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Abstract

Brain-derived neurotrophic factor (BDNF), a neurotrophin which binds specifically to the tyrosine 

kinase B (TrkB) receptor, has been shown to promote neuronal differentiation, maturation, and 

synaptic plasticity in the central nervous system (CNS) during development or after injury and 

onset of disease. Unfortunately, native BDNF protein-based therapies have had little clinical 

success due to their suboptimal pharmacological properties. In the past 20 years, BDNF mimetic 

peptides have been designed with the purpose of activating certain cell pathways that mimic the 

functional activity of native BDNF, but the interaction of mimetic peptides with cells can be 

limited due to the conformational specificity required for receptor activation. We report here on the 

incorporation of a BDNF mimetic sequence into a supramolecular peptide amphiphile filamentous 
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nanostructure capable of activating the BDNF receptor TrkB and downstream signaling in primary 

cortical neurons in vitro. Interestingly, we found that this BDNF mimetic peptide is only active 

when displayed on a peptide amphiphile supramolecular nanostructure. We confirmed that 

increased neuronal maturation is linked to TrkB signaling pathways by analyzing the 

phosphorylation of downstream signaling effectors and tracking electrical activity over time. 

Furthermore, three-dimensional gels containing the BDNF peptide amphiphile (PA) nanostructures 

encourage cell infiltration while increasing functional maturation. Our findings suggest that the 

BDNF mimetic PA nanostructure creates a highly bioactive matrix that could serve as a 

biomaterial therapy in injured regions of the CNS. This new strategy has the potential to induce 

endogenous cell infiltration and promote functional neuronal maturation through the presentation 

of the BDNF mimetic signal.
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The ability of neurotrophic factors to regulate the developing central nervous system (CNS) 

and to promote survival has motivated the use of these proteins to treat CNS injuries and 

diseases.– The main neurotrophins include brain-derived neurotrophic factor (BDNF), nerve 

growth factor, neurotrophin-3, and neurotrophin-4.– Among these, BDNF is the most 

extensively studied due to its key role during development and its capacity to mediate 

neuroprotection and functional recovery post-injury. It is well known that BDNF binds with 

high affinity to the tyrosine kinase B (TrkB) receptor and with low affinity to p75NTR, a non-

specific neurotrophin receptor., , Additionally, BDNF activates certain cell pathways 

promoting neuronal survival, differentiation, maturation, re-myelination, and synaptic 

plasticity.– Previous studies have shown that decreased BDNF levels interfere with the 

healing process after injury in the CNS and also affect neurodegenerative conditions 

including Parkinson’s and Alzheimer’s diseases., These findings indicate the potential 

therapeutic role for BDNF in neural regeneration., Unfortunately, BDNF-based therapies 

have had little clinical success,– and this has motivated the search for alternative therapies to 

enhance BDNF receptor signaling. A common problem with the majority of protein 
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therapies is their short half-life, and synthetic nanostructures have been shown to circumvent 

this problem., 

Several BDNF mimetic peptide sequences were identified by Hughes et al. that promoted 

the survival of neuronal cultures., In their work, a computer-aided molecular design 

approach was used to identify these BDNF mimetic peptides. The most recently reported 

peptide was cyclic arginine-lysine-lysine-alanine-D−proline (RKKADP) found in loop 4 of 

the native BDNF protein, which was the only monocyclic mimetic found to behave as a 

BDNF-like agonist., They found that this sequence increased survival of chick sensory 

neurons and improved re-myelination in a peripheral nerve injury via TrkB-independent 

mechanisms. Despite their mimetic design, Hughes et al. found that the RKKADP peptide in 

this monocyclic conformation did not activate the TrkB receptor and therefore does not truly 

mimic the native growth factor., 

Self-assembling supramolecular systems have been identified as an important class of 

biomaterials given their ability to generate ordered and dynamic structures. Peptide 

amphiphiles (PAs) that self-assemble in water into high aspect ratio nanofibers and form 

hydrogel networks in the presence of physiological electrolytes have emerged as attractive 

supramolecular candidates for regenerative medicine., PAs have been shown to be highly 

bioactive and mimic natural extracellular matrices., – We previously developed PAs 

displaying diverse bioactive epitopes such as IKVAV, FGF-2, and VEGF with the ability to 

activate β−1 integrin,, FGFR-1, and VEGFR-1 receptors, respectively. We report here on the 

incorporation of the RKKADP BDNF mimetic peptide on a PA capable of assembling in 

aqueous media into one-dimensional supramolecular nanostructures. The objective of this 

work has been to investigate the ability of supramolecular nanostructures created with a PA 

containing a BDNF mimetic peptide (BDNF PA) to activate the TrkB receptor. In previous 

work, the BDNF mimetic peptide (BDNF Peptide) alone was not able to activate the 

receptor., The activation of the TrkB receptor and its corresponding pathways were 

characterized by studying intracellular signaling of primary cortical neurons treated with 

BDNF PA. We also investigated the survival, growth, and functional maturation of these 

cells in 2D and 3D cultures.

