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Abstract

Genome-wide association mapping (GWAS) is a method to estimate the contribution of 

segregating genetic loci to trait variation. A major challenge for applying GWAS to non-model 

species has been generating dense genome-wide markers that satisfy the key requirement that 

marker data is error-free. Here we present an approach to map loci within natural populations 

using inexpensive shallow genome sequencing. This ‘SNP skimming’ approach involves two 

steps: an initial genome-wide scan to identify putative targets followed by deep sequencing for 

confirmation of targeted loci. We apply our method to a test dataset of floral dimension variation 

in the plant Penstemon virgatus, a member of a genus that has experienced dynamic floral 

adaptation that reflects repeated transitions in primary pollinator. The ability to detect SNPs that 

generate phenotypic variation depends on population genetic factors such as population allele 

frequency, effect size, and epistasis as well as sampling effects contingent on missing data and 

genotype uncertainty. However, both simulations and the Penstemon data suggest that the most 

significant tests from the initial SNP skim are likely to be true positives – loci with subtle but 

significant quantitative effects on phenotype. We discuss the promise and limitations of this 

method and consider optimal experimental design for a given sequencing effort. Simulations 

demonstrate that sampling a larger number of individual at the expense of average read depth per 

individual maximizes the power to detect loci.
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Introduction

A growing body of research infers evolutionary processes at the population level using 

genomic data. Many of these population genomic studies are based on shallow Illumina 

sequencing of barcoded individuals, notably by reduced representation sequencing methods, 

genome resequencing, and pool-seq (Andrews et al. 2016; Catchen et al. 2017; Schlötterer et 
al. 2014; Therkildsen & Palumbi 2017). These methods are inexpensive and accessible, 

which has enabled rapid advances in understudied systems. Evolutionary biologists can now 

test basic hypotheses on the process of ecological divergence and reproductive isolation by 

comparing genome-wide patterns of genetic polymorphism within and between populations 

across a landscape. For example, researchers in a variety of study systems are using data 

sampled across differentiated populations to identify genomic signatures of local adaptation 

(e.g., Bassham et al. 2017; Hoban et al. 2016; Pfeifer et al. 2018).

While the evolutionary insights gained from population genomic studies are substantial, 

important questions cannot be answered with genomic data alone. Adaptation in natural 

populations depends on trait and fitness variation segregating within populations. The extent 

and pattern of standing genetic variation shapes a population’s short-term response to 

selection. By integrating genomic data with trait or fitness data, we can begin to characterize 

the contributions of individual loci to additive genetic variation. This information can reveal 

the history of selection acting on traits within a population and whether the availability or 

nature of standing variation constrains a population’s response to natural selection. 

Moreover, we can compare the genomic basis of standing variation to that of population or 

species divergence to assess the contribution of standing variation to evolutionary 

divergence. Yet population genomic studies do not routinely incorporate phenotypic or 

fitness data.

To examine the genomic basis of standing genetic variation and estimate the contribution of 

individual loci to the total additive genetic variation, we need to sample variants according to 

their frequency in natural populations. A direct approach is genome-wide association 

mapping (GWAS). GWAS takes advantage of linkage disequilibrium (LD) between marker 

alleles and genetic variants with phenotypic effects (‘causal loci’), allowing one to map 

quantitative trait loci (QTLs) within natural populations (reviewed by Schielzeth & Husby 

2014). GWAS typically require great effort and expense. LD often rapidly decays in large 

randomly-mating populations, and dense sampling of markers is necessary to tag genomic 

regions linked to causal loci. However, increasing the density of sampled sites reduces 

sequence depth per site for any given level of sequencing. This introduces uncertainty in 

genotype assignments and reduces power to detect genotype-phenotype associations. Extant 

GWAS methods are designed mainly for systems with extensive genomic resources. Many 

commonly used methods require certain genotype calls and little to no missing data (e.g., 

Aulchenko et al. 2007; Bradbury et al. 2007; Kang et al. 2010; Purcell et al. 2007; 

Rönnegård et al. 2016; Zhou & Stephens 2012; but see Parchman et al. 2012). Data meeting 

these criteria can be generated by SNP panels that deeply sequence large numbers of 

markers. SNP panels have been developed for only a few non-model species (e.g., Johnston 

et al. 2011; Knief et al. 2017; Santure et al. 2013; Silva et al. 2017).
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One approach to increase the size and completeness of SNP datasets for GWAS is genotype 

imputation, where missing genotypes are assigned based on observed (“direct typed”) 

genotypes at adjacent markers found in the same haplotype block (Marchini & Howie 2010). 

Imputed genotypes are often expressed as a genotype score (estimated allelic dosage) that 

varies continously from 0 to 2. Several GWAS methods can handle continuous genotype 

scores, including EMMAX, GEMMA, and PLINK (Kang et al. 2010; Purcell et al. 2007; 

Zhou & Stephens 2012). However, genotype imputation usually requires a reference panel of 

densely-genotyped haplotypes, a fine-scale recombination map, and/or knowledge about 

marker order (e.g., Howie et al. 2009; Li et al. 2009). Moreover, existing imputation 

methods do not handle genotype uncertainty in the direct typed markers. Assuming a 

researcher lacks prior knowledge of haplotype blocks, one option is to assign continuous 

genotype scores for missing genotypes simply according to the expectation based on allele 

frequency (“naïve imputation”; Jarquín et al. 2014). Assigning a continuous genotype score 

may be preferable to integer genotypes (0, 1, or 2), but results in a point estimate that does 

not retain information on the underlying probability distribution for genotype.

Here we examine the utility of a two-step ‘fast track’ approach to map loci within natural 

populations and estimate their contribution to the additive genetic variance. Sampling a 

natural population in situ can be particularly informative because it captures variation in 

traits and fitness that is expressed under relevant environmental conditions – this variation 

may not easily be replicated under controlled laboratory or greenhouse conditions. The first 

step is a genome-wide shallow sequencing scan that finds markers associated with 

phenotype, using a likelihood approach to account for missing data and genotype 

uncertainty. Due to missing data, this initial scan will only detect a portion of the total loci 

associated with phenotype, and putative trait-associated SNPs will show inflated 

associations with phenotype. The second step interrogates these candidate SNPs by deep 

sequencing PCR amplicons. This step fills in missing data and removes genotype uncertainty 

for a given site.

As an example, we apply our method to analyze floral dimension data collected from a 

natural population of the plant Penstemon virgatus. In this population, segregating variation 

in floral traits is highly quantitative, making our dataset ideal to illustrate both the promise 

and challenges of mapping QTLs from shallow sequencing data. SNP-skimming does not 

provide an exhaustive catalog of within-population QTLs, but instead enables an initial 

search for loci generating within-population variation. In this study, our approach uncovered 

a subset of segregating sites with subtle effects on the focal trait, stamen length. Simulations 

of our initial genome-wide scan suggest the power to detect loci affecting phenotype is 

optimized by increasing the population sample size, at the expense of average read depth.

