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Abstract

We studied how lagged linear regression can be used to detect the physiologic effects of drugs 

from data in the electronic health record (EHR). We systematically examined the effect of 

methodological variations ((i) time series construction, (ii) temporal parameterization, (iii) intra-

subject normalization, (iv) differencing (lagged rates of change achieved by taking differences 

between consecutive measurements), (v) explanatory variables, and (vi) regression models) on 

performance of lagged linear methods in this context. We generated two gold standards (one 

knowledge-base derived, one expert-curated) for expected pairwise relationships between 7 drugs 

and 4 labs, and evaluated how the 64 unique combinations of methodological perturbations 

reproduce the gold standards. Our 28 cohorts included patients in the Columbia University 

Medical Center/NewYork-Presbyterian Hospital clinical database, and ranged from 2,820 to 

79,514 patients with between 8 and 209 average time points per patient. The most accurate 

methods achieved AUROC of 0.794 for knowledge-base derived gold standard (95%CI [0.741, 

0.847]) and 0.705 for expert-curated gold standard (95% CI [0.629, 0.781]). We observed a mean 

AUROC of 0.633 (95%CI [0.610, 0.657], expert-curated gold standard) across all methods that re-

parameterize time according to sequence and use either a joint autoregressive model with time-

series differencing or an independent lag model without differencing. The complement of this set 

of methods achieved a mean AUROC close to 0.5, indicating the importance of these choices. We 

conclude that time-series analysis of EHR data will likely rely on some of the beneficial pre-

processing and modeling methodologies identified, and will certainly benefit from continued 

careful analysis of methodological perturbations. This study found that methodological variations, 

such as pre-processing and representations, have a large effect on results, exposing the importance 

of thoroughly evaluating these components when comparing machine-learning methods.
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INTRODUCTION

Widespread adoption of electronic health records (EHRs) over the past 30 years has created 

a rich resource of observational health data, and research communities continue to dedicate 

themselves to leveraging these data to improve clinical care and knowledge [1] EHR-based 

observational research enables new discoveries that are nearly impossible to achieve using 

traditional experimental methods, and encourages collaborative, open science [2]. However, 

in order to properly leverage EHR data in observational studies, we must address the special 

properties of EHR data by adapting and re-inventing existing statistical methods. Here we 

formulate how to use lagged linear vector regression with EHR data, using interactions 

between medication administration and laboratory measurements as our clinical context.

Using EHR data to tackle the identification and characterization of the physiologic effects of 

drugs is a substantial challenge. Although most drugs have known mechanisms of intended 

action, the full diversity of their myriad effects on biological function is poorly understood 

and impractical to study experimentally. Such an understanding is important in the context 

of adverse effects, where drugs induce unexpectedly harmful consequences, as well as for 

uncovering beneficial effects not detected in small, controlled clinical trials.

There exist data-driven solutions for studying drugs and their physiologic effects, but 

challenges remain for uncovering their true complexity. Traditional epidemiological 

approaches are most successful for identifying relatively simple trends (e.g. does condition 

X occur after the first administration of drug Y), and progress has been made in 

automatically detecting adverse drug effects [3] using structured clinical databases [4], 

clinical notes [5], [6], and online health forums [7]. Recent work has focused on scaling 

these methods to massive data sets [8] and incorporating all available drug and outcome data 

[9]. Yet finer temporal structure is often desired in order to better understand and predict 

physiologic treatment responses.
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Computational methods exist for uncovering detailed temporal relationships between drugs 

and outcomes in EHR data, and recent advances have been made in machine-learning 

approaches to phenotyping [10]–[12], pattern discovery [13]–[15], temporal abstraction over 

intervals [16], [17], and dynamic Bayesian networks [18]. However, these advances typically 

highlight one or two approaches at a time, and do not rigorously justify or study 

methodological decisions that may be inconsequential or vital to a method’s success. In 

addition, many of these approaches rely on assumptions of stationarity that are frequently 

broken by clinical data [19], [20], or do not account for health care process effects.

Hripcsak et al. [21], [22] have demonstrated that time-series methods applied to EHR data 

can identify meaningful, high-fidelity [23] trends that relate drugs and physiologic 

processes. However, standard time-series analysis tools rely on assumptions like stationarity 

and, to a lesser extent, regular sampling frequencies, which are generally absent from EHR. 

We have shown that temporal re-parameterizations (e.g. indexing events by their sequence, 

rather than their clock-time) can overcome non-stationarity in some clinical contexts, likely 

because physicians sample at frequencies proportional to a patient’s variance [24]. We have 

also demonstrated efficacy of various other pre-processing and modeling approaches 

improving time series analysis results in EHR studies: for example, intra-patient 

normalization can filter out inter-patient effects [25], [26], and adding contextual variables 

(e.g. inpatient admission events) can address health care process effects [26]. We 

nevertheless lack an understanding of how such specific modeling choices—performed 

alone or in combination—impact inference quality and predictive performance within a 

lagged linear paradigm for analyzing EHR data.

We apply two specific perturbations to each of the following six important steps in time-

series modeling of EHR data: (i) time series construction (i.e. the process for converting raw 

data into a numerical time series representation) [25], [27], comparing with and without a 

binning window; (ii) temporal parameterization [24] comparing parameterizing by 

measurement sequence and by clock-time; (iii) intra-subject normalization [25], [27], 

comparing with and without; (iv) differencing (lagged rates of change achieved by taking 

differences between consecutive measurements) [26], comparing with and without; (v) 

explanatory variables [26], comparing with and without an inpatient admission variable; and 

(vi) regression models, comparing joint autoregressive and independent lag models.

