)), which contains 100 

gene symbols. The consensusOV classifier outputs the subtype classification and a real-

valued margin score to discriminate between patients that are of well-defined or 

indeterminate subtype. Similarly to previously published subtype classifiers, a higher margin 

score indicates higher confidence of classification.

Leave-one-dataset-out cross-validation

Performance of the consensus classifier for identifying concordantly classified subtypes was 

assessed using leave-one-dataset-out cross-validation(22). Concordant subtypes were 

identified to train the Random Forest classifier using 14 of the 15 datasets, and subtype 

predictions were tested in the remaining left-out dataset. This process was repeated for all 15 

datasets. While predicting the samples in any given dataset, the training set was subsetted to 

contain only the concordant subtypes in other datasets.

Correlation analysis with Histopathology and Tumor Purity

Subtype calls from the Consensus Classifier were analysed for correlation with 

histopathology and tumor purity in the TCGA dataset. In order to best represent the most 

confident subtype calls, a default cutoff was used to include only the 25% of patients with 

the largest classification margins. Available histopathology variables included lymphocyte, 

monocyte, and neutrophil infiltration. Tumor purity was assessed using the ABSOLUTE 

algorithm(23), which estimates purity and ploidy from copy number and SNP allele 

frequency from SNP genotyping arrays (Synapse dataset syn3242754). Significance of 

associations were tested by one-way ANOVA for patient age, purity, and immune 

infiltration.

Research reproducibility

All results are reproducible using R/Bioconductor(24) and knitr(25) with LaTeX output at 

overleaf.com/read/srvqbpxpqbyz. Output of this code is provided as Supplemental File 1. 

Subtyping algorithms are provided by the open source consensusOV R package available 

from Bioconductor (http://bioconductor.org/packages/consensusOV).

Results

We performed a meta-analysis of three published subtyping algorithms for HGSOC(5,6,9) 

and developed a new consensus classifier to identify unambiguously classifiable tumors 

(Table 1). Each of these algorithms identified four distinct HGSOC subtypes with specific 

clinical and tumor pathology characteristics (Figure 1). We assessed the algorithms on a 

compendium of 15 datasets including over 1,700 HGSOC patients (Table 2) with respect to 

concordance, robustness, and association to patient outcome. By modifying individual 

algorithms to discard tumors of intermediate subtype, we found that concordance between 

algorithms is greatly improved.

Concordance of published classifiers

We reimplemented three published HGSOC subtype classifiers(5,6,9) (Table 1) and applied 

these methods to new datasets. We ensured correct implementation of classifiers by 
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reproducing results from the original papers (Supplementary Information). When applied to 

independent datasets, pairwise concordance of the three methods was statistically significant 

(p < 10−5, Chi-square test; Figure 2A) with the highest agreement observed for Helland and 

Konecny subtyping schemes (70.9%), followed by Verhaak and Helland (67.4%) and 

Verhaak and Konecny (58.9%). Cramer’s V coefficients(26) indicated a strong association 

between subtypes as identified by the different algorithms (>0.5).

Tumors of intermediate subtype

The individual subtyping algorithms calculate numeric scores for each subtype, and assign 

each tumor to the subtype with the highest score. A tumor with a large difference or 

“margin” between the highest and second highest scores can be considered distinctly 

classifiable, whereas a tumor with two nearly equal scores could be considered of 

intermediate subtype. We examined the effect of modifying the individual algorithms to 

prevent assignment of indeterminate cases at various thresholds. For each pair of subtype 

classifiers, we examined the classification concordance with increasing thresholds on the 

margins.

For all pairs of subtype classifier, classification concordance increased as additional 

marginal cases are removed, approaching over 90% concordance once the majority of 

tumors are left unclassified (Figure 2B). Three-way concordance followed the same trend 

with lower overall concordance: a minimum of 23% for the proliferative subtype and 

maximum of 45% for the immunoreactive subtype when all tumors are classified. 

