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SUMOylation of ROR-γt inhibits IL-17 expression
and inflammation via HDAC2
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Dysregulated ROR-γt-mediated IL-17 transcription is central to the pathogenesis of several

inflammatory disorders, yet the molecular mechanisms that govern the transcription factor

activity of ROR-γt in the regulation of IL-17 are not fully defined. Here we show that SUMO-

conjugating enzyme Ubc9 interacts with a conserved GKAE motif in ROR-γt to induce

SUMOylation of ROR-γt and suppress IL-17 expression. Th17 cells expressing SUMOylation-

defective ROR-γt are highly colitogenic upon transfer to Rag1–/– mice. Mechanistically,

SUMOylation of ROR-γt facilitates the binding of HDAC2 to the IL-17 promoter and represses

IL-17 transcription. Mice with conditional deletion of HDAC2 in CD4+ T cells have elevated

IL-17 expression and severe colitis. The identification of the Ubc9/ROR-γt/HDAC2 axis that

governs IL-17 expression may open new venues for the development of therapeutic measures

for inflammatory disorders.
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While inflammation is protective against microbial
infections and tissue injury, uncontrolled inflamma-
tion can cause host tissue damage that may lead to

autoimmunity and malignancy. Emerging evidence points to a
critical role for interleukin-17 (IL-17) in both host defense and
inflammation1,2. IL-17 is produced by a variety of immune cells,
including the TH17 subset of helper T cells, γδ T cells, and innate
lymphoid cells1,2. IL-17 triggers inflammation by inducing mul-
tiple cytokines and chemokines, which in turn recruit neutrophils
and macrophages that contribute to tissue damage3. While
transient IL-17 expression in response to infection is protective,
dysregulated IL-17 expression is thought to be foundational to the
pathogenesis of several human inflammatory diseases including
psoriasis, ankylosing spondylitis, rheumatoid arthritis, multiple
sclerosis, and inflammatory bowel diseases4.

The orphan nuclear receptor ROR-γt is the key transcription
factor that induces IL-17 expression5,6. Structurally, ROR-γt
consists of a ligand-independent activation function 1 helix, a
DNA-binding domain, a flexible hinge domain, and a C-terminal
ligand-binding domain7. The two zinc-finger motifs within the
DNA-binding domain recognize the ROR response elements
within the IL-17 promoter to induce IL-17 expression7. Accord-
ingly, ROR-γt regulation has emerged as an area of active study
for potential pharmacological interventions8. However, a clear
understanding of ROR-γt regulation is currently lacking, yet is
absolutely necessary to target ROR-γt effectively.

Post-translational modification by small (~12 kDa) ubiquitin-
like modifier (SUMO) proteins involves covalent attachment of a
SUMO to a lysine residue in the target protein9–11. Like ubiqui-
tination, SUMO conjugation involves a cascade of biochemical
reactions that involves E1, E2, and E3 enzymes. Ubc9 is the only
E2 enzyme that is used by the SUMO pathway as a conjugation
enzyme to transfer SUMO to the substrate proteins9–11. By
influencing stability, intracellular localization, interaction with
partners, and activity of target proteins, SUMOylation affects
several biological processes including the cell cycle, DNA repair,
chromatin dynamics, gene transcription, and inflammation9–11.

In this study, we show that Ubc9 interacts with and targets
ROR-γt for SUMOylation and inhibits IL-17 expression. We
demonstrate that the T cells expressing SUMOylation-defective
ROR-γt are highly colitogenic upon transfer to Rag1–/– mice.
Mechanistically, SUMOylation of ROR-γt facilitates the binding
of HDAC2 to the IL-17 promoter and represses IL-17 tran-
scription. Thus, we uncover a mechanism by which IL-17
expression is regulated, which could be exploited therapeutically
in inflammatory diseases.

Results
ROR-γt associates with Ubc9. Our previous work established that
the ubiquitin ligase Itch targets ROR-γt for ubiquitination and
promotes its degradation12,13. To further delineate the molecular
mechanism by which ROR-γt function is regulated, we adopted a
proteomics approach to identify additional components in the
transcriptional complex. Given the central role of colonic lamina
propria lymphocytes (cLPLs) in gut homeostasis and inflamma-
tion, we isolated cLPLs from C57BL/6 (WT) mice followed by lysis
and ROR-γt immunoprecipitation using a validated anti–ROR-γt
antibody. The precipitated proteins were resolved by SDS-PAGE
and subjected to mass spectrometry (MS) analysis after in-gel
digestion with trypsin. MS spectra corresponding to a specific
Ubc9 peptide were present in anti–ROR-γt precipitates but not
in control IgG precipitates (Fig. 1a). The MS findings were fur-
ther validated in co-immunoprecipitation studies in 293 T cells
transiently transfected with expression vectors encoding Flag-
tagged ROR-γt (Flag-ROR-γt) and Myc-tagged Ubc9 (Myc-Ubc9).