Methods

Study system and phenotypic measurements

Penstemon is a large North American genus of perennial herbs that shows a dynamic pattern 

of floral evolution, including repeated origins of hummingbird-adapted flowers, from the 

ancestral condition of hymenopteran-adapted (‘bee-adapted’) flowers (Wessinger et al. 2016; 

Wilson et al. 2007; Wolfe et al. 2006). Adaptation to hummingbird pollination in Penstemon 
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involves modification of multiple floral traits, including the narrowing of the floral tube, and 

elongation of the stamen filaments, style, and floral tube. Since this evolutionary transition 

has occurred at least twelve times in Penstemon on an apparently short timescale (Wolfe et 
al. 2006), we hypothesize that bee-pollinated Penstemon populations harbor substantial 

variation in floral dimension that may be recruited for adaptation to hummingbird 

pollination.

We studied a large population of a bee-pollinated species, Penstemon virgatus var. asa-grayi, 
located in Teller Co., Colorado (38.42622 N, −105.09742 W, elevation ~ 2874 m) from June 

26–28, 2016 (Fig. 1A). We sampled 291 individuals over a uniform hillside. For each 

individual, we measured the following three traits on two flowers per plant: (1) length of the 

lateral stamen filaments (‘stamen length’), (2) length of the floral tube from base to opening 

(‘tube length’), and (3) width of the flower at its opening (‘tube width’). We measured open 

flowers whose anthers had not yet dehisced in an effort to target flowers at the same 

developmental age. Trait measurements from replicate flowers per plant were highly 

correlated, therefore we averaged replicate trait measurements for analyses. We collected 

leaf material from each individual into silica gel and later extracted DNA from dried tissue 

using a modified CTAB protocol (Wessinger et al. 2016).

MSG library preparation and sequencing

To generate a genome-wide set of polymorphic markers in the P. virgatus population sample, 

we used Multiplexed Shotgun Genotyping (MSG; Andolfatto et al. 2011) using the 

restriction enzyme MseI. This enzyme cuts frequently (recognition site: TTAA) and we 

expected broad coverage of the genome, but low average read depth per SNP per individual. 

We digested 50 ng of genomic DNA from each P. virgatus individual using MseI (New 

England Biolabs) and ligated one of 96 unique barcoded adapters onto each DNA sample. 

Up to 96 samples were pooled into each of four sublibraries that were size-selected for 

fragments between 250–450 bp using a Blue Pippen (Sage Science). We then amplified 

sublibraries for 14 PCR cycles using Phusion High-Fidelity Polymerase (New England 

Biolabs) and primers that incorporate unique barcoded Illumina indices. Each sublibrary was 

amplified in four replicate PCR reactions that were subsequently combined and purified. A 

single combined library with equimolar concentrations of the four sublibraries was 

sequenced on four Illumina HiSeq rapid run lanes (150 bp single end reads) at the University 

of Kansas Genome Sequencing Core.

Identification of polymorphic sites

We sorted fastq files into sample-specific read files based on adapter barcodes, allowing for 

one barcode mismatch, using step 1 of ipyrad (https://github.com/dereneaton/ipyrad). We 

then removed low quality sequence and adapter contamination using step 2 of ipyrad, which 

implements the cutadapt algorithm (Martin 2011). During this step, reads were trimmed to a 

minimum length of 75 bp if they contained adapter sequence, and reads were discarded if 

more than seven bases had a phred quality score less than 20. For our analyses, we took 

advantage of a draft reference genome assembly for P. barbatus, a close relative of P. 
virgatus (number of contigs = 18,827, N50 = 43,419). This assembly is not annotated and 

covers 92.8% of the total expected genome size of P. barbatus (696 Mbp of 750 Mbp). We 
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expect this includes most of the gene-rich regions of the genome. We mapped filtered 

sequence reads from each individual to this reference assembly using BWA (Li & Durbin 

2009). This generated a mapping file (.sam file) for each individual. Our MSG sequence data 

covered roughly 18% of the reference genome. We then used the UnifiedGenotyper 

algorithm in GATK (McKenna et al. 2010) to analyze the collection of 291 .sam files. GATK 

identifies polymorphic sites across the sample of individuals and, at each SNP for each 

individual, counts the number of reads matching the reference base (‘ref’ allele) and the 

number of reads carrying the alternative base (‘alt’ allele). Based on this information, GATK 

assigns likelihoods that the individual is homozygous for the ref allele, heterozygous, or 

homozygous for the alt allele. These likelihoods are phred-scaled for efficient representation 

and are normalized so that the most likely genotype is zero and values for the other two 

genotypes are scaled relative to the most likely genotype. The annotations for the total 

population at all SNPs are contained in the variant call file (.vcf) produced by GATK.

Using a custom Python script, we filtered through the .vcf file to recover SNPs matching the 

following criteria: (1) mapping quality score > 20, (2) genotype calls in at least 75 

individuals, (3) exactly two alleles segregating in the population, and (4) frequency of the 

reference base in the range of 0.2–0.8 in the population sample. We expect most SNPs 

segregating in the population have minor allele frequency less than 0.2, but we have limited 

power to detect the effects of alleles that are not at intermediate frequency across sampled 

individuals. The filtered dataset contains 650,917 SNPs. To identify pairs of markers that are 

perfectly correlated across individuals in our sample, we measured LD between SNPs that 

were sequenced on the same 150 bp read. We used custom Python scripts that calculate LD 

from single-end Illumina sequence data, following the approach of Feder et al. (2012). 

Briefly, we filtered through the .sam files generated by BWA for reads containing our focal 

SNPs. When more than one site was present on a given sequencing read, we tallied the 

observed two locus haplotype for each pair of SNPs and calculated LD (r2). For sets of 

perfectly correlated SNPs with genotype calls in the same set of individuals, we randomly 

discarded all but one SNP. This yielded a final set of 620,473 SNPs for downstream 

analyses.

Estimation of allele frequencies and genotype likelihoods at low read depth

With low read depths, the observed read data for an individual at a SNP can be treated as a 

binomial random variable. The probability of drawing a given allele (e.g., the ref allele) 

depends on genotype. Ignoring sequencing error and PCR bias, this probability is 1 if the 

individual is homozygous for the ref allele, ½ if the individual is heterozygous, and 0 if the 

individual is homozygous for the alt allele. With a single read, we can distinguish between 

the two homozygous genotypes, but we cannot distinguish a homozygote for the ref allele 

from a heterozygote. With increased sequencing depth, we perform a set of k binomial 

experiments, where k is the number of reads sequenced in a given individual. If an individual 

is homozygous for the ref allele, the probability of observing the ref allele in each of k reads 

is 1, whereas the probability of this event in a heterozygote is (½)k. As read depth increases, 

our ability to distinguish between a heterozygote and a homozygote improves because the 

probability of observing a single allele in a heterozygote declines.
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This inability to confidently identify genotypes at low read depths is a general feature of 

population genomic studies. Population genomic analyses that depend on estimation of 

individual genotypes (e.g., GWAS) need to estimate and account for this relationship 

between read depth and the probability of observing a heterozygote. Assuming Hardy-

Weinberg equilibrium (HWE), the probability of observing a heterozygote at read depth k is:

P observing het ∣ k = 2q 1 − q τk (1)

where q is the sample allele frequency of the reference base and τk is the probability of 

detecting a heterozygote at read depth k. The expected value of τk is:

τk = 1 − 2 1
2

k
(2)

In other words, one minus the chance that k reads drawn from a heterozygote will either all 

match the ref base or all match the alt base. However, the realized probability of detecting a 

heterozygote may commonly be lower than this expectation and we suggest that τk values be 

estimated from the observed genomic data. For example, depending on the quality of DNA 

samples, amplification during library preparation might skew the balance of ref vs. alt alleles 

at heterozygous sites away from equality (Monnahan et al. 2015). To estimate allele 

frequencies and τk values for our dataset, we performed the following steps: (1) initial 

estimation of allele frequencies, (2) estimation of τk values given the initial allele frequency 

estimates, and (3) re-estimation of allele frequencies given the estimated τk values. We 

estimated q for each SNP by maximizing the likelihood of the observed genomic data and 

assuming independence across individuals:

ln L = Σ j = 1
n ln P data j (3)

where P[dataj] is the probability of the observed data for the j'th individual. This can be 

written as the sum of conditional probabilities of the observed genomic data:

P data j ∣ q = LRRq2 + LRA2q 1 − q + LAA 1 − q 2 (4)

where Lg is the likelihood of the observed read data if the true genotype is g, RR is a 

homozygote for the ref allele, RA is a heterozygote, and AA is a homozygote for the alt 

allele. This approach follows Monnahan et al. (2015), who derived the likelihood of genomic 

data across successive life stages in a selection component analysis. For this initial estimate 

of q, we take Lg values directly from the ‘PL’ field of the sample annotations in the .vcf file. 

For sites with missing data, LRR = LRA = LAA = 1. These genotype likelihoods are 

multiplied by prior genotype probabilities that assume HWE. We maximized the likelihood 

of q using the optimize.brent bounded optimization implemented in SciPy (www.scipy.org).
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Estimation of τk values

The genotype likelihoods (Lg values) from GATK provide information on the most likely 

genotype, according to the sequence data. A heterozygous individual is detected (LRA is 

maximal) with probability τk. A heterozygous individual will be incorrectly detected as one 

of the two homozygotes (e.g., RR homozygote if LRR is maximal) with probability (1 – 

τk)/2. We assume a heterozygote is equally likely to appear as either homozygote. Therefore, 

to estimate τk values we summed the likelihood of the observed data at a given read depth k 
across m SNPs and n individuals, given our maximum likelihood (ML) allele frequency 

estimates (qi):

ln L = Σi = 1
m ln P datai ∣ qi, τk (5)

P datai ∣ qi, τk = qi
2 + qi 1 − qi 1 − τk if LRR is maximal

P datai ∣ qi, τk = 2qi 1 − qi τk if LRA is maximal

P datai ∣ qi, τk = qi 1 − qi 1 − τk + 1 − qi
2 if LAA is maximal

We optimized the likelihood of τk again using optimize.brent implemented in SciPy, and 

then re-estimated allele frequencies (qi') using equation 5, given our ML estimates of τk

values. In practice, these re-optimized allele frequencies were nearly identical (r2=0.999) to 

original allele frequency estimates.

Estimating genetic effects on phenotype

For a given trait and SNP, we sum the log-likelihood of the observed set of genomic and 

phenotypic data across n individuals according to eq. 3. In this case, P[dataj] is the 

probability of the observed genomic and phenotypic data for the j'th individual. This can be 

written as the sum of conditional probabilities of the observed phenotype Z in a given 

genotype, times the genotype probability:

P data j = P Z ∣ RR P RR + P Z ∣ RA P RA + P Z ∣ AA P AA (6)

As before, we set the genotype probabilities P[RR], P[RA], and P[AA] as products of the 

genotype likelihoods (Lg) times the prior genotype probabilities. For the initial genome scan 

where read depth is low, we accounted for our estimated probability of detecting 

heterozygotes: in cases where the most likely genotype was homozygous (LRR or LAA 

maximal), we updated LRA to:
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LRA′ = 1 − τk 2 (7)

We fit a null model (H0) where phenotype is normally distributed and its mean (μ) and 

variance (σ2) do not depend on genotype: P[Z|RR] = P[Z|RA] = P[Z|AA].

P data j ∣ q, μ, σ2 = 1
2σ2π

e

− z − μ 2

2σ2
[LRRq2 + LRA2q(1 − q) + LAA 1 − q 2] (8)

We also fit an alternative model (H1) where mean phenotype depends on genotype according 

to an additive model: ZRR ~ N(μRR, σ2), ZRA ~ N(μRR+a, σ2), and ZAA ~ N(μRR+2a, σ2). 

Here, μRR is the mean phenotype of RR individuals and a is the additive effect of the alt 

allele on mean phenotype.

P data j ∣ q, μRR, σ2, a = 1
2σ2π

e

− z − μRR
2

2σ2
[LRRq2] + 1

2σ2π
e

− z − μRR + a 2

2σ2
[LRA2q(1 − q

)] + 1
2σ2π

e

− z − μRR + 2a 2

2σ2
[LAA 1 − q 2]

(9)

For each site, we compared the likelihood of H1 to H0 with the likelihood ratio test (LRT) 

statistic and tested significance using the chi-square distribution with 1 degree of freedom. 

We performed these calculations on the filtered .vcf file and the phenotypic data using a 

custom Python script that maximizes likelihoods with Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) bounded optimization implemented in SciPy. We estimated false discovery rate 

(FDR) for each site with adjusted p-values (q-values; Benjamini & Hochberg 1995) using 

the qvalue R package (Dabney et al. 2010).

MSG on PCR amplified regions

We selected a set of six P. virgatus SNPs for deep sequencing to corroborate a potential 

association with stamen length in our population sample as an initial test of our approach 

(Table 1). To inform this selection, we leveraged information from a previous study that 

mapped floral trait QTL in a genetic cross between the hummingbird-adapted species P. 
barbatus to its close relative, the bee-adapted species P. neomexicanus (Wessinger et al. 
2014). These two species are closely related to P. virgatus (Wessinger et al. 2016). In the 

Supporting Information S1, we describe our approach to determine whether SNPs in the 
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current study are located near interspecific QTLs for stamen length. We chose two SNPs 

(SNPs 3 and 5) with high LRT values in both the P. virgatus and the interspecific F2 

populations. We chose two SNPs (SNPs 1 and 2) with high LRT values in the P. virgatus 
population that did not show evidence of association with stamen length in the interspecific 

F2 population (one resides in a genomic interval that was not associated with phenotype in 

the interspecific dataset and the other resides in an interval that was not tagged by any 

interspecific markers). Finally, we chose two SNPs (SNPs 4 and 6) that had moderate LRT 

values in the P. virgatus population and reside in genomic intervals strongly associated with 

stamen length in the interspecific population.

For deep sequencing, we used PCR amplification followed by MSG on the resulting 

amplicons. We used MSG for amplicon sequencing simply because it provides an efficient 

means to barcode individual samples for multiplexed sequencing. In our case, MSG yielded 

nearly full coverage (entire length of targeted amplicons) due to high frequency of the MseI 
cut site. However, other methods for sequencing PCR amplicons could be substituted here. 