Design and Characterization of the BDNF Mimetic Peptide Amphiphile 

Nanostructure.

The bioactive portion of the BDNF peptide consists of three amino acids (arginine-lysine-

lysine) cyclized using a D−Proline to ensure the correct steric conformation for receptor 

binding (Figure 1a)., The BDNF peptide developed by the Hughes lab also contained a non-

bioactive alanine which they replaced with a lysine without significant biological effects. For 

the design of the BDNF PA, we used this lysine to link the BDNF peptide to a hexa-ethylene 

glycol (PEG6) spacer to increase the distance of the BDNF sequence from the PA nanofiber 

surface and ensure signal bioavailability (Figure 1b). The PA molecular backbone was 

designed with four glutamic acid residues followed sequentially by two alanine residues, two 

valine residues (V2A2E4), and an alkyl tail of 16 carbons (C16). The four glutamic acids 

ensured solubility of the PA molecule, while V2A2 and C16 created the nanostructure via β-
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sheet formation and hydrophobic collapse, respectively. A PA containing a non-cyclized 

BDNF peptide (Linear BDNF PA) was synthesized as a control to probe the specificity of 

peptide conformation on receptor binding (Figure 1c, for synthetic procedure see SI section 

1.4). The non-bioactive backbone, C16V2A2E2 PA (E2 PA) (Figure 1d), was used for both 

BDNF PA nanostructures because of its known ability to form robust nanoribbons on its 

own.

Cryogenic transmission electron microscopy (Cryo-TEM) demonstrated that the BDNF PA 

and the Linear BDNF PA alone (100 mol%) were unable to form nanofibers, likely due to 

the large steric demands of the BDNF structure (Figure 1e and S1). Dynamic light scattering 

(DLS) confirmed that the BDNF PA forms spherical micelles with a diameter distribution 

centered at 12 nm (Figure 1f). For optimal fiber formation, we investigated different co-

assembly ratios (10, 20, 50, 70 and 90 mol%) of the BDNF PA with E2 (Figure 1g–i, S1). 

We also found that C16V2A2E4 (E4 PA) or C16V2A2E4PEG6 (E4PEG PA), which are present 

in the full sequence of the BDNF PA, were unable to form nanofibers at 100 mol%. We 

observed that as the molar ratio of BDNF PA to E2 PA increased, the propensity to form 

fibrous nanostructures decreased significantly (Figure S1). To corroborate these findings, the 

co-assemblies in solution were analyzed by small angle x-ray scattering (SAXS) which, for 

the E2 PA, yielded a slope of −2 in the Guinier region fit to a lamellar model (Figure 1j and 

S2). BDNF PA co-assemblies (10–70 mol%) exhibited a slope of −1, indicating cylindrical 

nanofibers and fit a cylindrical core shell model (Figure S2b). Conversely, 100 mol% BDNF 

PA solutions exhibited a slope of 0 in the Guinier region corresponding to spherical 

nanostructures (Figure 1j and S2b), which is consistent with the DLS data (Figure 1f). In 

order to assess the formation of hydrogen bonding among PA molecules within the 

nanofiber, we carried out measurements of circular dichroism (CD) and Fourier-transform 

infrared (FT-IR) spectroscopy. CD and FT-IR spectra of PA materials except for the E2 PA, 

revealed a random coil secondary signature by the lack of positive ellipticity in the CD 

spectrum (Figure S3a, c) and a broad amide I band around 1640–1650 cm−1 in FT-IR spectra 

(Figure S3e). All PA compositions that were co-assembled at 10 mol% with E2 PA revealed 

a β-sheet signature in CD spectra and a peak between 1610–1625 cm−1 in their FI-TR 

spectra (Figure S3b, d, f).