Here, we systematically evaluate these methodological perturbations for their efficacy in 

uncovering known physiologic effects of each of 7 drugs. We do this by considering a 

combinatorial set of 7 drug and 4 laboratory measurement conditions, and compute a 

bootstrapped estimate of predictive performance with respect to gold standard expectations 

for each of the 28 pair-wise relationships under each of 64 (26) methodological variations. In 

this way, we probe for modeling choices that provide statistically meaningful improvements 

to detecting physiologic drug effects. Furthermore, we obtain a more reliable estimate for 

the ability of well-tuned lagged linear methods to predict physiologic drug effects.
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MATERIALS AND METHODS

Cohort Criteria

The 30-year-old clinical data warehouse at NewYork-Presbyterian Hospital, which contains 

electronic health records for over 5 million patients, was used to examine pairwise 

relationships between drug order records and laboratory measurements. Our clinical expert 

identified seven commonly administered drugs with at least one known physiologic effect 

that can be captured by commonly administered blood laboratory measurements. In 

particular, they were initially interested in observing: 1) simvastatin causing rhabdomyolysis 

(with total creatine kinase as a proxy), 2) amphotericin B causing acute renal failure (with 

potassium and creatinine as proxies), 3) warfarin causing gastrointestinal bleeding (with 

hemoglobin as a proxy), 4) ibuprofen causing gastrointestinal bleeding and renal failure 

(with hemoglobin and creatinine as proxies, respectively), 5) spironolactone causing 

hyperkalemia (high potassium), 6) furosemide causing electrolyte and volume changes via 

potassium, hemoglobin, and creatinine, and 7) allopurinol causing anemia (with hemoglobin 

as a proxy).

In order to broaden our set of hypotheses, we created cohorts for all 28 pairwise 

combinations of the 7 drugs (amphotericin B, simvastatin, warfarin, spironolactone, 

ibuprofen, furosemide, allopurinol) and the 4 laboratory measurements (total creatine kinase, 

creatinine, potassium, hemoglobin) (descriptions are listed in Supplementary Table 2). For 

each drug-lab pair we identified a cohort of patients that met the following criteria: 1) at 

least 2 of the laboratory measurements of interest on record, 2) at least 1 order for the drug 

of interest, and 3) more than 30 combined data points between laboratory measurements of 

interest and total drug orders for any drug. We collected the entire drug-order history, the 

entire history of laboratory measurements of interest, and entire history of inpatient 

admissions for each included patient (for use as optional contextual variables). These 

selection criteria returned between 2,820 and 79,514 patients for the 28 cohorts, with 

between 8 and 209 average time points per patient, and between 78,624 and 6,107,601 total 

time points overall.

Building a time series with clinical data

We convert binary inputs to continuous values as follows. We constructed a time series of 

drug values by setting all drug-orders of interest to 1, and all orders of other drugs to 0 [25], 

and constructed a time series for contextual variables (in this case, inpatient admission) by 

setting the event to 1, and setting a 0 at 24 hours before and after that event [26]. To simplify 

our analysis, we treated all drug orders identically, without regard to repeated 

administrations or dosage quantities.

Since measurements were sparse and rarely aligned, we interpolated each time series (see 

Figure 1 for a graphical depiction). For every time point where there was a concept (lab, 

drug, or inpatient admission), the values of each other variable at that time point were 

interpolated. This interpolation was computed as the clock-time weighted mean of the 

preceding and succeeding value of each respective variable. Weighting our interpolation by 

clock-time allows an estimated lab value at the time of a drug order to be closest to the 
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nearest lab value, and takes into account the trend of the lab near that time. This was 

performed at each time-point by weighting the nearest two bordering concept values 

according to their temporal distance from the interpolated time-point. For example, at the 

time of an ibuprofen administration, we may wish to compute an interpolated creatinine 

level. To do this, we use the most recent and next upcoming lab measurements, and average 

the two of them, weighted by their temporal distance from the ibuprofen administration 

time. Ultimately, all concepts, whether from categorical or real-valued sources, took on 

continuous values that were paired at each time point. For a more complete description of 

how we construct a multivariate time series from clinical data, see our previous work [25], 

[26].

Methodological variations for lagged linear regression with clinical data

In order to evaluate time series methods for uncovering physiologic drug effects, we focused 

on lagged linear regression and performed 64 (26) perturbations of the standard 

methodology. The data we use are nonstandard, biased by the health care process, non-

stationary, irregularly measured, and missing not at random, requiring methodological 

explorations to understand how to cope with irregularities of EHR data [24], [28]–[32]. We 

consider temporal parameterization, time series window construction, intra-subject 

normalization, differencing, inclusion of other variables (e.g. related to health care process), 

and choices in how regression models are computed.

Temporal parameterization—Previous studies have shown that, in some clinical 

settings, indexing a clinical time series by its sequence order can have significant advantages 

over traditional clock-time [24]; note that this is not likely the case in settings with random 

or uniform sampling, such as intensive care unit monitoring. To test this, we indexed our 

lagged analysis with respect to both real-time and sequence-time. Clock-time was converted 

to sequence-time by setting all time intervals between interpolated, pre-processed values to 

unit 1 length, making all times ordered integers with no missing times. For further details on 

their implementation, see our previous descriptions [24], [26].

Binning and windowing—In signal processing, window functions are often used to 

extract a smoothed or filtered segment of a time series near a particular time point. They are 

typically non-negative and smooth over a finite interval; examples include a constant over a 

rectangle, a triangle, and a Gaussian window. The right choice of window function can 

remove bias from a signal, and can improve results of cross-correlation analysis. However, 

choosing appropriate windows is challenging and problem-dependent, and improper choices 

can lead to spurious signals, aliasing, and other spectral leakage pathologies [33]–[36].

We hypothesize a particular type of bias that we introduce in our timeline construction 

methodology, and attempt to remove it with a simple window function, a maximum function 

over a 24hr width on the drug time series, which we refer to as “binning”. The heuristics we 

have used previously [25] cause drug signals to diminish when a drug of interest is 

consistently ordered between two other drugs. Ideally, the drug timeline should retain mass 

for as long as a patient is consistently taking a drug. We attempted to remove this bias by 
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setting all drugs within 12 hours of the drug of interest to 1. It should be clear that this 

process is equivalent to applying a fixed-width window equipped with the max-function.