Restricting the concordance analysis to the top 50% of tumors by margin value resulted in 

an increased overlap between 35% (proliferative) and 65% (immunoreactive). At a strict 

threshold of where only 10% of tumors are classified, 88% of tumors overall are 

concordantly classified by all three published subtyping algorithms (Figure 2C). This large 

gain in concordance results from large reductions in both singleton calls - tumors assigned to 

one subtype by one algorithm, but not by the other two algorithms - and in 2-to-1 calls, 

tumors assigned to one subtype by two algorithms, but not by the third (Figure 2D). This 

indicates that tumors distinctly classifiable by a single algorithm are more likely to be 

concordantly classified by the other algorithms, and conversely, tumors that appear 

ambiguous to one algorithm are less likely to be classified in the same way by the other 

algorithms.

Survival Analysis

All proposed subtyping algorithms classified patients into groups that significantly differed 

in overall survival (Figure 3A, p < 10−5 for each subtyping algorithm, log-rank test). 

Comparing low-risk to high-risk subtypes for each algorithm, the hazard ratios increase from 

approximately 1.5 as marginal cases are removed (Figure 3B), suggesting that marginal 

cases may contribute to the intermediate survival profiles between subtypes.

Robustness of the Classifiers

Robust molecular subtyping should be replicable in multiple datasets. We performed de 
novo clustering in 15 independent ovarian datasets using the authors’ original gene lists and 

clustering methods. We compared these de novo clusters to the labels from our 
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implementation of the published classifiers to assess robustness using the Prediction 

Strength (PS) statistic(12). For PS estimation, we included validation datasets with at least 

100 HGSOC tumors. Overall we observed low robustness for all classifiers, with PS values 

under 0.6 for the three algorithms across datasets (Supplementary Figure 2), none meeting 

the 0.8 threshold typically indicating robust classes(12,17).

To assess whether low confidence predictions are driving the PS estimation, we re-computed 

the robustness of each algorithm set to classify varying fractions of the tumors with the 

highest margins. We used the largest dataset available, the TCGA dataset, as the validation 

set, and varied margin cutoffs of the Tothill and Konecny classifiers to require them to 

classify between 25% and 100% of the cases. From 10 random clustering runs, we report the 

median PS for the dataset. Clustering was performed on the full TCGA dataset and tumors 

of low margin values were removed subsequent to clustering and after the classifier was 

fully defined, in order to avoid optimistically biasing the apparent strength of clusters. We 

observed that the robustness of each algorithm is substantially improved by preventing them 

tto classify ambiguous cases. The Tothill algorithm achieved almost perfect robustness (PS = 

0.96) when allowed to leave 75% of cases unclassified (Figure 4).

Consensus Classifier

To maximize concordance across classifiers, we developed consensusOV, a consensus 

subtyping scheme facilitating classification of tumors of well-defined subtypes (Figure 5). 

This classifier uses binary gene pairs(20,21) to support application across gene expression 

platforms. The consensusOV classifier exhibits overall pairwise concordance of 67 – 78% 

with each of the other three algorithms, when classifying all tumors; and 94% concordance 

with tumors that are concordantly classified by the other three algorithms (Figure 5A). The 

margins of consensusOV are higher for concordantly classified cases than for non-

concordantly classified cases, and this difference in margins is greater than for any of the 

other three classifiers (Figure 6A). Accordingly, consensusOV was also most effective in 

identifying concordantly classified cases, although it was similar to the Konecny classifier in 

this respect (AUC = 0.76, Figure 6B). As expected, differences in survival of subsets 

identified by consensusOV are similar to those identified by previous classifiers. The highest 

risk subtypes are proliferative (HR=1.44, 95% CI: 1.07−1.94) and mesenchymal (HR=1.97, 

95% CI: 1.46−2.67) when removing 75% of indeterminate low-margin tumors, with similar 

hazard ratios for the concordant cases (Figure 5B).