Cellular Response to the BDNF Mimetic Peptide Amphiphile 

Nanostructures.

We evaluated the ability of the BDNF PA supramolecular nanostructure to mimic the BDNF 

protein by analyzing its effect on embryonic primary mouse cortical neurons in vitro. For 

these experiments we used 1 wt% solutions obtained by co-assembling 10 mol% of the 

BDNF PA, Linear BDNF PA, or E4PEG PA with 90 mol% E2 PA. These solutions were 

annealed at 80 °C for 30 minutes and slow cooled to reach the thermodynamically favored 

fiber formation (See SI section 2.1.1 for more information). These co-assemblies are 

referred to as BDNF PA, Linear BDNF PA or E2+E4PEG PA, respectively. PAs were then 

added to media to treat the cells for in vitro studies. Scanning electron microscopy (SEM) 

and fluorescent confocal microscopy confirmed that the PA fibers in media interacted with 

neural cells (Figure 2a and S4a–c).
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To determine the ability of the BDNF PA to activate the TrkB receptor,, , we investigated the 

receptor phosphorylation kinetics using western blot analysis at different time points. The 

BDNF PA was added to the media (containing 0.5 μM of PA molecules with the BDNF 

mimetic sequence) for 2, 4, 6, 8, 12, and 24h and compared to the addition of BDNF protein 

at an initial dose of 0.25 nM (8 ng/mL), at the same timepoints (Figure 2b, c). As expected, 

neuronal cells treated with BDNF protein showed an initial peak in phosphorylated TrkB (p-

TrkB) between 2 and 4h which then began to decrease gradually, and activation was no 

longer observed after 12h. On the other hand, cells treated with BDNF PA showed a peak in 

p-TrkB between 4 and 6h, indicating their ability to activate the receptor. We also observed 

that the BDNF PA and BDNF protein induced similar levels of p-TrkB 6h after they were 

added to the media (Figure 2c). To exclude the possibility of any cytotoxic effect of the PAs, 

a cell viability assay was performed on primary cortical neurons for 1, 3, and 7-day 

timepoints (Figure S4d). The cell survival remained above 80% for all conditions, which is 

indicative of a healthy primary culture. To further verify receptor activation by BDNF PA, 

we pre-treated cortical neurons with the Trk selective pharmacological inhibitor K252a for 

2h prior to treatment with BDNF PA or BDNF protein (Figure S5). Western blot analysis 

showed that both BDNF PA and BDNF protein-induced TrkB phosphorylation was 

completely blocked by K252a 6h post-treatment. The results suggest that the BDNF PA not 

only activates the TrkB receptor but does so through a similar mechanism as the BDNF 

protein.

To study the nature of the TrkB receptor activation by our PA, all components of the BDNF 

PA (BDNF Peptide, E2 PA, and E2 co-assembled with E4PEG PA), as well as the linear 

analogue of the BDNF PA, were studied in parallel. At 4 and 6h timepoints, none of the 

components of the BDNF PA were found to induce TrkB phosphorylation (Figure 2d, e and 

S6). The lack of TrkB phosphorylation in the presence of the Linear BDNF PA indicates that 

the cyclic form of the BDNF mimetic sequence is critical to bind and activate the receptor. 

Consistent with previous observations, the BDNF cyclic peptide alone did not show 

activation of the TrkB receptor, suggesting that the activation in the presence of the BDNF 

peptide requires presentation by a PA supramolecular nanostructure. Neuronal cells treated 

with increasing concentrations of BDNF PA (0.5, 1.0, and 5.0 μM) did not reveal dose-

dependent activation of TrkB (Figure S7). Since the 0.5 μM dose was able to activate the 

total amount of TrkB receptors present in the experimental cells, this dose was used 

throughout our subsequent experiments. Furthermore, none of the control samples tested 

induced TrkB activation at higher concentrations (1.0 and 5 μM). These results indicate that 

molecular conformation of the cyclic BDNF mimetic sequence and its presentation on a 

supramolecular scaffold are required for cell signaling.