We designed PCR primers to amplify a given SNP based on the local surrounding sequence. 

First, we extracted the set of unique reads that map to the P. barbatus scaffolds near a focal 

site (1 kb upstream to 1 kb downstream) from the initial .sam files generated by BWA. We 

then imported these sequences into Geneious (Kearse et al. 2012), assembled sequences near 

a given SNP to create a contiguous sequence for the local region, and designed primers that 

amplified the focal SNP using Primer3 (Untergasser et al. 2012). We used these primers and 

Bullseye polymerase mastermix (Midsci) to amplify the original DNA samples in 5 

microliter reactions for 35 cycles with 56˚C annealing temperature. Amplicons of the six 

SNP regions for a given individual were pooled in approximate equal DNA concentrations 

(based on concentration estimates from eight PCR reactions for each primer set). We 

performed MSG on these samples using MseI as previously described, except we did not 

perform a size selection step. We sequenced the combined library on approximately 1/5 of a 

single 150 bp single end Illumina HiSeq rapid run lane.

We repeated our variant calling pipeline on the resulting .fastq files without down sampling 

(GATK –dt NONE flag). We filtered the .vcf file to include sites with (1) mapping quality 

score > 20, (2) genotype calls in at least 200 individuals, (3) exactly two alleles segregating 

in the population, and (4) median read depth of at least 400 reads. Inspection of the 

filtered .vcf file revealed that we recovered five of the six targeted SNPs. The genomic 

region near the remaining SNP (SNP 6) was not sequenced at high depth and therefore was 

excluded from downstream analyses. Incidentally, this amplicon did not amplify as strongly 

as the other five during PCR and perhaps experienced non-specific amplification.

For each focal SNP and closely linked sites, we calculated the likelihood of an association 

between genotype and phenotype as described above in eqs. 6, 8–9, taking genotype 

likelihoods directly from GATK. For SNPs showing an association with phenotype (p-value 

< 0.05), we calculated the proportion of the total phenotypic variance in the population 

explained by the SNP (heritability due to variation at the SNP) as:
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h SNP
2 =

2q 1 − q a2

VP
(10)

where q is the maximum likelihood estimate (MLE) for allele frequency, â is the MLE for 

the additive effect, and VP is the phenotypic variance. This estimated heritability is inflated 

by estimation error of â (Luo et al. 2003; Monnahan & Kelly 2015).

Simulations

We performed simulations to examine the power of our pipeline to detect a locus with 

quantitative effects on phenotype. For each simulation, we drew the following three sets of 

random variables: (1) a population sample of N ‘true’ genotypes, given an allele frequency q 
and assuming HWE expected genotype frequencies, (2) read depth (k) for each of N 
individuals, assuming read depth per site per individual follows a Poisson distribution with 

mean and variance equal to λ, and (3) phenotypic values for each of N individuals in a 

sample. To simulate a site with no effect on phenotype, we drew phenotypic values for each 

sample in the population from a normal distribution with mean = μ and variance = VP. To 

simulate a site with effects on phenotype, we drew phenotypic values from genotype-

specific normal distributions with variance = VR and genotype-specific means (RR: μRR, 

RA: μRA + a, AA: μRR + 2a). Here VR is the residual variance that is not explained by the 

phenotypic effect of the simulated site:

VR = VP − 2q 1 − q a2 (11)

Based on the randomly drawn true genotypes and read depths, we simulated observed 

genotype data for each sample. If the true genotype is homozygous and k > 0, the observed 

genotype is the corresponding homozygote. If the true genotype is heterozygous, the 

observed genotype will be heterozygous with probability equal to the expected value of τk 

(eq. 2), and the probability that the observed genotype is RR or AA is (1 – τk)/2 for each 

case. Based on these observed genotypes and phenotypes, we estimated genetic effects on 

phenotype following the approach used for our empirical data, although here we jointly 

estimated q along with the other parameters and assumed τk follows its expected values (eq. 

2). For each simulated dataset, we performed 10,000 replicate simulations.

We simulated datasets with features matching our empirical dataset to enable a direct 

comparison: N = 291, VP = 2.21 mm2, μ = 21 mm, and λ = 0.838. We simulated a site with 

allele frequency (q) = 0.34 and additive effect (a) = 0.26 mm (similar to that shown by SNP 

5, see Table 1 and Results). To explore the effects of modifying our experimental design, we 

simulated doubling the number of individuals sampled, doubling the average read depth, and 

error-free genotype data for all individuals (e.g., data from a SNP array). To explore the 

ability of our approach to detect loci of varying effect sizes, we simulated a range of ten 

additive effect sizes that corresponded to SNP heritabilities ranging from 0.01 to 0.1 and 

calculated both the false positive rate and the power of our method to detect a true positive.
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Comparison with GEMMA Bayesian Sparse Linear Mixed Model (BSLMM)

We compared SNP-skimming to the BSLMM implemented by GEMMA (Zhou et al. 2013; 

Zhou & Stephens 2012). GEMMA requires genotype information for all individuals, but it 

can take genotypes expressed as continuous genotype scores. We therefore assigned scores 

based on posterior genotype probabilities for all individuals at all sites before running 

GEMMA. We performed these analyses on our empirical dataset as well as a set of 

simulated datasets generated for this comparison. Details of these analyses and simulated 

datasets are found in Supporting Information S4.

Results

Phenotypic data

In the field-sampled P. virgatus population, tube length and stamen length were strongly 

positively correlated (r2 = 0.86; Fig. 1B). Each of these length traits was positively 

correlated with tube width, although the strength of this correlation is about half as strong as 

the correlation between length traits (r2 = 0.44–0.5; Fig 1B). Mean phenotypic values for 

tube length, stamen length, and tube width were 16.58 mm, 21 mm, and 8.8 mm, 

respectively. In the same order, the phenotypic variances were 1.41 mm2, 2.22 mm2, and 

0.53 mm2.

Genome scan for associations with floral traits

MSG on DNA extracted from 291 individuals generated a set of 620,473 filtered SNPs 

sequenced in at least 75 individuals (see methods). The probability of identifying a 

heterozygote in our initial scan depended on read depth. We found a slight bias at low read 

depth against heterozygotes slightly beyond the theoretical expectation, suggesting mild 

PCR bias from the amplification step of MSG library prep (Supporting Information S2). We 

imposed an FDR of 0.10 to declare genome-wide significance for genetic effects on floral 

traits. Only two SNPs showed an FDR < 0.10 for stamen length. No SNPs met this FDR 

threshold for either tube length or tube width.