Discussion

The existence of four distinct and concordant molecular subtypes of HGSOC has been 

reported in several studies of large patient cohorts(4–6,9), but also called into question by 

another effort(2) that could not identify subtypes, and by an independent validation effort 

that reported only two or three reproducible subtypes(27). Meanwhile, significant effort is 

being expended to translate these subtypes to clinical practice, for example to predict 

response to the angiogenesis inhibitor bevacizumab in the ICON7 trial(28,29). Our study 

pursues three major objectives: (1) reproduction of published subtype classification 

algorithms as an open-source resource; (2) evaluation of the robustness and prognostic value 
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of each proposed subtyping scheme in independent data; and (3) consolidation of proposed 

subtyping schemes into a consensus algorithm.

We find that while the proposed 4-subtype classifications demonstrate significant 

concordance and association with patient survival, none are robust to re-training in new 

datasets. By modifying any of these algorithms to prevent classification of tumors of 

ambiguous subtype, robustness and concordance of subtyping algorithms improve 

dramatically. We propose a “consensus” classifier that can identify the most unambiguously 

classifiable tumors, although a continuous trade-off exists between classifying more tumors 

versus having greater confidence in those classified.

Ambiguity in tumor classification might arise from a heterogeneous admixture of different 

subtypes, or from a more homogeneous composition of indeterminate subtype. This 

distinction has implications for the therapeutic value of the proposed subtypes. Lohr et al. 

estimated that 90% of tumors in the TCGA HGSOC dataset are polyclonal(30) , and clonal 

spread of HGSOC has been directly inferred from single-nucleus sequencing(31). However, 

it remains unclear whether multiple clones in a tumor are consistently classifiable to the 

same subtype. If a tumor consists of multiple clones of different subtypes, then a subtype-

specific therapy will likely lead to relapse as other clones survive and continue to grow. If 

this situation is common, even unambiguously classifiable tumors might be contaminated by 

small amounts of another subtype that could lead to relapse after subtype-specific therapy. 

This question could not be resolved by the current datasets, but may eventually be addressed 

by single-cell RNA sequencing(32) which is expected to further improve precision HGSOC 

molecular subtyping.

Several findings stand out in the validation of published subtyping algorithms. First, 

although previous studies reported inconsistent findings on whether subtypes differ by 

patient survival, our analysis in independent data showed clear survival differences. The 5-

year survival rate for patients with different subtypes ranged from as low as 20% to as high 

as 50%. Second, published algorithms do not meet previously defined standards of 

robustness in terms of Prediction Strength, a measure of consistency between subtype 

classifiers trained in independent datasets. Finally, the concordance of three algorithms, 

established independently by different research groups from different patient cohorts, is only 

moderate but can be greatly improved by modifying the original algorithms to allow them to 

leave ambiguous tumors unclassified. In their original forms, all-way concordance of the 

four defined classes occurs in 23% to 45% of tumors. As the individual algorithms are 

modified so they are allowed to leave ambiguous cases unclassified, the minority of 

remaining tumors can be classified with over 90% concordance between the three 

algorithms. This is a novel finding of interest, because an alternate possibility was that 

classifiers trained on different datasets would suffer low concordance no matter how they 

treated uncertain tumors. This finding suggests a subset of tumors of “pure” subtype; 

unfortunately, such unambiguous cases account for as few as 25% of HGSOC tumors. This 

places important limitations on the potential for clinical application of HGSOC subtypes. 

The proposed alternative, consensusOV, identifies the consensus of published HGSOC 

subtype classifiers. By training on multiple datasets, using binary (pairwise greater-than or 

less-than) relationships between pairs of genes, and using a relatively small gene set, it is 
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designed to identify robustly classifiable HGSOC tumors across gene expression platforms 

and datasets.

Moving forward, general agreement on how molecular subgroups of ovarian cancer are 

defined would facilitate the use of expression data in clinical management. (33). The present 

subgroups while prognostically important are not yet clinically meaningful. Much like other 

prognostic factors such as age, ascites, and histology, they do not alter clinical management. 