To further understand cell signaling by the BDNF PA nanostructure, we treated neuronal 

cells with different PA co-assembly ratios with E2 PA (10, 20, 50, and 90 mol%) at a 

concentration of 0.5 μM for 6h (Figure S8). Within the range of 10–90 mol% BDNF PA, we 

observed an activation of the TrkB receptor. Conversely, 100 mol% of the BDNF mimetic 

PA, which does not self-assemble into nanoscale filaments, did not activate the receptor. To 

confirm that the BDNF peptide presentation on a PA supramolecular nanostructure plays a 

critical role in TrkB phosphorylation, we immobilized the BDNF peptide on a solid surface 

where we expect different molecular dynamics relative to soluble peptides. We also 
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synthesized an additional BDNF peptide control functionalized with a PEG6 linker 

(PEG6−BDNF peptide) in order to probe its role in bioactivity. This control was added since 

this particular linker is present in the BDNF PA, and it is well known that flexible PEG 

linkers or branched structures can increase the bioavailability of epitopes.– For this purpose, 

3-aminopropyl triethoxysilane (APTES)-treated glass coverslips were functionalized with 

the BDNF or the PEG6−BDNF peptide using 1-ethyl-3-(dimethyl-

aminopropyl)carbodiimide (EDC) chemistry (Figure S9a, b and Synthetic Scheme SI section 

1.6). On surfaces coated with the immobilized BDNF mimetic peptide and the immobilized 

PEG6−BDNF mimetic peptide, neuronal cell survival was reduced to 29% and 34%, 

respectively (Figure S9c–e). Control surfaces coated with poly-D−lysine (PDL), which is 

widely used in the growth of primary neuronal cultures, showed 98% cell survival. Neural 

cells on APTES-treated control surfaces did not survive after 5 days in vitro (DIV). Due to 

the low amount of protein obtained from these studies, western blot analysis of TrkB 

receptor phosphorylation was not possible. As an alternative, we covalently attached the 

BDNF peptide or PEG6−BDNF peptide to 6 μm silica microspheres to treat neuronal 

cultures in solution (Figure S10a, b). Neuronal cells treated with BDNF peptide or 

PEG6−BDNF peptide functionalized silica microspheres did not show any activation of the 

TrkB receptor in primary neuronal cultures in vitro (Figure S10c–e). These results indicate 

that the BDNF peptides attached covalently to the surface of the silica microspheres is not 

sufficient to activate the BDNF receptor. This also suggests that there are unique dynamic 

features for receptor activation provided by the one-dimensional peptide amphiphile 

supramolecular nanostructure.

BDNF PA-TrkB Signaling Activates MAPK, PI3K and PLCγ.

BDNF-TrkB signaling is involved in transcription, translation, and trafficking of proteins 

during various phases of synaptic development and has been implicated in several forms of 

synaptic plasticity., , These functions are carried out by a combination of three signaling 

cascades triggered when BDNF binds to TrkB: the mitogen-activated protein kinase 

(MAPK), the phosphatidylinositol 3-kinase (PI3K), and the phospholipase-C gamma 

(PLCγ) pathways. Activation of the MAPK and PI3K pathways was detected by western 

blot analysis using antibodies against phosphorylated ERK (pERK 1/2) and phosphorylated 

AKT (pAKT), respectively (Figure 2f, g). The BDNF PA and native BDNF protein showed a 

marked increase in activation of the MAPK and PI3K pathways in comparison with the 

control samples after 6h of treatment. These pathways play crucial roles in dendrite 

formation, neuron survival, and axonal growth., The PLCγ pathway, which is one of the 

pathways associated with synaptic plasticity,, , was highly activated for all samples (BDNF 

PA, BDNF protein, BDNF peptide alone, E2+E4PEG PA, and starvation media) suggesting 

that this activation can also be associated to other stimuli in the cell culture environment. We 

conclude that the western blot analysis confirms the ability of the BDNF PA to induce the 

activation of MAPK and PI3K downstream pathways associated with the TrkB receptor that 

are important for survival, growth, and synaptic plasticity., 
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Neural Plasticity and Maturation Mediated by the BDNF Peptide Amphiphile 

Nanostructure.