Regression Models—We considered lags from 1–30 days when using real-time, and 1–

30 indices when using sequence time. We studied two variations of lagged linear regression

—univariate (i.e. lags estimated one at a time, independently) and multivariable (i.e. lags 

estimated jointly). Independent, univariate estimation provides a simple model similar to 

lagged correlation that separately relates each lagged time-point of each lagged variable to 

the target response variable; joint, multivariable estimation is an autoregression (specifically, 

an ARX model) and computes each lagged coefficient conditional on the other estimates, 

balancing the shared information across lags and thus bringing out more subtle details of 

each lag. First, we considered independent estimation of lagged drug coefficients, βτ, from 

the following model, where yt is the lab value (i.e., the outcome of interest) at time t, xt is 

the drug value at time t, and τ is the lag time (for τ=1:30):

yt = cτ + βτxt − τ + ετ

Second, we considered joint autoregressive estimation of lagged drug coefficients,βτ, by the 

following form (L=30):

yt = c + ∑
τ = 1

L
βτxt − τ + ∑

τ = 1

L
ατyt − τ + ε

This form generalizes to an arbitrary number of other lagged explanatory variables, ui 

(which can include y), as:

yt = c + ∑
τ = 1

L
βτxt − τ + ∑

i = 1

N
∑

τ = 1

L
ωτ

i ut − τ
i + ε

Differencing—In time series analysis, pre-processing steps, like taking differences 

between consecutive measurements, are often performed to de-correlate lagged variables 

[37]. More formally, a differencing operator can be applied to resolve non-stationarity that 

results from a unit root in the characteristic equation of an autoregressive stochastic process

—the presence of a unit root can be identified with statistical tests, like Dickey-Fuller [38], 

and removed by iterative differencing [39]. When unit roots remain, ordinary least squares 

estimation of autoregression coefficients has been shown to fail [40] and non-stationarity 

persists. The simplest example is the case of a random walk, in which each position is highly 

correlated with the previous positions. By taking the differences between consecutive steps 

of a random walk, these correlations are removed and the statistics of the signal can be more 

easily recovered. Similar effects can be seen in clinical data, where treatments often drive 

physiologic change. Levine et al. [26] demonstrated that taking differences is an important 

step in multivariable lagged regression with clinical data; here, we tested the value of 

differencing in additional clinical and methodological contexts.
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Intra-patient normalization—Previous work demonstrated that intra-patient 

normalization is an important step when extracting correct physiologic drug effects using 

lagged correlation [25]. In order to investigate the importance of removing inter-patient 

effects in different methodological contexts, we included the option to normalize each 

patient’s time series by subtracting their mean and dividing by their standard deviation. 

More sophisticated schemes for approaching this problem exist (e.g. Box Cox transform 

[41] or other power transforms), but we wished to first examine a simpler method. It is also 

important to note that the univariate lagged regression coefficient (i.e. AR-1) on normalized 

(zero mean, unit variance) time series is identical to the coefficient from lagged correlation. 

Thus, as various pre-processing and analytic steps are combined, the resulting method often 

devolves into a specially named sub-class of methods.

Including context variables—In order to account for health care process effects and 

biases, we often wish to include potential confounding variables in the model. Levine et al. 

[26] found that including inpatient admission events as autoregressive variables in a 

multivariable multi-lag model (i.e. vector autoregression [37], [42]) attenuated some 

confounded physiologic signals. We evaluated the same approach here, and introduced the 

context variable z to correct lagged drug coefficients, βτ:

yt = c + ∑
τ = 1

L
βτxt − τ + ∑

τ = 1

L
ατyt − τ + ∑

τ = 1

L
γτzt − τ + ε

Gold Standard Creation

In order to evaluate computationally determined interactions between each drug-lab pair, we 

created two separate, but related gold standards for whether a given drug is expected to 

increase, decrease, or have no effect on a given lab: 1) a knowledge-base derived gold 
standard that was created by synthesizing existing medical literature and knowledge bases—

this represents information that could, in theory, be obtained automatically, and 2) a clinical 
expert curated gold standard, for which the knowledge-base derived gold standard was 

reviewed and edited by a clinical expert. In table 1, we indicate whether a given drug is 

expected to increase, decrease, or have no effect on a given lab (denoted as 1, −1, 0, 

respectively), according to the two gold standards (68% total agreement, Cohen’s 

Kappa=0.53, 95% CI [0.27–0.78]). We recognize that a perfect gold standard does not exist; 

in order to better demonstrate the robustness of our findings, we evaluate our results 

separately with respect to the two gold standards.

Literature search for expected physiologic drug effects—For each drug-lab pair, 

an author (ML) searched PubMed for articles using the drug and lab as keywords, along with 

terms “increase”, “decrease”, and “association”. The authors selected articles that reported 

quantitative information about associations and causations between the two entities within 

their abstracts. The author then read these articles and determined whether their reported 

associations between the drug and lab of interest should be expected to generalize to a large 

EHR database (e.g., a study of cancer patients would not be included). Contradictory 

literature results were considered as inconclusive.
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LAERTES knowledge base queries for expected physiologic drug effects—The 

LAERTES (Large-scale Adverse Effects Related to Treatment Evidence Standardization) 

[43] knowledge-base was developed as part of the Observational Health Data Sciences and 

Informatics initiative to record existing pharmacosurveillance knowledge that could be 

compared to new empirical evidence. It draws from package inserts, Food and Drug 

Administration databases, and also the literature. LAERTES was queried for associations 

between side effects associated with the 4 lab measurements (muscle weakness and 

rhabdomyolysis for creatine kinase, renal impairment for creatinine, hyperkalemia and 

hypokalemia for potassium, and anemia for hemoglobin) and each of the 7 drugs.