However, a better understanding of the biology underlying the subgroups will provide a 

more rational targeted treatment of those patients (perhaps first in trial) such as seen in HRD 

tumors with PARP inhibitors. The use of algorithms that can classify the tumor of an 

individual patient, while allowing some tumors to remain unclassified, along with 

assessment of subtype robustness in independent datasets by Prediction Strength, would 

move the field closer to this goal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Translational Relevance

High-grade serous ovarian carcinoma (HGSOC) is the fifth leading cause of cancer death 

in the United States and Canada. The majority of HGSOC are diagnosed as late-stage, 

high-grade serous ovarian carcinomas, for which prognosis is generally poor and few 

targeted therapies exist. Significant research effort has suggested several molecularly 

distinct subtypes of HGSOC, yet no consensus in the field exists and computational 

methods to analyze high-dimensional gene expression datasets differ across studies. 

Although subtypes have been shown to differ in overall survival, the lack of agreement on 

molecular subtype definition has been cited as a barrier to their investigation through 

clinical trial. In the present study, we perform an analysis of a large compendium of 

HGSOC transcriptomes in order to evaluate the concordance of computational methods 

and address the emerging consensus in the field. We develop a subtype classifier that 

represents the consensus of HGSOC subtypes, and show that many tumors are of 

intermediate or mixed subtype based on currently defined subtypes. These findings 

improve our understanding of the molecular basis of high-grade serous carcinoma, an 

important step in defining the underlying biology and identifying therapeutic targets of 

HGSOC.
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Figure 1: Properties of Subtypes identified by Consensus Classifier
Subtype associations with patient age and overall survival were assessed across our 

compendium of microarray datasets; association with tumor purity and immune cell 

infiltration was assessed using the TCGA dataset. Tumor purity was estimated from 

genotyping data in TCGA; lymphocyte infiltration was based on pathology estimates from 

TCGA. Patient age (p < 0.001), overall survival (p < 0.005), and ABSOLUTE purity (p < 

0.001) were statistically significant across subtypes. When compared to all other groups, the 

Immunoreactive subtype had elevated infiltration of lymphocytes (p < 0.05) and neutrophils 

(p < 0.10). Mean monocyte infiltration was less than 5% across all subtypes, and was 

excluded from this analysis. Classification was performed using default parameters, and 

mean values of each variable are shown.
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Figure 2: Concordance Analysis
(A) Contingency table showing concordance of subtypes while comparing the methods 

pairwise (B) Pairwise concordance between the methods versus percentage of the dataset 

with samples of lower subtype margins removed, (C) three-way overall concordance 

between the methods and that of the individual subtypes versus percentage removed, (D) 

The classification of patients by three published algorithms as a Venn diagram for each of 

the four subtypes. Each area shows percentages of patients when all patients are classified 

(below, in parentheses) and after refusing to classify 75% of the most marginally classified 
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tumors by any of the three methods (above). Thus, the numbers on the top of the three-way 

intersection are the concordant tumors according to the three original algorithms. Bottom 

numbers indicate relatively unambiguous subtype predictions by all three algorithms and 

which are also concordant with the others.

Chen et al. Page 16

Clin Cancer Res. Author manuscript; available in PMC 2019 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Survival Analysis
(A) Kaplan-Meier curves of subtypes of the 1581 patients with survival data under different 

methods. (B) Hazard ratios and 95% confidence intervals of the lowest-risk subtype 

(Konecny and Verhaak) or two subtypes (Helland) compared to the remaining subtypes.
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Figure 4: Robustness Analysis of published classifiers, by Prediction Strength
In each dataset, concordance was calculated between the published classifier and a classifier 

re-trained on the validation dataset. The TCGA dataset also classified using the published 

classifiers of Helland and Konecny (no re-training was done for the classifiers). The TCGA 

dataset was also clustered using the methods of Tothill and Konency (in red and blue 

respectively). Samples were removed from Prediction Strength calculations starting with the 

most ambiguous samples (with the smallest difference between the top subtype prediction 

and runner-up subtype prediction); the x-axis shows the percent removed before computing 

prediction strength. Each algorithm improves in robustness when allowed to leave 

ambiguous samples, that it is less certain in its classification, unclassified.
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Figure 5: Concordance and Survival Stratification of consensusOV
(A) Contingency plots showing concordance of subtype classification between consensusOV 
and the classifiers of Helland, Verhaak, Konecny. The fourth (bottom-right) plot shows the 