Deep amplicon sequencing

We successfully amplified and deep sequenced five of the six targeted P. virgatus SNPs 

putatively associated with stamen length. The genomic regions containing these five SNPs 

were each sequenced in an average of 287 individuals with an average median read depth per 

individual of 1094 reads. Overall, three of the five amplified SNPs were significantly 

associated with stamen length (p-value < 0.05; Table 1). Two of these three SNPs were also 

associated with stamen length in the interspecific F2 population (Table 1). SNPs 

significantly associated with phenotype had subtle effects, explaining between 1.5–3.3% of 

the total phenotypic variance (Table 1). One SNP (SNP 3) that was associated with stamen 

length did not show genotype frequencies consistent with HWE. This site contains a large 

(300 bp) indel. This size difference apparently caused preferential amplification of the 

shorter allele in heterozygotes, making heterozygotes appear homozygous. Other SNPs 

sequenced on the ~1000 bp amplicon did show HWE expected frequencies and were also 

significantly associated with stamen length (Fig. 2).
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Two of the five amplified SNPs were not associated with stamen length after deep 

sequencing. One of these (SNP 1) showed a very strong association with phenotype in the 

initial scan, but after deep sequencing nearly all individuals were homozygous for the alt 

allele, even individuals previously assigned as homozygotes for the ref allele in the initial 

scan. The remaining SNP (SNP 4), did not show signs of spurious genotypes.

Simulations of the initial genome-wide scan

We performed simulations to examine the power of our initial scan to detect a site with 

quantitative effects on phenotype. Summary statistics for all simulations are provided in 

Supporting Information S3. We simulated four different experimental designs. For each of 

these, we first simulated a locus with no effect on phenotype to confirm that LRT values 

follow the chi-square distribution with 1 degree of freedom, which validated our use of this 

distribution to assign p-values. We then simulated a locus based on our empirical SNP 5 (h2 

= 0.017, see Table 1). Simulation of an experimental design matching our empirical study 

(291 individuals at ~0.838× read depth) yielded relatively few replicates (~3%) returning 

LRT values greater than 10, an arbitrary but reasonable value for genome-wide significance 

(Fig. 3A). In contrast, simulation of complete and error-free genotype data returned LRT 

values greater than 10 for ~18.5% of replicate simulations, indicating a greater power to 

detect a true association (Fig. 3A). We simulated the effects of doubling the average read 

depth vs. doubling the number of individuals sampled from a population. We found that 

doubling the number of sampled individuals improves our power to detect a true association 

to a greater degree (LRT > 10 for ~8.6% of simulations) compared with doubling the read 

depth (LRT > 10 for 6.7% of simulations) (Fig. 3A). In addition, we found a strong positive 

relationship between LRT value and additive effect: simulation replicates with high LRT 

values had substantially inflated estimated additive effects above the value modeled in the 

simulation (Fig. 3B).

We also simulated a range of effect sizes, assuming an experimental design matching our 

study, and compared the proportion of simulations that return LRT > 10 as an estimate of 

power. Our power to detect a true association increases with effect size (Fig. 3C). Under our 

design, we expect to detect a site explaining 1% of segregating variation only 1.4% of the 

time. This rate increases to roughly 50% for a site explaining 10% of segregating variation 

(Fig. 3C). The false positive rate is negatively related to effect size and is less than 5% for 

simulated SNP heritabilities above 1%. (Fig. 3C). We use the results of these simulations to 

discuss our empirical findings below.

Comparison with GEMMA BSLMM

We compared our SNP-skimming method to the BSLMM implemented in GEMMA. We 

briefly summarize the major results here and full details of the analyses and results are found 

in Supporting Information S4. We first compared these two methods’ abilities to identify 

associations with stamen length in our empirical dataset. Sites identified by GEMMA as 

having measurable effects on phenotype also showed reasonably high LRT values (LRT > 

8). This overlap between the two methods is reassuring and suggests the sites identified by 

GEMMA also display a signal of association using our method. However, the converse is not 

necessarily true: many sites with high LRT values do not show signs of association with 
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phenotype in the GEMMA analysis. For simulated datasets, both methods found that 

simulated causal sites displayed, on average, more evidence for an association with 

phenotype relative to simulated neutral sites, although our method is marginally better at 

detecting causal sites (details found in Supporting Information S4).

Discussion

A two-step approach can detect QTL in natural populations

Adaptation depends on features of segregating genetic polymorphisms including the size of 

allelic effects, pleiotropy, and epistasis. These features scale up to influence trends in 

adaptive evolution across larger taxonomic scales, such as parallel evolution of populations 

or species that show similar patterns of segregating variation (e.g., Hohenlohe et al. 2010; 

Jones et al. 2012). Shallow genome sequence data is now routinely generated for large 

numbers of barcoded individuals. Extending population genomic analyses to consider 

segregating phenotypic or fitness data must account for genotype uncertainty inherent in 

these data (Comeault et al. 2014; Monnahan et al. 2015; Parchman et al. 2012). These 

advances will streamline the identification of loci underpinning additive genetic variation 

and genetic correlations, allowing us to characterize the material basis of standing variation. 

SNP-skimming combines a broad but shallow initial genome scan with focused deep 

sequencing around targeted sites. It is a simple and inexpensive approach to localize trait-

associated genomic variants.

The strength of association in the initial scan predicts significance following deep 
sequencing

Estimates of FDR in the initial scan may be informative predictors of whether sites remain 

significant following deep sequencing. Out of the four SNPs that successfully amplified and 

did not show spurious genotypes after deep sequencing (SNPs 2–5), the three with high 

initial LRT values (SNPs 2, 3, and 5) remained significant following deep sequencing (Table 

1). The FDR for these sites in the initial scan ranged from 0.162–0.245. In contrast, SNP 4 

had a modest LRT values and was not significant after deep sequencing. The FDR for this 

SNP was relatively high (0.706) and perhaps we should not be surprised that this SNP is not 

associated with phenotype. For these four sites, admittedly a small sample size, we see that 

LRT values in the initial scan reliably predict LRT values in the deep sequencing step (for 

sites 2-5: r2 = 0.78, p = 0.022). This suggests the best strategy for success is the most 

obvious one: to choose sites with the highest LRT values in the initial scan for deep 

sequencing. In our case it was not necessary to choose sites based on a priori knowledge of 

the focal trait’s genetic architecture in a related organism. We expect that the success rate of 

our deep sequencing approach would have been greater (i.e., more of the targeted sites 

having significant effects on phenotype) had we simply targeted sites with greatest initial 

LRT values rather than choosing sites based on their overlap with interspecific QTLs. For 

example, we did not choose either of the two sites with FDR < 0.10 because they did not 

overlap with interspecific QTL.
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Effects of sampling in the initial scan over- or underestimate effects on phenotype

GWAS pose an enormous multiple testing challenge and the power to detect causal loci as 

statistically significant depends on effect size, minor allele frequency, and epistasis 

(Marjoram et al. 2014). SNPs with large effect sizes and intermediate allele frequencies are 

more easily detected; however, the allele frequencies of segregating causal loci may be low 

if stabilizing selection has been historically important (Keightley & Eyre-Walker 2010). 

Thus, even with accurate and error-free genotype data, the loci detected in a GWAS scan 

may not be a comprehensive set of those that generate the observed phenotypic variance.