Knowledge-base derived gold standard—combining results from literature 
search and knowledge base—Resulting directional associations from LAERTES were 

taken in union with the directional associations from our literature search. When one search 

method yielded no associations, and the other did, we took the association, rather than the 

null result (except in the case of ibuprofen and total creatine kinase, for which we rejected 

LAERTES’s positive result). When multiple results were present in the LAERTES results, 

we selected those that matched results in the literature—this occurred twice, for 

spironolactone’s effect on potassium and ibuprofen’s effect on potassium. Together, these 

data formed the knowledge-base derived gold standard.

Expert-curated gold standard—A clinical expert (GH) subsequently curated the 

knowledge-base derived gold standard, and modified 9 of its 28 expected associations. The 

expert modified the directionality only twice (i.e. −1 to +1), where he believed that diuretic-

induced anemia was less likely to be present than rises in hemoglobin due to diuretic-

induced fluid loss. The other seven modifications removed expected effects in the 

knowledge-base derived gold standard (i.e. changed +1 or −1 to 0), which the expert judged 

sufficiently rare to be missing from a database of the size of ours. The expert-curated gold 

standard allows us to probe the robustness of conclusions made from the knowledge-base 

derived gold standard. We note that comparison with this second expert-curated gold 

standard may be a weaker indicator of stability than comparison with an independently 

generated gold standard (e.g. compiled solely by expert clinicians); however, we expect that 

the two are sufficiently different to provide a reasonable check on each other.

Evaluating accuracy of lagged regressions

We evaluated the predictive accuracy of each tested method and the associated uncertainty 

by performing a layered bootstrap resampling over patient cohorts [44]. Figure 2 provides a 

schematic for the experimental protocol. Figure 2 presents the experiment in a “top-down” 

approach, whereas the subsequent text presents the design “bottom-up.” Because we are 

interested in uncovering physiologic drug effects across people, rather than predicting 

specific laboratory measurements, we focus on comparing the computed lagged drug 

coefficients from each method with gold standards for known physiologic phenomena. The 

forecasting error of these models (i.e. their ability to predict individual laboratory 

measurements) is not of direct interest and does not affect the models’ ability to correctly 

recover the overall signal of the process (e.g. coefficients can be fully recovered from a 
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densely sampled autoregressive process with large, uncorrelated, zero-mean noise, and the 

forecasting error would take the size of the process’s noise).

Estimating variance of lagged drug coefficients—For a given drug-lab pair and 

methodological variation, we empirically computed estimates of variance for the lagged 

drug coefficients, βτ, using a bootstrap estimate of variance. For each drug-lab cohort, we 

sampled patients with replacement to create 200 bootstrapped samples, and ran all 64 

regressions for each of these 200 samples from the drug-lab cohort. We sampled over all 

patients in a given cohort—for each drug-lab pair, the number of patients differed. We 

estimated the variance of βτ for a given drug-lab pair and particular methodological 

variation using the variance of the samples generated for that particular drug-lab-method 

combination, and subsequently determined empirical 95% confidence intervals of βτ ([ βτ – 

1.96σ, βτ – 1.96σ], where σ is the standard deviation of the samples of βτ).

Classifying lagged drug coefficient profiles—We are ultimately interested in the 

trajectory of βτ as they vary over τ, and write β = βτ τ = 1
30  . Other model parameters were 

not examined because only β directly encodes the inferred relationship between a drug and 

lab. Note that output from methods that used sequence or real-time can be directly 

compared, as they result in identical models, where one has time units “days” and the other 

“index”. In order to perform a first-order evaluation of lagged drug coefficients trajectories, 

we first converted them to the format of the gold standards (increase, decrease, or no effect). 

We classified β as increasing (+1) if at least 15 consecutive coefficients were all greater than 

zero within 95% confidence interval, decreasing (−1) if at least 15 consecutive coefficients 

were all less than zero within 95% confidence interval, and neither (0) otherwise. We 

selected 15 as the threshold because it is half-the number of total estimated coefficients, 

making it the smallest threshold that can ensure there will be only one directional 

designation (we did not want a trajectory of to be β classified as both increasing and 

decreasing).

Computing predictive performance of lagged regressions with respect to gold 
standards—For each of the 64 method combinations, we evaluated classifications of the 

28 gold standard drug-lab effects by estimating a Receiver Operating Characteristic (ROC) 

curve, and reported the area under ROC (AUROC) separately for the two gold standards. 

Recall that AUROC is a common evaluation metric for binary classification models, and is 

equal to the expected probability that the model will rank a randomly chosen positive event 

above a randomly chosen negative one. Given our ranked classifications (−1,0,1), we 

evaluated sensitivity and specificity of each method’s ability to perform binary 

discrimination across two thresholds, −0.5 and 0.5, which provided two points for an ROC 

curve. Discrimination across a threshold of 0.5 asks the classifier to discriminate between 

sets {+1} and {0, −1} (e.g. in addition to rewarding exact equality, it also considers 0 and 

−1); similarly, a threshold of −0.5 evaluates discrimination between {0, +1 and {−1}. We 

computed AUROC using simple trapezoidal integration.

Estimating variance of AUROC for each methodological variation—In order to 

estimate the variance of each method’s AUROC, we leveraged the previously performed 
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bootstrapped regressions. For each of the 200 previously computed estimates of β for each 

drug-lab pair, we created a new classification using a confidence interval with fixed variance 

(previously computed) that was centered at that particular bootstrapped estimate of β.

We thus obtained 200 independent samples of β We classified these, and subsequently 

arrived at 200 independent, identically applied samples of AUROC for each methodological 

variation, which were used to statistically compare performance of different methods.