Next, we investigated if activation of the receptor, and consequently downstream pathways, 

can be associated with changes in neuronal morphology. For this purpose, we cultured 

primary mouse cortical neurons with various treatments (BDNF peptide, E2 PA, BDNF PA, 

native BDNF protein as well as starvation media as a control) for 24 and 72h. The neuritic 

complexity was analyzed using immunocytochemistry with microtubule associated protein 2 

(MAP-2) and pan-axonal neurofilament protein (SMI312), which are dendritic and axonal 

markers, respectively (Figure 3a and S11a). It has been shown previously that treatment with 

BDNF protein facilitates neurite branching,– so we sought to explore if the BDNF PA 

nanostructure could induce a similar effect. After 24h, cells treated with the BDNF PA 

showed a significant increase in the axon length (208 ± 36.2 μm) relative to the native BDNF 

protein (116.4 ± 7.5 μm) and all other control treatments (starvation media: 106.8 ± 7.6 μm; 

BDNF peptide: 108.8 ± 7.9 μm; E2 PA: 102.5 ± 6.8 μm) (Figure 3b). In addition, the BDNF 

PA led to higher numbers of primary neurites (5.08 ± 1.52), (extensions coming directly 

from the soma), and a significant increase in the number of secondary neurites (2.18 ± 0.23) 

compared to neurons treated with starvation media (primary: 3.6 ± 1.68; secondary: 1.06 

± 0.17), BDNF Peptide (primary: 4.6 ± 1.2; secondary: 1.15 ± 0.2), and E2 PA (primary: 4.7 

± 1.75; secondary: 1.2 ± 0.2). There were no statistical differences in neurite number 

between cells treated with the BDNF PA and native BDNF protein. After 72h in vitro, 

neurons exposed to these two treatments had similar axonal (BDNF PA: 517.6 ± 66.7 μm; 

BDNF protein: 426.2 ± 25.7 μm) and dendritic length (BDNF PA: 519.7 ± 78.03 μm, BDNF 

protein: 540 ± 48.07 μm) compared to control samples (Figure S11b). We hypothesize that 

the increase in neurite development observed for cells treated with the BDNF PA at earlier 

time points can be attributed to the synergistic stimulus of topographical and biochemical 

cues provided by the PA supramolecular nanostructures. To assess the effect of the BDNF 

PA on neuronal maturation, the expression of mature neuronal markers was examined at 

long time points (Figure 3c). Neuronal cells were treated with the BDNF PA and native 

BDNF protein during 16 DIV and showed a significant increase of MAP-2, a marker 

associated with mature dendrites, relative to control treatments. Moreover, post-synaptic 

density 95 (PSD95), which plays an important role in post-synaptic plasticity, showed an 

increase for both of these treatments and as well as the BDNF peptide (Figure 3d, e). We 

conclude that TrkB activation by the BDNF PA nanostructure enhances neuronal maturation 

in vitro.

Functional Analysis Through Electrophysiology.

To determine if enhanced expression of neuronal maturation markers correlated with 

functional maturation, we assessed electrical activity of primary mouse cortical neurons. A 

multi-electrode array (MEA) platform was used to assess the spontaneous and synchronized 

activity of neuronal cultures over time, as illustrated in the spike raster plots on day 14 and 

day 30 from a well treated with BDNF PA (Figure 4a–c and S12). Cells cultured with the 

BDNF PA and BDNF protein for 30 DIV showed increased spontaneous firing frequency 

(BDNF PA: 5.9 ± 0.5 Hz; BDNF protein: 4.9 ± 0.2 Hz) relative to starvation media 
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(starvation: 2.1 ± 0.37 Hz) (Figure 4d). Over time, cells treated with the BDNF PA or BDNF 

native protein were able to fire longer network bursts (BDNF PA: 3.1 ± 0.24 sec; BDNF 

protein: 4.1 ± 0.44 sec) with significantly more spikes per network burst (BDNF PA: 2947 

± 333.2; BDNF protein: 2929 ± 252.2) than those in the control media (starvation media: 

667.5 ± 132.2; BDNF peptide: 1714 ± 251.6) (Figure 4e, f). These results demonstrate that 

the treatment of neuronal cells with the BDNF PA can alter the developmental timeline of 

neuronal network excitability in primary neuronal cultures.

Increased Maturation, Infiltration and Electrical Activity of Neurons on 

Three-Dimensional BDNF PA Scaffolds.

Next, we investigated whether neurons could survive, infiltrate, and functionally mature to 

carry information by generating action potentials on three-dimensional (3D) gel scaffolds 

formed by the filamentous BDNF PA nanostructure. We tested six gel conditions including 

the BDNF PA, Linear BDNF PA, E4PEG PA, E2 PA, and E2 PA encapsulating BDNF 

protein (BDNF + E2) or BDNF peptide (Peptide + E2). All PA samples had similar nanofiber 

morphology and storage moduli relative to the E2 PA as observed by scanning electron 

microscopy and rheological measurements respectively (Figure 5a–e and S13, 14). 