Missing data and genotype uncertainty further winnow the loci identified from a genome 

scan. For quantitative traits, the proportion of total phenotypic variation that is explained by 

a focal SNP may be modest, leaving substantial residual variation unexplained by SNP 

genotype. Due to missing data across individuals, we observe genotype for a random subset 

of individuals at a given site. If we were to repeatedly subsample the population, the 

observed association with phenotype would follow a distribution of LRT values, depending 

on the set of genotyped individuals. Since we often apply a stringent genome-wide threshold 

for significance, we only detect an association if the observed association falls in the tail of 

this distribution. The majority of SNPs with quantitative effects on phenotype will not 

display high LRT values following the initial scan and will not be detected by this SNP-

skimming approach. Only those SNPs genotyped in a subset of individuals that happen to 

maximize an association between genotype and phenotype will have high LRT values after 

the initial scan. In other words, a SNP must be both associated with phenotype and lucky to 

be detected in the first step of our pipeline. Simulations of our initial scan confirm that a site 

with quantitative effects on phenotype will rarely display high LRT values, assuming the 

sample size and average read depth are similar to our dataset. For example, a site explaining 

1.7% of the segregating variation returned LRT > 10 (a reasonable threshold for genome-

wide significance) in only 3.08% of replicate simulations (Fig 3A, Supporting Information 

S3). As the proportion of trait heritability explained by the SNP increases, so does power to 

detect a causal site (Fig. 3C).

Because sites with high LRT values were genotyped in a lucky set of individuals that 

maximize association with phenotype, these sites will display inflated phenotypic effects 

following the initial scan. This phenomenon, termed the winner’s curse, is a well-described 

feature of GWAS studies (Göring et al. 2001). Our simulations clearly demonstrate this 

pattern: LRT values are strongly positively correlated with estimated additive effects (Fig. 

3B). On the other hand, our initial scan underestimated the phenotypic effects of many 

‘unlucky’ sites with true effects on phenotype. With complete genotype data following 

amplicon deep sequencing, the estimated effects of causal loci should regress towards their 

expected value. After amplicon sequencing, loci with true effects on phenotype should show 

reduced (but still significant) effects relative to their estimated effects from the initial scan, 

and linked sites with underestimated effects in the initial sites should become significant.

We observe this predicted pattern for the SNPs targeted for amplicon sequencing: the three 

sites with significant effects on stamen length (SNPs 2, 3, and 5) displayed much higher 

LRT values in the initial scan than they displayed following amplicon sequencing. It is more 

difficult to directly observe SNPs with initially underestimated effects on phenotype become 
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significant after deep sequencing (i.e., it is impossible to target such sites based on the 

results of the initial scan). Yet we found that SNPs in this category were amplified and deep 

sequenced along with targeted sites. For example, a large number of SNPs were amplified 

and sequenced along with SNP 3. If a causal locus is near SNP 3, we expect that sites in 

very close proximity will also show an association with stamen length. Consistent with our 

expectations, several sites in this local vicinity had low LRT values in the initial scan but 

showed significant association with phenotype after deep sequencing across all individuals 

(Fig. 2).

Spurious results at the deep sequencing stage are easily detected

For most targeted SNPs, the deep sequencing stage of our approach obtained nearly 

complete and effectively hard genotype data across our population sample. In many cases, 

the most likely genotype for a given individual changed following deep sequencing. As 

expected, we saw that some individuals that were most likely homozygous in the initial scan 

were inferred as heterozygotes following deep sequencing. For two of the five SNPs that we 

successfully deep sequenced, we saw signs of PCR bias or genotyping failure. One of these 

(SNP 3) was sequenced on an amplicon that showed a large (~300 bp) indel polymorphism. 

Amplification was biased towards the shorter allele such that heterozygotes in the initial 

scan appeared homozygous for the shorter allele after deep sequencing. Such incidental 

amplification of indel polymorphisms is easily detected by running test PCRs on gel and 

should be avoided for best results.

The other site with signs of bias at the deep sequencing stage (SNP 1), apparently converted 

nearly all individuals in the sample to homozygotes for the alt allele following deep 

sequencing – even individuals that previously were most likely homozygous for the ref allele 

in the initial scan. This data appears spurious and suggests marker failure, perhaps related to 

PCR primer design. Although this type of event is not detectable until after amplicon 

sequencing, these anomalies can be identified and culled from analyses. Future studies may 

find that alternative methods of sequencing a targeted region are less prone to introducing 

error at the deep sequencing stage of this pipeline.

Simulations suggest increased sample size yields larger returns than increased 
sequencing depth

For a given sequencing effort, there is a tradeoff between the number of sampled individuals 

and the read depth per site per individual. In simulations of our genome-wide scan, we 

compared the effects of doubling the number of sampled individuals vs. doubling the 

average read depth on the power to detect loci with quantitative effects. We found that 

doubling the number of sampled individuals and doubling the read depth each increased the 

proportion of replicates with high LRT values, although the effect is more pronounced when 

we doubled the individuals (Fig. 3A). Here we modeled a dataset similar to our empirical 

dataset and found that doubling the number of sampled individuals increased the number of 

replicates returning an LRT > 10 nearly three-fold. Doubling the average read depth yielded 

a more modest two-fold increase in the number of replicates with LRT > 10. This suggests 

that allocation of sequencing effort using our approach should maximize the number of 
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sampled individuals. More importantly, this result justifies our entire approach of sequencing 

a large multiplexed population at shallow read depth to identify causal loci.

This conclusion is consistent with work by Buerkle and Gompert (2013) showing that 

estimates of population allele frequency are more accurate with higher numbers of 

individuals, at the expense of sequencing depth. This may be an emerging theme in 

population genomics – increasing the number of sampled individuals provides a greater 

return on parameter estimation compared with increasing read depth. To explain why, 

consider that in our empirical dataset and our simulations, average read depth was 0.838 

(almost 1). The inclusion of a single sequence read from one additional individual at a focal 

SNP has a large effect on the genotype likelihoods at this site: it can at least rule out one of 

the homozygous genotypes. The inclusion of a second read for this individual has 

diminishing returns on genotype likelihoods: if the individual is heterozygous, the new 

sequencing read has a 50% probability to identify an individual as heterozygous, but apart 

from this situation, the additional sequencing read does not have as large additional effects 

on genotype likelihoods compared with the initial sequencing read.

Interpretation of results will depend on the quality of the reference genome

SNP-skimming does require a reference genome. As demonstrated here, a very rough draft 

genome assembled into ~18k scaffolds can be sufficient to search for loci generating 

phenotypic variation. For this purpose one could use an even more fragmented assembly, 

although the ability to detect SNPs will of course be limited if the assembly does not cover 

the majority of the genome. However, researchers aiming to make broader statements on the 

genetic architecture of segregating variation would benefit from a reference genome 

assembled into chromosomes. In our case, we cannot estimate how many causal loci are 

represented by our collection of SNPs with high LRT values. With a more complete genome 

assembly, one could collapse nearby sites with high LRT values into putative causal loci to 

begin to characterize the number of sites underlying segregating variation and search for 

responsible genes.

Floral variation in the P. virgatus population

Penstemon has experienced at least 12 evolutionary transitions from bee-adapted to 

hummingbird-adapted flowers (Wessinger et al. 2016; Wilson et al. 2007; Wolfe et al. 2006). 