Comparing predictive performance of lagged regression methods—We want to 

compare disjoint classes of methods; for example, we want to compare all methods that use 

sequence time against all methods that use real time, and ask whether sequence time or real 

time offers an average performance benefit. In order to perform such comparisons, we report 

the average difference between AUROCs and the 95% Confidence Intervals (CIs) of this 

difference for both gold standards. Concretely, we compared two disjoint groups of methods 

by computing the difference between each group’s mean AUROC. We then estimated the 

95% CI of this difference using the variance of the pairwise differences between each 

group’s 200 mean sampled AUROCs. This results in a determination of whether one disjoint 

group of methods is better or worse than another, within a 95% CI, and enables queries like 

“overall, is it better to use sequence time or real time?” or “overall, is it better to use 

sequence time with or without normalization?”.

We performed these comparisons systematically to arrive at a final set of statistically 

significant methodological variations. First, we evaluated the impact of each variation across 

all other variations, i.e. marginal impact; for example, we compared all methods that use 

normalization against all methods that do not. Then we evaluated the impact of each 

variation given a variation of another variable; for example, we compared all methods that 

use normalization and sequence time against all methods that use normalization and real 

time. We also compared sequences of 3 variations. This allowed us to evaluate the impact of 

methods, both alone and in combination. We report methodological variations that are 

influential alone and in combination with others, along with the magnitude of their marginal 

impact on AUROC.

Summary

In order to evaluate and compare methodological variations of lagged linear regressions for 

determining physiologic drug effects from clinical time series, we 1) identify patient cohorts 

for each drug-lab pair of interest, 2) report the predictive performance of each method with 

respect to two gold standards, and 3) draw statistically meaningful comparisons between 

classes of methods to demonstrate important modeling steps that ought to be taken either 

alone or in combination to achieve desired results.

RESULTS

Illustrating example of importance of methodological variations of lagged linear 
regression for assessing physiologic drug effects

In order to illustrate the importance of variations in methodology for analysis of clinical time 

series, we examined some possible inferences of the relationships between amphotericin B 
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and levels of potassium and creatinine. Our knowledge-base derived gold standard and 

clinical expert agreed that amphotericin B should be expected to raise creatinine levels and 

lower potassium levels.

Figure 3 shows the resulting inferences when varying three aspects of the computation 

(temporal parameterization, differencing, and regression models) and fixing the other three 

aspects (normalization, no additional context variable, and no binning). Figure 3a shows that 

the expected trends are accurately reconstructed with statistical significance when using 

sequence time, differences, and a joint AR model. Figures 3b and 3c show that no significant 

association can be found when switching to real-time or not using differences. However, Fig 

3d shows that multiple changes to the successful method in Fig 3a (using an independent lag 

model and not using differences) can obtain expected trends, albeit with less significance for 

creatinine (blue). Results from these methodological combinations for all 28 drug-lab pairs 

are shown in Supplementary Figures 1–7.

Combinatorial evaluation of lagged regression assessments of physiologic drug effects 
under methodological variations

In order to thoroughly understand the impact of methodological choices in this context, we 

evaluated all 64 combinations of methods with respect to the two gold standards 

(knowledge-base derived, and expert-curated).

Our main results are shown in Figure 4. We report each method’s AUROC and an estimate 

of the AUROC variance for both gold standards; we rank the results by descending expert-

curated AUROC, and indicate the vector of method pairings for each row in the plot. These 

results are also enumerated explicitly in Supplementary Table 1.

We first point out that, surprisingly, the majority of method combinations had AUROC of 

0.5, indicating performance no better than chance. This implies that the choice of methods, 

combinations of methods, and even the data representation—differences versus raw values—

is very important. Furthermore, while the two gold standards differed significantly according 

to Table 1, they agreed fairly well on which combinations were better than chance. The 

superior performance of some combinations does not appear to be artifact.

We observe that there is a concentration of methods using sequence time at the top of the 

plot, suggesting that sequence time is a beneficial choice independent of other methods. We 

can also observe patterns that relate differencing with model choice—in particular, we note 

that of our four possible combinations of differencing and model, only two of these 

(differences with joint estimation and no differences with independent estimation) ever yield 

AUROC above 0.5. This suggests an interaction between these two choices, which we 

subsequently interrogate quantitatively.

The best method, according to the expert-curated gold standard used sequence time, 

normalization, differencing, a joint AR model, no binning, and no additional context 

variable (AUROC = 0.705, 95%CI [0.629, 0.781]). According to the knowledge-base 

derived gold standard, the best method also used sequence time, normalization, and no 
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additional context variable, but did not use differencing, used an independent lag model, and 

used binning (AUROC = 0.794, 95%CI [0.741, 0.847]).

Comparing predictive performance between lagged regression methods—We 

test for statistically significant differences between marginal effects of different method 

variations. We observe that choosing sequence time instead of real time is the only single 

methodological choice that both gold standards agree has a statistically significant effect. 

For the knowledge-base derived gold standard, sequence time yields a 0.049 (95%CI [0.035, 

0.063]) marginal AUROC improvement over real time; for the expert-curated gold standard, 

the marginal improvement is 0.050 (95%CI [0.038, 0.062]).

In addition, we examined combinations of method choices, and found a consistent, 

statistically significant indication that a joint AR model is better with differences than 

without (0.062 marginal AUROC improvement with 95%CI [0.045, 0.079] for knowledge-

base derived gold standard, 0.074 marginal AUROC improvement with 95%CI [0.053, 

0.094] for expert-curated gold standard), and that an independent lagged model is worse 
with differences than without (0.083 marginal AUROC reduction with 95%CI [−0.100, 

−0.065] for knowledge-base derived gold standard, 0.094 marginal AUROC reduction with 

95%CI [−0.114, −0.075] for expert-curated gold standard). We also evaluated the converse 

statements (e.g. when using differences, is joint AR or independent lag model significantly 

better), and found similar associations.