Immunoprecipitation with either anti-Flag or anti-c-Myc anti-
bodies showed that anti-Flag immunoprecipitates contained
Myc-Ubc9 and that anti-c-Myc pulled down Flag-ROR-γt
(Supplementary Fig. 1a). Finally, endogenous ROR-γt-Ubc9
interactions in cLPLs lysates were confirmed in anti–ROR-γt
and anti-Ubc9 co-immunoprecipitates (Fig. 1b). Together, these
assays establish that ROR-γt physically interacts with Ubc9.

Ubc9 recognizes the GKAE motif and SUMOylates ROR-γt.
Since Ubc9 is a SUMO-E2 enzyme that facilitates
SUMOylation9–11, we hypothesized that ROR-γt function may be
regulated by its SUMOylation. In most cases, Ubc9 recognizes the
consensus Ψ-K-X-E/D motif (where Ψ is a hydrophobic residue,
K is the lysine conjugated to SUMO, X is any amino acid, and D
or E is an acidic residue) on its protein substrates9–11. Interest-
ingly, sequence alignment of ROR-γt revealed a highly conserved
GKAE consensus motif (Fig. 1c).

As a first step in assessing whether ROR-γt is SUMOylated, the
lysine residue of the consensus sequence was mutated to arginine
(K187R-ROR-γt). 293 T cells were transfected with either Flag-
ROR-γt or K187R-ROR-γt (also Flag tagged) along with Myc-
Ubc9 and HA-SUMO1. Immunoprecipitation of ROR-γt (using
anti-Flag antibody) followed by western blot analysis with anti-
HA antibody revealed an upshifted band only in the cells
expressing wild type (WT) ROR-γt and no band in the cells
expressing K187R-ROR-γt (Fig. 1d). Together, these data are
consistent with the possibility that Ubc9/SUMO1 SUMOylates
ROR-γt at K187 within the GKAE motif. To confirm that the
upshifted band is SUMOylated ROR-γt, we washed and then
reprobed the same membrane with anti-Flag antibody. This
revealed that WT-ROR-γt but not K187R-ROR-γt is SUMOy-
lated (Fig. 1d). To further confirm the SUMOylation of ROR-γt,
we used a catalytically inactive Ubc9 mutant in which a conserved
cysteine is replaced with an alanine (Ubc9-C93A)14. Expression
of the Ubc9-C93A mutant with ROR-γt did not result in its
SUMOylation, indicating that the catalytic activity of Ubc9 is
essential for the SUMOylation of ROR-γt (Fig. 1e). Further
analysis of primary cLPLs and in vitro differentiated Th17 cells
confirmed the presence of the SUMOylated form of ROR-γt
(Fig. 1f and Supplementary Fig. 1b). Densitometry analysis
showed that about 21%, 17%, and 11% of ROR-γt was
SUMOylated in 293 T cells, cLPLs, and in vitro differentiated
Th17 cells, respectively (Supplementary Fig. 1c–e). In addition,
SUMO2 and SUMO3, the two other isoforms of SUMO, could
promote SUMOylation of ROR-γt. We found that SUMO2 and
SUMO3 were much less efficient in SUMOylating ROR-γt
compared to SUMO1 (Supplementary Fig. 1f).

SUMOylation of ROR-γt inhibits IL-17 expression. To gain
insight into the functional consequence of ROR-γt SUMOylation,
ROR-γt−/− mouse-derived T cells were reconstituted with
either WT-ROR-γt or the K187R-ROR-γt mutant (SUMOyla-
tion-defective ROR-γt)12. The cells were then differentiated
under Th17-inducing conditions and whole-genome tran-
scriptome analysis (RNA seq) of the RNA isolated from these
cells was performed. As shown in Fig. 2a–c and Supplementary
Fig. 2, transcriptome, real-time PCR, and ELISA analysis showed
that several Th17-associated genes, including IL-17A, IL-17f,
and IL-23r, were upregulated in Th17 cells expressing the
SUMOylation-defective K187R-ROR-γt mutant form of ROR-γt.
The expression of WT and mutant K187R-ROR-γt was analyzed
by immunoblotting (Fig. 2d). To investigate if SUMOylation of
ROR-γt at the K187 regulates IL-17 transcription, we performed
IL-17-promoter-driven luciferase assay in Jurkat T cells that were
transfected with WT-ROR-γt or K187R-ROR-γt along with Ubc9,
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SUMO1, and pGL4-mIL-17 promoter constructs. Following PMA
and ionomycin stimulation, reporter analysis revealed that the
WT-ROR-γt but not the K187R-ROR-γt mutant inhibited IL-17-
promoter-driven luciferase activity, suggesting that SUMOylation
of ROR-γt inhibits IL-17 expression (Fig. 2e). Furthermore, WT-
Ubc9, but not the catalytic mutant Ubc9-C93A, inhibited IL-17-
promoter-driven luciferase activity (Fig. 2f). Finally, shRNA-
mediated depletion of Ubc9 in cLPLs revealed that Ubc9 deple-
tion substantially elevated IL-17A expression, consistent with the
model that SUMOylation of ROR-γt represses IL-17 expression
(Fig. 2g).