Furthermore, all the PA scaffolds had storage moduli ranging from 1.9 to 5.6 kPa, which are 

within the range of mechanical properties of neural tissue.

Gels were prepared using a commercial mold to maintain a uniform shape, size and degree 

of swelling (Figure S15). Neurons were then seeded on top of the gels for one week and 

were found to exhibit neurite extensions and a homogenous neuronal network in all gels 

tested (Figure 5f and S16a–d). Neuronal cultures on BDNF PA gels and on BDNF + E2 PA 

gels exhibited a similar mature phenotype characterized by MAP-2 expression. The 

normalized average of MAP-2 intensity was found to be comparable in the BDNF PA gel 

(0.64 ± 0.15) and the BDNF + E2 PA gels (0.55 ± 0.08) (Figure S16e). However, MAP-2 

expression was almost twice as high in these gels relative to E2 PA gels (0.32 ± 0.06). 

Moreover, the distance that neurites infiltrated from the top of the scaffold was nearly four-

and-a-half times higher in the BDNF PA scaffold (179.7 ± 6.0 μm) compared with all the 

other conditions (BDNF + E2 PA: 20.1 ± 5.0 μm, Peptide + E2 PA: 28.34 ± 4.5 μm, and E2 

PA: 36.9 ± 9.9 μm) (Figure 5g, h and S16f, g). It is well known that BDNF-TrkB signaling 

induces neuronal migration and chemotaxis in cortical neurons., It also plays a significant 

role in axon guidance and growth during development and when applied after injury., The 

greater neurite infiltration in BDNF PA gels could be partially explained by the BDNF 

sequence presentation throughout the whole gel. The low cell infiltration on the BDNF + E2 

PA and Peptide + E2 PA gels might be associated to the release of both molecules into the 

media over time as seen in previous studies where a similarly sized and charged protein 

completely eluted from PA gels. The ability of the BDNF PA to induce neuronal migration, 

as well as dendritic and axonal infiltration, is another indication of the capacity of the 

bioactive nanostructure’s mimicry.

Finally, we investigated whether the neurons cultured on the BDNF PA gels were 

functionally mature by measuring their action potentials. Cortical neurons were cultured for 
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up to one week on BDNF PA gels, and patch-clamp recordings were performed in whole-

cell current-clamp mode. A higher number of action potentials relative to steps of current 

injection were observed in neurons cultured on BDNF PA (7.7 ± 2.4) and BDNF + E2 PA 

(9.4 ± 3.7) gels relative to cells on the E2 PA (1.7 ± 0.8), indicative of a more excitable cell 

phenotype (Figure 5i, j). Collectively, the population and single-cell based 

electrophysiological recordings along with the immunostaining suggested that neurons on 

the BDNF PA gels form a connected network of mature neurons capable of propagating 

electrical information.

We reported here on the synthesis and characterization of a peptide amphiphile 

supramolecular nanostructure displaying a BDNF mimetic peptide that induces biological 

responses similar to those of the native BDNF protein. The therapeutic potential of BDNF 

has been tested in several in vivo studies and clinical trials for neurologic conditions over the 

past several decades., , , , Several studies investigating small synthetic peptide mimetics, and 

small molecule ligands based on the BDNF and TrkB receptor interaction have been shown 

to promote survival, axonal regrowth, and maturation of neural cells using both in vitro and 

in vivo models., , – One example of such systems is a peptide known as RADA16 

functionalized with a neurotrophic peptide derived from BDNF, however, these studies have 

not demonstrated activation of the TrkB receptor and its downstream signaling cascades., In 

the supramolecular nanostructure investigated here, this activation has been clearly 

demonstrated as well as the enhancement of neuronal electrical activity in 2D and 3D 

cultures.

A key finding of our study has been the observation that the BDNF mimetic peptide used 

was only bioactive when displayed on a peptide amphiphile supramolecular nanofiber. In 

fact, as previously discussed, we showed that use of the specific PEG6 linker in our PA 

monomer was not sufficient to induce the observed supramolecular bioactivity. We speculate 

that single PA monomers or clusters of the supramolecular scaffold are able to create 

optimal adaptive configurations to interact with receptors in the highly dynamic environment 

of the cell. A specific mechanism could be the partial fragmentation of the long high aspect 

ratio supramolecular nanofibers to enhance receptor-signal interactions. This would facilitate 

the ability of the fiber to dimerize and also cluster receptors for effective TrkB receptor 

activation. In this context it is clear that these mechanisms would not be available to 

molecules bound by covalent bonds in either macromolecules or functionalized particles. 