We further compared the two preferred pairs, and found that while the independent lag 

model without differences slightly outperformed the joint AR model with differences overall 

(0.021 marginal AUROC improvement for both gold standards), these changes were not 

statistically significant (95%CI [−0.046,0.004] for knowledge-base derived gold standard, 

95% CI [−0.049,0.008] for expert-curated gold standard). However, the opposite, albeit 

statistically insignificant, effect was observed when comparing these methods only in the 

context of the clearly preferred sequence time.

We ultimately found that once a choice of sequence time and either of the preferred pairs of 

differencing and modeling (i.e. no differences with independent lag model or differences 

with joint AR model) was made, no additional choices (binning, context variables, 

normalization) provided marginal improvement to AUROC with statistical significance. We 

observe a mean AUROC of 0.633 (95%CI [0.610, 0.657]) for expert-curated gold standard 

(and 0.622 mean AUROC with 95%CI [0.603, 0.641] for knowledge-base derived gold 

standard) across methods that use sequence time and one of the preferred difference-model 

pairs, whereas the complement of this set of methods achieves a mean AUROC close to 0.5 

(0.512 with 95%CI [0.506, 0.517] for clinically curated-gold standard; 0.507 with 95%CI 

[0.503, 0.512] for knowledge-base derived gold standard). In this way, we demonstrate that 

temporal parameterization, time series differencing, and regression-type are important 

choices that must be selected in concert to achieve optimal predictive performance.

Comparing evaluations from two gold standards—The gold standards differed on 

32% of cases (Cohen’s Unweighted Kappa=0.53, 95% CI [0.27–0.78]; Cohen’s Linear 

Weighted (ordinal) Kappa=0.54, 95% CI [0.11–0.97]). In two cases, the knowledge-base 
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derived gold standard reported diuretics as possibly causing anemia, thus lowering 

hemoglobin, without accounting for potential diuretic fluid loss and resultant rise in 

hemoglobin. This represents a disconnect between the condition (anemia) and the observed 

entity (hemoglobin), which was noted by the expert. In other cases, a potential side effect 

was judged to be sufficiently rare that it should be missing from a database of the size of 

ours.

The effect of the difference in gold standards can be seen in Figure 4 and Figure 5. Figure 5 

shows that the AUROCs for each methodological variation are correlated across the two gold 

standards (Pearson correlation coefficient 0.759, 95%CI [0.631, 0.847), but that substantial 

differences exist. Figure 4 shows that each gold standard would rank individual methods 

differently; nevertheless, major conclusions of the study, such as the superiority of using 

sequence time and the dependencies between differencing and regression-type, are upheld 

by both gold standards.

DISCUSSION

Here we study how lagged linear regressions, a simple, robust, commonly used class of 

methods, can be tuned to efficiently extract drugs’ temporal effects on patient physiology 

from EHR data. Data in the EHR present a variety of challenges (low, erratic measurement 

frequency, high noise, and non-stationarity), making time-series analysis highly non-trivial 

and requiring careful pre-processing and re-parameterization. We evaluated combinations of 

pre-processing, modeling, and temporal parameterization steps in order to understand how to 

better cope with challenges in extracting temporal information from EHR data. We used 64 

of these methodological perturbations to analyze 28 drug-lab pairs, and evaluated the results 

against two gold standards.

We found that the correct combination of regression type (independent lag or joint 

autoregressive) and differencing was essential—independent lag models cannot be used with 

differencing, whereas the joint AR model must be used with differencing. Furthermore, we 

found a large significant improvement (for expert-curated gold standard, 0.05 average 

AUROC increase, 95%CI [0.038, 0.062]) when re-indexing time according to the sequence 

of events. These selections created high-performing methods, and the top methods achieved 

AUROC of over 0.7 (for knowledge-base derived gold standard, best AUROC = 0.794, 

95%CI [0.741, 0.847]; for expert-curated gold standard, best AUROC = 0.705, 95% CI 

[0.629, 0.781]).

We also found that the regressions were robust to our choices of normalization, binning, and 

context variable inclusions. While these choices were statistically unimportant, in aggregate, 

among our cohorts, their impact could become more noticeable when testing different 

hypotheses or when using different data. Moreover, we selected one simple form for each of 

these variations, and it is likely that more targeted formulations will have greater effects.

Benefits of multiple gold standards

Gold standards often vary, but by using several gold standards, researchers can— formally 

or informally—assess their evaluations’ sensitivities to the gold standard. If only one gold 
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standard is used, then there is no way to characterize the dependency of conclusions on that 

particular gold standard. In our case, results were similar but not identical for the two gold 

standards, indicating that our findings are not mere artifacts of the gold standard. It is 

important to note that our gold standards were not completely independent, as one author 

created the knowledge-base derived gold standard, and the clinical expert modified it 

according to clinical and informatics knowledge. Gold standards that are completely 

independent (e.g. created by separate panels of clinical experts) would likely provide more 

potent verification of robustness. However, the approach of having a clinician curate an 

automatically generated gold standard can be especially relevant in high-throughput analysis 

approaches, like OHDSI [9].

Reflections on important methodological steps

We found that decomposing the overall modeling process into smaller, discrete methods 

allowed us to systematically interrogate the effect of each choice. However, it is also 

instructive to note that many of the combinations of methods are in fact equivalent to 

established methodologies. For example, the joint autoregressive model is very similar to 

Granger causality, and the independent lag model is analogous to lagged correlation analysis 

up to normalization. Both of these modeling methods, combined with any windowing 

function, fall under similar classes of statistical spectral analysis methods and econometrics 

[37], [39], [45]–[47].

Our previous studies have reported improved performance of lagged methods on EHR data 

when using sequence time [24], [26], and have investigated the mechanics of these 

phenomena [19], [20], [24]. We maintain the hypothesis that sequence time removes non-

stationarity by leveraging the fact that clinicians sample at rates proportional to patient 

variability [24], [48], but feel that this hypothesis, while implied, has yet to have been 

explicitly proven. Lagged regression methods rely on assumptions of weak stationarity, and 

their performance improves when data are pre-processed to remove temporal swings in 

mean and variance. There exist methods like autoregressive moving average models that can 

cope with certain relatively benign non-stationarity effects, such as a slowly and 

continuously varying mean, but these models are likely unable to resolve clinical non-

stationarity effects that are combined with data missing non-randomly (e.g., correlated with 

health). Such EHR-data-specific pathologies were the original motivation for even 

attempting sequence time-based methods.