This remarkable display of parallelism in floral trait variation may be facilitated by alleles 

segregating within ancestral bee-adapted populations that permit rapid response to natural 

selection favoring hummingbird pollination. Despite the modest power of our QTL 

skimming approach, we identified three SNPs that putatively explain quantitative variation 

in the bee-adapted P. virgatus population sample, indicating there are likely many loci with 

subtle quantitative effects on floral dimension segregating within this population. The three 

SNPs did not necessarily overlap with genomic intervals containing interspecific QTLs, 

suggesting variation in stamen length has a broad genomic basis. Thus, adaptive change in 

stamen length is unlikely to be limited by available segregating variation. Furthermore, we 

expect the genomic basis of adaptive transitions to longer stamen filaments would be 

idiosyncratic across separate origins of hummingbird pollination. To validate potential 
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associations between candidate sites and phenotype, we are currently propagating a second, 

independent sample of plants from the same P. virgatus population.

Floral tube length and stamen filament length were tightly correlated across sampled 

individuals in the P. virgatus population. This finding supports the hypothesis that 

coordinated increase in floral tube length and stamen length associated with transitions to 

hummingbird pollination may be aided by preexisting correlations between these traits due 

to tight linkage or pleiotropic loci (Wessinger et al. 2014). In our previous interspecific 

cross, floral tube width was not significantly correlated with tube length and stamen filament 

length (Wessinger et al. 2014), suggesting adaptation to hummingbird pollination in the 

lineage leading to P. barbatus has involved loci specific to length vs. width traits.

Floral tube width was positively correlated with the lengths of the tube and stamen filaments 

in the P. virgatus population, although the strength of this correlation is much weaker than 

the correlation between the two length traits. Sites that putatively affect stamen length also 

affect floral tube length for two of the three cases, but do not affect floral width (Supporting 

Information S5). Together, these studies suggest that, although length and width traits can be 

positively correlated in bee-adapted Penstemon species, transitions to hummingbird 

pollination utilize variation that is independent of this correlation.

Conclusions

Despite the challenges inherent to within-population QTL mapping, our two-step approach 

is capable of detecting loci with subtle effects on quantitative traits. Our approach merits 

further validation but is likely broadly useful for researchers embarking on an initial search 

for loci generating segregating variation within a natural population. One could elaborate our 

method to include additional predictors of phenotype. For example, researchers studying 

plastic traits in heterogeneous environments could choose to include an environmental 

covariate. This initial study illustrates challenges at both the shallow and deep stages that 

should be considered for future use of this approach. These challenges include sampling 

effects in the initial scan that limit our power to detect associations with phenotype and 

biased or spurious results from deep sequencing PCR amplicons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Josh Stevens for assisting field data collection. This manuscript was greatly improved by comments from 
members of the University of Kansas EEB Genetics discussion group. We acknowledge funding from the National 
Institutes of Health (F32 GM110988-3 to CAW and R01 GM073990-02 to JKK) and the National Science 
Foundation (DEB-1542402 to LCH, MDR, and CAW). This research was made possible in part by services of the 
KU Genome Sequencing Core, which is supported by the National Institute of General Medical Sciences (NIGMS) 
of the NIH under award P20GM103638.

References

Andolfatto P, Davison D, Erezyilmaz D, et al. (2011) Multiplexed shotgun genotyping for rapid and 
efficient genetic mapping. Genome research 21, 610–617. [PubMed: 21233398] 

Wessinger et al. Page 17

Mol Ecol Resour. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of 
RADseq for ecological and evolutionary genomics. Nature Reviews Genetics 17, 81.

Aulchenko YS, Ripke S, Isaacs A, Van Duijn CM (2007) GenABEL: an R library for genome-wide 
association analysis. Bioinformatics 23, 1294–1296. [PubMed: 17384015] 

Bassham S, Catchen J, Lescak E, von Hippel FA, Cresko WA (2017) Sweeping genomic remodeling 
through repeated selection of alternatively adapted haplotypes occurs in the first decades after 
marine stickleback colonize new freshwater ponds. bioRxiv, 191627.

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289–
300.

Bradbury PJ, Zhang Z, Kroon DE, et al. (2007) TASSEL: software for association mapping of complex 
traits in diverse samples. Bioinformatics 23, 2633–2635. [PubMed: 17586829] 

Buerkle CA, Gompert Z (2013) Population genomics based on low coverage sequencing: how low 
should we go? Molecular Ecology 22, 3028–3035. [PubMed: 23174005] 

Catchen JM, Hohenlohe PA, Bernatchez L, et al. (2017) Unbroken: RADseq remains a powerful tool 
for understanding the genetics of adaptation in natural populations. Molecular ecology resources 17, 
362–365. [PubMed: 28319339] 

Comeault AA, Soria-Carrasco V, Gompert Z, et al. (2014) Genome-wide association mapping of 
phenotypic traits subject to a range of intensities of natural selection in Timema cristinae. The 
American Naturalist 183, 711–727.

Dabney A, Storey JD, Warnes G (2010) qvalue: Q-value estimation for false discovery rate control. R 
package version 1.

Feder AF, Petrov DA, Bergland AO (2012) LDx: estimation of linkage disequilibrium from high-
throughput pooled resequencing data. PloS one 7, e48588. [PubMed: 23152785] 

Göring HH, Terwilliger JD, Blangero J (2001) Large upward bias in estimation of locus-specific 
effects from genomewide scans. The American Journal of Human Genetics 69, 1357–1369. 
[PubMed: 11593451] 

Hoban S, Kelley JL, Lotterhos KE, et al. (2016) Finding the genomic basis of local adaptation: pitfalls, 
practical solutions, and future directions. The American Naturalist 188, 379–397.

Hohenlohe PA, Bassham S, Etter PD, et al. (2010) Population genomics of parallel adaptation in 
threespine stickleback using sequenced RAD tags. PLoS genetics 6, e1000862. [PubMed: 
20195501] 

Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the 
next generation of genome-wide association studies. PLoS genetics 5, e1000529. [PubMed: 
19543373] 

Jarquín D, Kocak K, Posadas L, et al. (2014) Genotyping by sequencing for genomic prediction in a 
soybean breeding population. Bmc Genomics 15, 740. [PubMed: 25174348] 

Johnston SE, McEWAN J, Pickering NK, et al. (2011) Genome-wide association mapping identifies 
the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep 
population. Molecular Ecology 20, 2555–2566. [PubMed: 21651634] 

Jones FC, Grabherr MG, Chan YF, et al. (2012) The genomic basis of adaptive evolution in threespine 
sticklebacks. Nature 484, 55. [PubMed: 22481358] 

Kang HM, Sul JH, Zaitlen NA, et al. (2010) Variance component model to account for sample 
structure in genome-wide association studies. Nature genetics 42, 348. [PubMed: 20208533] 

Kearse M, Moir R, Wilson A, et al. (2012) Geneious Basic: an integrated and extendable desktop 
software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–
1649. [PubMed: 22543367] 

Keightley PD, Eyre-Walker A (2010) What can we learn about the distribution of fitness effects of new 
mutations from DNA sequence data? Philosophical Transactions of the Royal Society B: 
Biological Sciences 365, 1187–1193.