To further confirm that Ubc9-mediated SUMOylation of ROR-
γt inhibits IL-17 expression, we depleted Ubc9 using shRNA in
ROR-γt–/– CD4+ T cells expressing either WT-ROR-γt or
K187R-ROR-γt. Ubc9 depletion in CD4+ T cells expressing
WT-ROR-γt but, not K187R-ROR-γt, resulted in elevated IL-17
expression (Fig. 2h–j). Together, these findings reinforce the
concept that SUMOylation of ROR-γt inhibits IL-17 expression.

SUMOylation-defective Th17 cells are highly colitogenic. To
investigate the physiological impact of ROR-γt SUMOylation on
the regulation of IL-17-mediated inflammation in vivo, we uti-
lized the Th17 cell adoptive transfer colitis model15,16. Naive
CD4+ T cells from ROR-γt−/− mice were reconstituted with WT-
ROR-γt or the K187R-ROR-γt mutant and these cells were dif-
ferentiated under Th17-polarizing conditions. The live cells were
recovered using Lympholyte, and 5 × 105 cells were adoptively
transferred into Rag1–/– mice12. The recipient mice were mon-
itored for signs of disease, including weight loss, fecal blood, and
loose stool. The mice were killed 6 weeks after transfer, and the
severity of colitis and IL-17 expression was assayed. Rag1−/−

mice that received Th17 cells expressing a SUMOylation-deficient
mutant of ROR-γt (K187R-ROR-γt) exhibited greater loss of
body weight, higher fecal occult blood and diarrhea scores,
splenomegaly, and higher weight-to-length ratio of the colon
compared with host mice that received Th17 cells expressing
WT-ROR-γt (Fig. 3a–f). As expected, the expression of IL-17a
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Fig. 1 Ubc9 interacts with and SUMOylates ROR-γt. a Lysate was prepared from cLPLs of WT mice and subjected to immunoprecipitation with anti–ROR-γt
antibody or control IgG antibody. The precipitated proteins were subjected to SDS-PAGE and in-gel digestion. The resulting peptides were analyzed by
high-resolution MS/MS. Ubc9 (SwissProt #P63280) was identified as a specific interactor of ROR-γt protein. An MS/MS spectrum of the peptide
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with anti–ROR-γt antibody or control IgG antibody. The immunoprecipitates were immunoblotted with anti-SUMO1 antibody. The data are representative
of three or more independent experiments
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mRNA was higher in the colonic mucosa, and the secretion of IL-
17A was higher in the colonic explant culture of Rag1−/− mice
that received Th17 cells expressing K187R-ROR-γt (Fig. 3g, h).
Histologic analysis documented greater infiltration of inflamma-
tory cells, more crypt damage, and higher disease scores in the
Rag1−/− mice that received Th17 cells expressing K187R-ROR-γt
relative to host mice that received Th17 cells expressing WT-
ROR-γt (Fig. 3i, j). No gross signs of autoimmunity were
observed in the liver, kidney, or spinal cord of these mice (Sup-
plementary Fig. 3).

To further confirm the colitogenicity of SUMOylation-
defective Th17 cells, adoptive transfer experiments were
performed with undifferentiated ROR-γt–/– CD4+ T cells expres-
sing either WT-ROR-γt or K187R-ROR-γt into Rag1–/– mice.
Rag1–/– mice that received T cells expressing K187R-ROR-γt
exhibited greater loss of body weight, higher diarrhea scores, and

higher weight-to-length ratio of the colon compared to mice that
received T cells expressing WT-ROR-γt (Supplementary Fig. 4a-
d). These mice exhibited higher IL-17a mRNA levels in the
colonic mucosa, and colonic cultures showed higher IL-17A
secretion than the WT-ROR-γt controls (Supplementary Fig. 4e-
f); and, correspondingly, histologic analysis showed greater
infiltration of inflammatory cells, more crypt damage, and higher
diseases scores in the Rag1–/– mice receiving T cells expressing
K187R-ROR-γt relative to those receiving T cells expressing WT-
ROR-γt (Supplementary Fig. 4g–h). Together, these findings
support a critical role for SUMOylation of ROR-γt in the control
of pathogenic colonic inflammation.