Non-stationarity in EHR data may partly manifest in unit roots of the characteristic equation 

of the autoregressive stochastic process, causing failure of ordinary least squares estimation, 

and ought to be explicitly tested in the future using the augmented Dickey-Fuller test [37], 

[38]. While we optionally applied a differencing operator once to our clinical time series, we 

did not test for the presence of unit roots. Future work may benefit from iteratively applying 

a difference operator and re-testing with a statistical test, like augmented Dickey-Fuller, until 

unit roots are removed, as is the strategy of the Box-Jenkins modeling approach [39].

Differencing is a well-known method [37] for reducing correlation between lagged variables 

in time-series analysis, and Levine et al. [26] provided anecdotal evidence of its benefit for 

lagged linear analysis of drug and lab data from the EHR. For this reason, we expected it to 
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improve results across all methods. We were surprised to learn that differencing corrupted 

the performance of the independent lag model. We recognize, however, that there is a 

tradeoff between sharing uncorrelated information across variables and adding noise to any 

particular variable. In the case of the independent lag model, we correlate with one variable 

at a time, effectively losing all of the upside of differencing. Because the joint autoregressive 

model holds some advantages over the independent lag model (it is easier and more intuitive 

to add additional explanatory variables to the joint model), differencing clearly has an 

important role to play in temporal analysis of EHR data. Incorporating rates of change must 

typically be done intentionally within any machine learning framework, including deep 

learning, either by pre-processing the features or by choosing model structures that learn 

temporal feature representations as linear combinations of neighboring sequential elements.

Opportunities for revealing finer temporal structure in EHR data

It is also important to note that lagged coefficients from these analyses contain information 

far richer than the evaluated classifications (increasing, none, or decreasing physiologic 

responses). The trajectories of lagged coefficients (as seen in Figure 2, c.f. Figures 6–8 in 

[27], c.f. Figure 2 in [25]) can shed light on temporal dynamics and important time scales of 

the physiologic and/or health care process, rather than merely indicate the presence of an 

effect. We originally wanted to also evaluate these methods for their ability to detect finer 

temporal associations, but challenges remain for creating a reliable gold standard upon 

which to base validations of more complex insights, such as the rate or magnitude of a 

drug’s physiologic effect (trustworthy quantitative information of this type does not exist for 

most cases). With sufficient validation, properly tuned lagged linear methods may eventually 

become useful for discovering novel associations in EHR data.

Implications for comparing machine learning methods

Most of the tested method combinations failed (AUROC=0.5), indicating that these choices 

are critically important. We observe that, for the same machine-learning algorithm, 

differences in preprocessing and experimental setup result in a range of AUROC from 0.5 to 

0.8. Therefore, the choice of an overall algorithm (regression, support vector machines, 

neural networks, decision trees, etc.) is just one factor that could affect results, and 

researchers need to be mindful of this not only when performing experimental comparisons 

of algorithms, but also when presenting the results of these comparisons. While 

sophisticated machine-learning techniques aid learning of data representation, the structure 

for these models is still often selected based on certain hypotheses about how the data might 

be best represented. Our results suggest that data representations, either pre-processed or 

learned, should look like sequence time, and, most likely, contain information about the 

differences between successive measurements and normalize values across patients in the 

data set. Preprocessing conditions may have different effects on different methods, so a 

variety of these conditions ought to be rigorously tested, compared, and reported. The 

combination of pre-processing methodology and choice of gold standards could have large 

effects on machine learning evaluations, and it is likely that confidence intervals normally 

reported in machine learning studies fail to include the uncertainty related to these choices.
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Implications for reproducibility of observational studies

Our evaluation pipeline is an important part of reproducible observational research, allowing 

researchers to quantify the impact of the various modeling choices made throughout the 

research process. Thorough comparisons across wider ranges of methods and source data are 

critical for advancing our ability to trust what we can learn from the EHR. The 

Observational Health Data Science and Informatics (OHDSI) consortium provides a 

common data model and a research community dedicated to such reproducible and 

generalizable advancements, and we aim to expand our pipeline into an OHDSI-compatible, 

open-source repository.

How to choose the right method

We have demonstrated the value of rigorous, systematic perturbations to chosen methods, 

and we encourage readers to perform similar evaluations in their own research contexts. 

However, we also hope that our results are somewhat generalizable to time-series analyses of 

medical data. We have found sequence time to provide a large, significant performance 

boon, and strongly recommend that researchers in similar domains consider re-indexing 

their time-series according to sequences. We do not know in which contexts the superiority 

of sequence time holds—contexts with random sampling would still likely benefit from 

clock-time indexing. For example, many measurements in the intensive care unit are taken at 

regular intervals, but are missing at random; however other measurements, like troponin, are 

only ordered when physicians suspect additional trauma, and may be benefit from being re-

parameterized by sequence [49]. For lagged linear analysis, we recommend using either a 

simple independent lag model (without differencing) or a joint autoregressive model with 

differencing (recall that differencing corrupted the signals from the independent lag model). 