The elucidation of these mechanistic details will require future studies using highly 

advanced imaging methodologies, some of which may not be fully developed yet.

We conclude that the BDNF PA supramolecular nanostructure investigated here was able to 

induce the activation of not only the TrkB receptor but also its downstream signaling 

cascades responsible for cell survival, growth and functional maturation in 2D cultures. 

Furthermore, the gels formed by the BDNF PA nanostructures encourage neuronal cell 

infiltration in 3D while increasing maturation and functional electrical activity after 1 week 

in vitro. This observation suggests the possibility of using these soft nanostructures to help 

promote regeneration or engraftment of transplanted cells in the CNS.
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ABBREVIATIONS

AKT serine/threonine specific protein kinase

APTES (3-Aminopropyl)triethoxysilane

BDNF brain derived neurotrophic factor

CNS central nervous system

Cryo-TEM cryogenic transmission electron microscopy

DAPI 4’,6-diamidino-2-phenylindole

DLS dynamic light scattering

EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

ERK 1/2 extracellular signal–regulated kinase 1/2

FGF-2 fibroblast growth factor 2
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FGFR-1 fibroblast growth factor receptor 1

IKVAV isoleucine-lysine-valine-alanine-valine

MAP-2 microtubule-associated protein 2

MAPK mitogen-activated protein kinase

MEA multielectrode array

NGF nerve growth factor

NT-3 neurotrophin 3

NT-4 neurotrophin 4

PA peptide amphiphile

pAKT phosphorylated serine/threonine specific protein kinase

PDL poly-D−lysine

pERK 1/2 phosphorylated extracellular signal–regulated kinase

PI3K phosphoinositide 3-kinase

PLCγ phospholipase C gamma

PSD95 postsynaptic density protein 95

pTrkB phosphorylated tyrosine kinase B

SAXS small angle x-ray scattering

SEM scanning electron microscopy

TrkB tyrosine kinase B

VEGF vascular endothelial growth factor

VEGFR-1 vascular endothelial growth factor receptor 1
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Figure 1. Design and characterization of BDNF mimetic peptide amphiphiles (PAs).
(a-d) Chemical structures of (a) the cyclic BDNF mimetic peptide, (b) BDNF PA, (c) Linear 

BDNF PA and (d) E2 PA when R = H. (e) Cryo-TEM and (f) dynamic light scattering of 

BDNF PA spherical nanostructures at 100 mol% with an average diameter of ~12 nm. (g-i) 

Cryo-TEM of E2 PA (g) at 100 mol%, Linear BDNF PA (h) and BDNF PA (i), both co-

assembled at 10 mol% with E2 PA. (j) Small angle x-ray scattering curves of PAs 

corresponding to E2 PA (blue), Linear BDNF PA (green), BDNF mimetic PA co-assembled 

with E2 PA at 10 mol% (purple), pure BDNF PA (pink) and the model fit of each curve 

(black).
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Figure 2. TrKB receptor activation and downstream pathway analysis in primary cortical 
neurons treated with BDNF PA.
(a) SEM micrograph (left) and confocal micrograph (right) showing a cortical neuron treated 

with PA nanofibers (red arrows and areas colored in blue). Cells were stained for SMI312 

(axonal marker, red), MAP-2 (dendritic marker, green), and DAPI (nuclei, blue); DAPI also 

stains the PA. (b) Western blot of phosphorylated TrkB (p-TrkB), TrkB, and actin in neural 

cells exposed to BDNF PA and BDNF protein over a period of 24h in vitro. starvation media 

(Strv) was used as a negative control. (c) Plot of the fraction of TrkB that is phosphorylated 

based on densitometry analysis of the western blot shown in (b) as a function of time. (d) 

Western blot of p-TrkB, and total TrKB receptor in neural cells treated with Strv, BDNF 

Peptide, different PA conditions (E2 PA, E2+E4PEG, Linear BDNF and BDNF PA) and 

BDNF protein for 6h in vitro. Western blot shows duplicate samples for each condition. (e) 

