Skip to main content
. 2018 Oct 24;9:478. doi: 10.3389/fgene.2018.00478

FIGURE 2.

FIGURE 2

Genetic control of leaf margin dissection. (A) Photographs illustrating the diversity of leaf shapes in flowering plants. On the top row from the left to right are examples of simple leaves from: Cornus kousa (Cornaceae), Ginkgo biloba (Ginkgoaceae), Lomatia arborescens (Protoecea), Serratula radiata (Asteraceae). On the second row from the left to right are examples of highly dissected leaves from: Porlieria hygrometra (Zygophyllaceae) and Chamomilla recutita (Asteraceae), Rosa nutkana (Rosaceae), Chelidonium majus L. (Papaveraceae) and Lupinus polyphyllus (Leguminosae) are shown. (B) Examples of the main types of leaf margin dissection in plants. The silhouette of a smooth leaf (Neslia paniculata), a serrated leaf (Arabidopsis thaliana), a lobed leaf (Capsella rubella) and a compound leaf (Cardamine hirsuta). (C) Model of the genetic control of leaf margin dissection: the activation of CUC genes will lead to a repolarisation of PIN1 and, thus, to convergent flows of auxin. The resulting high auxin signaling together with miR164 will inhibit CUC and promote growth. At the sinuses, CUC and RCO inhibit growth. The formation of compound leaves relies on the maintenance of morphogenetic potential in the leaf primordia by KNOXI.