concordance between the consensus classifier and the patients concordantly classified 

between the three classifiers. (B) Survival curves for the pooled dataset provided by 

consensusOV. Classification was performed using leave-one-dataset-out validation. For the 

bottom two figures, classification with consensusOV was performed with the default cutoff, 

in which 75% of patients with the lowest margin are not classified.
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Figure 6: Margin Analysis
(A) Boxplots indicating the margin values assigned by each classifier to concordant and 

discordant cases. All statistical tests were performed using the Wilcoxon rank-sum test. (B) 

ROC curve for assessing the ability of margin values to discriminate between concordant 

and discordant cases.
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Table 1:

Subtyping methodology of the algorithms reviewed.

Citation Probe / gene filtering 
for Clustering

Clustering Algorithm Probe / gene 
filtering for 
classification

Subtype Classifier

Tothill/ Helland(3,9) Probes with at least 
one sample expressed 
above 7.0, and global 
variance above 0.5

Consensus k-means; diagonal LDA 
and kNN

Gene ranking by 
differentially 
expressed genes 
between groups

Linear subtype scores

TCGA/Verhaak(4,5) Filter to genes that 
correlate above 0.7 
between three 
platforms to unified 
estimate; then take top 
1500 genes by median 
absolute deviation 
(MAD)

Non-negative Matrix Factorization Filter patients by 
silhouette width; 
correlation-based 
feature subset 
selection

Single-sample Gene Set 
Enrichment Analysis

Konecny(6) Top 2500 probes by 
MAD, then keep 1850 
unique gene symbols

Non-negative Matrix Factorization Prediction Analysis 
of Microarrays with 
thresholds 
determined by 10-
fold cross validation

Nearest Centroid with 
Spearman’s rho

consensusOV 100 Genes provided by 
Verhaak(5); convert the 
features space into 
binary matrix of gene-
pair associations

Random Forest using unanimously 
classified tumors across the methods

100 gene symbols 
given in Verhaak(5)

Random Forest classifier
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Table 2:
Compendium of gene expression datasets

15 whole-transcriptome studies with at least 40 patients with late stage, high-grade serous histology from the 

curatedOvarianData compendium consisting of 1,770 patients. 13 of these datasets provided 1,581 patients 

with survival data. Sample size column proves the number of samples : number with survival data : number 

deceased (median survival in months).

GEO(34) Accession Sample Size Microarray Platform # Features

TCGA(4) 464:452:239 (43) Affymetrix HT HG-U133A 12833

GSE17260(35) 43:43 22 (29) Agilent-012391 Whole HG Oligo 19596

GSE14764(36) 41:41:13 (30) Affymetrix HG-U133A 12752

GSE18520(37) 53:53:41 (21) Affymetrix HG-U133 Plus 2.0 20282

GSE26193(38) 47:47:39 (34) Affymetrix HG-U133 Plus 2.0 20282

PMID17290060(39) 59:59:36 (34) Affymetrix HG-U133A 12752

GSE51088(40) 85:84:69 (44) Agilent-012097 Human 1A Microarray (V2) G4110B 15299

GSE13876(41) 98:98:72 (22) Operon human v3 ~35K 70-mer two-color oligonucleotide microarrays 13846

GSE49997(42) 132:122:40 (23) ABI HG Survey Microarray Version 2 16760

E.MTAB.386(43) 128:128:73 (30) Illumina humanRef-8 v2.0 beadchip 10572

GSE32062(44) 129:129:60 (40) Agilent-014850 Whole HG 4×44K G4112F 19596

GSE9891(3) 142:140:72 (29) Affymetrix HG-U133 Plus 2.0 20282

GSE26712(45) 185:185:129 (39) Affymetrix HG-U133A Array 12752

GSE20565(46) 89 (0) Affymetrix HG-U133 Plus 2.0 20282

GSE2109 79 (0) Affymetrix HG-U133Plus2 20282
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