Bar graph based on densitometry analysis of the western blot in (d) quantifying the fraction 

of p-TrkB after exposure of cultures to the treatments indicated. (f) Western blot of markers 

for downstream pathways triggered by TrkB activation: PLCγ, AKT and ERK 1/2 for neural 

cells treated with Strv, BDNF peptide, E2+E4 PEG PA, BDNF PA, and BDNF protein for 6h 

in vitro. (g) Bar graphs quantifying through densitometry analysis of phosphorylated 

proteins normalized to total protein shown in (f). *P <0.05, **P<0.01, **P<0.001, and 

****P<0.0001, LSD test (b-g) (n=3).
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Figure 3. Morphometric analysis and cell maturation.
(a) Confocal images of neuronal cells treated with BDNF Peptide, E2 PA, BDNF PA, and 

BDNF protein for 24h in vitro (cells were stained with the axonal marker SMI312 (red), 

dendritic marker MAP-2 (green), and nucleus as well as PA marker DAPI (blue). (b) 

Morphometric analysis for neural cells treated with starvation media (Strv), BDNF peptide, 

E2 PA, BDNF PA and BDNF protein for 24h. (c) Confocal microscopy images of neuronal 

cells treated with starvation media (Strv), BDNF peptide, BDNF PA, and BDNF protein 

during 2 weeks in vitro. Cells were stained for MAP-2 (dendritic marker, green), TUJ-1 

(neuronal marker, red) and DAPI (nuclei and PA, blue). (d) Western blot of PSD95 (post-

synaptic marker), MAP-2 (maturation marker), and TUJ-1 (neuronal marker) of neuronal 

cells treated with Strv, BDNF peptide, BDNF PA, and BDNF protein during 2 weeks in 
vitro. (e) Bar graphs quantifying using densitometry analysis of MAP-2 maturation marker 

and PSD95 postsynaptic marker after treatments conditions shown in (d) (intensity values 

normalized to actin). *P <0.05, **P<0.01 and **P<0.001, and ****P<0.0001, LSD test (b) 

(n=60), (e) (n=3).
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Figure 4. Multi-electrode array (MEA) recordings of neuronal cultures treated with BDNF PA.
(a) Schematic of neurons plated on MEA plate (left) showing increased voltage activity from 

electrodes in contact with mature neurons (right). (b) Representative image of neurons 

cultured on MEA plate treated with BDNF PA for 30 days in vitro (cells immunostained 

with MAP-2, a marker of mature dendrites, green and DAPI, a stain for nuclei and PA, blue). 

(c) Representative raster plots showing electrical activity of culture at 14 and 30 days in 
vitro for wells treated with BDNF PA and BDNF protein. (d-f) Plots as a function of time of 

mean firing rate (d), network burst duration (e), and number of spikes per network burst (f) 

for cells treated with Strv, BDNF peptide, BDNF PA and BDNF protein during 2 weeks in 
vitro. *P <0.05, **P<0.01 and ***P<0.001, and ****P<0.0001 with respect to starvation 

media and #P <0.05 with respect to BDNF peptide, LSD test (n = 8 for BDNF PA and 

BDNF protein wells, and n = 4 for Strv and BDNF peptide wells).

Edelbrock et al. Page 19

Nano Lett. Author manuscript; available in PMC 2019 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Infiltration and maturation of cortical neurons in BDNF PA scaffolds.
(a) SEM showing nanofibers in E2 PA and BDNF PA gels. (b) Storage moduli of E2 PA and 

BDNF PA. (c-d) Scanning electron micrograph and (e) confocal micrograph images showing 

cortical neurons seeded on top of 3D PA scaffolds for 1 week in vitro. (f) Confocal images 

showing top and side (z-stack =160 μm) view sections of cells cultured on PA gel scaffolds 

for 1 week in vitro (images show cells stained with MAP-2 (dendritic marker, green), and 

Tuj-1 (neuronal marker, red). (g) Depth-coded z-stack reconstructions showing cell 

infiltration after 1 week in vitro. (h) Quantification of cell infiltration depth in E2 PA, BDNF 

+ E2 PA, BDNF peptide + E2 PA, and BDNF PA gels. (i) Representative traces of action 

potentials elicited by 1 second, 10pA current injection steps from 10–80pA recorded from 

neurons in BDNF + E2 PA, BDNF PA and E2 PA gels, 1 week in vitro. (j) Plot of current 

injection versus number of spikes for conditions in (i). **P<0.01 and ****P<0.0001. LSD 

test (b and h) and ANOVA followed by posthoc analysis was used for current clamp 

recordings (j).
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