In general, we recommend performing differencing in accordance with results from 

statistical tests of unit root presence, like augmented Dickey-Fuller [37]. While we identified 

no statistical difference between the joint AR model with differencing and the independent 

lag model without differencing, qualitative assessment (e.g. see supplementary figures 1–7) 

suggests that the joint AR model provides finer resolution of temporal dynamics of 

physiologic process. In addition, even when the joint AR and independent lag models return 

the same drug-effect classifications, the joint AR model appears to be more robustly 

representative of the classification (e.g. supplementary figure 1, where it more clearly 

depicts that amphotericin B has no effect on total creatine kinase). These qualitative 

inspections cause us to favor the joint autoregressive model with differencing. Intra-patient 

normalization had no statistically significant effect in our cohort, but we recommend its 

continued usage, because a) it has been shown to improve performance in similar studies 

[25], and b) it did not create any disadvantage in our current study. We did not observe any 

useful effect from our experimental choice of windowing, and recommend readers select 

none or constant window functions as opposed our experimental choice. However, we 

encourage researchers to more thoroughly investigate appropriate windowing functions for 

EHR data, and insist that this be done in combination with other potential methodological 

choices, as there may be unexpected method-dependent dependencies. By studying the 

impact of methodological variations alone and in concert with each other, we can improve 

model performance and help make research results more generalizable and implementable 

for researchers.
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LIMITATIONS

This study was performed at a single academic medical center, and its findings may not 

generalize to different sources of medical record data. The gold standards are subject to 

existing, accessible knowledge—neither gold standard is perfect and they are correlated, but 

evaluating with respect to both is more informative than comparing to only one. 

Associations between drugs and lab measurements were studied pairwise—confounding 

effects of other drugs and drug-drug interactions were not considered. The selected method 

for classifying lagged coefficients was not studied rigorously, and may possess unforeseen 

biases.

CONCLUSIONS

We used lagged linear methods to detect physiologic drug effects in EHR data. We used two 

clinical gold standards and a bootstrap methodology to evaluate the reliance of lagged 

methods on combinations of methodological perturbations. We observed important 

statistically significant improvements from particular combinations of temporal re-

parameterization, time-series differencing, and regression model choice. We expect that 

these steps will play an important role in revealing fine temporal structure from EHR data, 

and we recognize the overarching importance of systematic comparison of machine learning 

methods under a broad range of pre-processing scenarios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Standard timeseries methods accurately detected physiologic drug effects in 

EHR data

• Systematic evaluation revealed important interactions of methodological 

choices

• Indexing timeseries by sequence consistently improved drug-effect detection
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Fig 1. Timeline Construction.
We performed a linear temporal interpolation in order to align sparse, asynchronous 

measurements and events. For every time point where there was a value (lab, drug concept, 

or context (i.e. inpatient admission)), the values of each other variable at that time point 

were interpolated as the clock-time weighted mean of the preceding and succeeding value of 

each respective variable.
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Figure 2. 
Experimental Design Overview
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Figure 3. 
Signal quality is noticeably affected by combinations of methodological choices, especially 

temporal parameterizations, differencing, and lag model type; here we vary these 3 

dimensions, and fix the remaining 3 using intra-patient normalization, no binning, and no 

additional context variables. Here, we expect Amphotericin B to increase Creatinine (hence, 

blue should be significantly above zero) and Amphotericin B to decrease Potassium (hence, 

red should be significantly below zero). The figures demonstrate that sequence-time is often 

a necessary, singular choice: figure 3a, which uses sequence time, produces the expected 

result, whereas figure 3b shows a non-significant noise pattern; the methods used in these 

figures differ only by their treatment of temporal parameterization. The figures also 

demonstrate that methods must be combined carefully—figure 3a combines differencing 

with the joint AR model, and produces expected patterns, whereas figure 3c uses an identical 
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method, but omits differencing, and produces a non-significant noise pattern. However, 

pairing the independent lag model without differencing appears to reconstruct the signal, 

albeit with less significance than fig 3a.
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Figure 4. 
This figure displays AUROC confidence intervals for each of 26 methodological 

combinations. AUROCs are ordered from top-to-bottom in descending order of AUROC 

from the expert-curated gold standard. The heatmap on the left indicates the presence (tan) 

or absence (blue) of each of the 6 method variables for each plotted AUROC. For example, 

the top AUROC method (according to the clinically-curated gold standard) used sequence-

time, no binning, intra-patient normalization, differencing, no additional context variable, 

and a joint AR model. Note that these results are enumerated explicitly in Supplementary 

Table 1.
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Figure 5. 
Here we plot the correlation (Pearson correlation coefficient 0.759, p=3.7e-13) between 

AUROCs computed using clinically curated and knowledge-base derived gold standards. 

Error bars for each AUROC couple are 95% Confidence Intervals computed using a 

bootstrap resampling. We observe that the two gold standards, despite significant 

disagreements (Table 1), ultimately provide evaluations with reasonable similarity. This 

result instills a confidence in both gold standards that could not be achieved with a single 

gold standard.
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Table 1.

Clinical gold standards for expected drug effects.

Drug Laboratory
Measurement

Knowledge-
base derived

gold standard

Expert-curated
gold standard

Allopurinol Total Creatine Kinase 1 0

Allopurinol Creatinine 1 1

Allopurinol Potassium 0 0

Allopurinol Hemoglobin -1 0

Amphotericin B Total Creatine Kinase 0 0

Amphotericin B Creatinine 1 1

Amphotericin B Potassium -1 -1

Amphotericin B Hemoglobin -1 -1

Furosemide Total Creatine Kinase 0 0

Furosemide Creatinine 1 1

Furosemide Potassium -1 -1

Furosemide Hemoglobin -1 1

Ibuprofen Total Creatine Kinase 0 0

Ibuprofen Creatinine 1 0

Ibuprofen Potassium 1 0

Ibuprofen Hemoglobin -1 -1

Simvastatin Total Creatine Kinase 1 1

Simvastatin Creatinine 1 0

Simvastatin Potassium 1 0

Simvastatin Hemoglobin -1 0

Spironolactone Total Creatine Kinase 0 0

Spironolactone Creatinine 1 1

Spironolactone Potassium 1 1

Spironolactone Hemoglobin -1 1

Warfarin Total Creatine Kinase 0 0

Warfarin Creatinine 0 0

Warfarin Potassium 0 0

Warfarin Hemoglobin -1 -1
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