Knief U, Schielzeth H, Backström N, et al. (2017) Association mapping of morphological traits in wild 
and captive zebra finches: reliable within, but not between populations. Molecular Ecology 26, 
1285–1305. [PubMed: 28100011] 

Wessinger et al. Page 18

Mol Ecol Resour. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. 
Bioinformatics 25, 1754–1760. [PubMed: 19451168] 

Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype imputation. Annual review of genomics and 
human genetics 10, 387–406.

Luo L, Mao Y, Xu S (2003) Correcting the bias in estimation of genetic variances contributed by 
individual QTL. Genetica 119, 107–114. [PubMed: 14620950] 

Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nature 
Reviews Genetics 11, 499.

Marjoram P, Zubair A, Nuzhdin S (2014) Post-GWAS: where next? More samples, more SNPs or more 
biology? Heredity 112, 79. [PubMed: 23759726] 

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. 
EMBnet. journal 17, pp. 10–12.

McKenna A, Hanna M, Banks E, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework 
for analyzing next-generation DNA sequencing data. Genome research 20, 1297–1303. [PubMed: 
20644199] 

Monnahan PJ, Colicchio J, Kelly JK (2015) A genomic selection component analysis characterizes 
migration-selection balance. Evolution 69, 1713–1727. [PubMed: 26082096] 

Monnahan PJ, Kelly JK (2015) Epistasis is a major determinant of the additive genetic variance in 
Mimulus guttatus. PLoS genetics 11, e1005201. [PubMed: 25946702] 

Parchman TL, Gompert Z, Mudge J, et al. (2012) Genome-wide association genetics of an adaptive 
trait in lodgepole pine. Molecular Ecology 21, 2991–3005. [PubMed: 22404645] 

Pfeifer SP, Laurent S, Sousa VC, et al. (2018) The evolutionary history of Nebraska deer mice: local 
adaptation in the face of strong gene flow. Molecular biology and evolution.

Purcell S, Neale B, Todd-Brown K, et al. (2007) PLINK: a tool set for whole-genome association and 
population-based linkage analyses. The American Journal of Human Genetics 81, 559–575. 
[PubMed: 17701901] 

Rönnegård L, McFarlane SE, Husby A, et al. (2016) Increasing the power of genome wide association 
studies in natural populations using repeated measures–evaluation and implementation. Methods in 
Ecology and Evolution 7, 792–799. [PubMed: 27478587] 

Santure AW, Cauwer I, Robinson MR, et al. (2013) Genomic dissection of variation in clutch size and 
egg mass in a wild great tit (Parus major) population. Molecular Ecology 22, 3949–3962. 
[PubMed: 23889544] 

Schielzeth H, Husby A (2014) Challenges and prospects in genome-wide quantitative trait loci 
mapping of standing genetic variation in natural populations. Annals of the New York Academy of 
Sciences 1320, 35–57. [PubMed: 24689944] 

Schlötterer C, Tobler R, Kofler R, Nolte V (2014) Sequencing pools of individuals—mining genome-
wide polymorphism data without big funding. Nature Reviews Genetics 15, 749.

Silva C, McFarlane SE, Hagen IJ, et al. (2017) Insights into the genetic architecture of morphological 
traits in two passerine bird species. Heredity 119, 197. [PubMed: 28613280] 

Therkildsen NO, Palumbi SR (2017) Practical low-coverage genomewide sequencing of hundreds of 
individually barcoded samples for population and evolutionary genomics in nonmodel species. 
Molecular ecology resources 17, 194–208. [PubMed: 27496322] 

Untergasser A, Cutcutache I, Koressaar T, et al. (2012) Primer3—new capabilities and interfaces. 
Nucleic acids research 40, e115–e115. [PubMed: 22730293] 

Wessinger CA, Freeman CC, Mort ME, Rausher MD, Hileman LC (2016) Multiplexed shotgun 
genotyping resolves species relationships within the North American genus Penstemon. American 
Journal of Botany 103, 912–922. [PubMed: 27208359] 

Wessinger CA, Hileman LC, Rausher MD (2014) Identification of major quantitative trait loci 
underlying floral pollination syndrome divergence in Penstemon. Phil. Trans. R. Soc. B 369, 
20130349. [PubMed: 24958923] 

Wilson P, Wolfe AD, Armbruster WS, Thomson JD (2007) Constrained lability in floral evolution: 
counting convergent origins of hummingbird pollination in Penstemon and Keckiella. New 
Phytologist 176, 883–890. [PubMed: 17897322] 

Wessinger et al. Page 19

Mol Ecol Resour. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wolfe AD, Randle CP, Datwyler SL, et al. (2006) Phylogeny, taxonomic affinities, and biogeography 
of Penstemon (Plantaginaceae) based on ITS and cpDNA sequence data. American Journal of 
Botany 93, 1699–1713. [PubMed: 21642115] 

Zhou X, Carbonetto P, Stephens M (2013) Polygenic modeling with Bayesian sparse linear mixed 
models. PLoS genetics 9, e1003264. [PubMed: 23408905] 

Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. 
Nature genetics 44, 821. [PubMed: 22706312] 

Wessinger et al. Page 20

Mol Ecol Resour. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 1. 
A: Representative individuals from the P. virgatus study population. B: scatterplots of 

pairwise floral dimension traits. Each dot is an individual plant and red lines show linear 

regression. Pearson’s correlations are reported above the diagonal.

Wessinger et al. Page 21

Mol Ecol Resour. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 2. 
Likelihood ratio test (LRT) of SNPs across the region surrounding SNP 3 in the initial 

genome scan (orange) vs. deep sequencing amplicons (red). Arrow indicates SNP 3.
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Fig. 3. 
Estimated genetic effects from simulations of our genome-wide scan. Parameter values are 

given in text. A: Density plot showing distributions of likelihood ratio test statistic (LRT) 

values for 10,000 simulations of each of four modeled datasets: model of our empirical 

dataset (blue), doubled average read depth (green), doubled sampled individuals (orange), 

complete and error-free genotype data (red). B: Scatterplot showing the relationship between 

estimated additive effect (â) and LRT for each of 10,000 replicate simulations of our 

empirical dataset. Sites with LRT > 10 are in red and the simulated additive effect size (0.29 

mm) is indicated with dashed line. C: Rate that a true positive is detected (black) and false 

positive rate (red) for SNP heritabilities ranging from 0.01–0.10.
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Table 1.

Effects of SNPs targeted and deep sequenced on stamen filament length.

SNP initial scan LRT initial scan FDR F2 window LRT amplicon q amplicon LRT amplicon p-value amplicon â (mm) amplicon h2
SNP

1 22.51 0.185 N/A 0.027 0.18 0.67

2 17.07 0.245 4.558 0.53 4.44 0.035 0.26 0.015

3 22.51 0.162 23.54 0.68 6.09 0.014 0.23 0.033

4 9.01 0.706 24.27 0.75 1.27 0.26

5 22.65 0.201 23.54 0.34 5.18 0.02 0.29 0.017

6 8.99 0.707 22.89

â: maximum likelihood (ML) estimate for additive effect, FDR: false discovery rate, h2SNP: percent of total phenotypic variation explained by 

variation at the SNP, LRT: likelihood ratio test statistic, q: ML estimate for allele frequency of reference allele.
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