SUMOylation facilitates the binding of HDAC2 to ROR-γt.
Next, we sought to investigate how SUMOylation of ROR-γt
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represses IL-17 transcription. We recently reported that the
ubiquitin ligase Itch targets ROR-γt for ubiquitination. Generally,
the SUMO and ubiquitination pathways have an antagonistic
relationship9. However, in some instances, SUMOylation has
been shown to promote protein ubiquitination17,18. Therefore, we
investigated whether SUMOylation and ubiquitination occur at
the same lysine residue and thus co-regulate ROR-γt ubiquiti-
nation. To that end, we transiently transfected WT-ROR-γt and
K187R-ROR-γt along with HA-Ub and Myc-Itch, which showed
no change in ubiquitination of K187R-ROR-γt compared to WT-
ROR-γt (Supplementary Fig. 5a). Similarly, the K187R-ROR-γt
mutation did not affect ROR-γt protein turnover (Supplementary
Fig. 5b). We conclude that SUMOylation regulates ROR-γt
function independently of its ubiquitination.

Since the DNA binding ability of the transcription factors can
be modulated by SUMOylation of transcription factors9–11, we
analyzed if the K187R mutation of ROR-γt affected its binding to
the IL-17 promoter. As shown in Supplementary Fig. 5c,
chromatin immunoprecipitation (ChIP) analysis showed similar
binding of K187R-ROR-γt and WT-ROR-γt. Similarly, the
K187R-ROR-γt mutant interacted with Foxp3 and
Runx1 similar to WT-ROR-γt, suggesting that SUMOylation
does not affect the interaction of ROR-γt with Foxp3 and Runx1
(Supplementary Fig. 5d–e).

It has been shown that SUMOylation represses the function of
transcription factors by recruiting histone-modifying enzymes9–11.
Intriguingly, our MS data identified HDAC2 as a potential ROR-
γt-interacting protein (Supplementary Fig. 6a; peptide
202YGEYFPGTGDLR213). These data, coupled with the purported
role of HDAC2-mediated histone deacetylation as a negative
regulator of inflammation19–22, prompted us to hypothesize that
HDAC2 binds to ROR-γt to inhibit IL-17 expression. To address
this possibility, we immunoprecipitated ROR-γt using the cLPLs
lysate from naive C57BL/6 mice for western blotting. The
membrane was blotted with anti-HDAC2 antibody, revealing a
physical interaction between ROR-γt and HDAC2 (Fig. 4a). We
also tested whether the SUMOylation of ROR-γt facilitates its
interaction with HDAC2. We immunoprecipitated ROR-γt using
Th17 cells that expressed WT-ROR-γt or K187R-ROR-γt. The
immunoprecipitated samples were blotted with anti-HDAC2
antibody, and we found that only WT-ROR-γt interacts with
HDAC2 (Fig. 4b), confirming that SUMOylation of ROR-γt
facilitates interaction with HDAC2. In contrast, analysis of
SUMOylated ROR-γt interaction with HDAC1, which is known
to interact with ROR-γt23, revealed that WT-ROR-γt and K187R-
ROR-γt bind equally to HDAC1 (Supplementary Fig. 6b).

To confirm the physical interaction of HDAC2 with the IL-17
promoter, ChIP assays were performed on cLPLs from naive
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C57BL/6 mice using anti-HDAC2, anti-ROR-γt, or control
antibody (IgG). As shown in Fig. 4c, HDAC2 engages the IL-17
promoter. To assess whether the SUMOylation of ROR-γt
facilitates HDAC2 recruitment to the IL-17 promoter, ChIP
assays were performed with Th17 cells that expressed WT-ROR-
γt or K187R-ROR-γt. As shown in Fig. 4d, HDAC2 associates
with the IL-17 promoter only in Th17 cells that express WT-
ROR-γt but not the SUMOylation-deficient mutant of ROR-γt
(K187R-ROR-γt). These findings support the view that SUMOy-
lation of ROR-γt is necessary for binding of HDAC2 to the IL-17
promoter.

HDAC2 inhibits IL-17 expression. Next, IL-17-promoter-driven
luciferase assays were performed to assess the model that ROR-γt
SUMOylation inhibits IL-17 expression by facilitating the
recruitment of HDAC2 to the IL-17 promoter. Using the Jurkat T
cell model, WT-ROR-γt or K187R-ROR-γt expression vectors
were transfected along with HDAC2 and the pGL4-mIL-17
promoter construct. On the following day, cultures were stimu-
lated with PMA and ionomycin and harvested to measure luci-
ferase activity. As shown in Fig. 4e, luciferase activity was
inhibited when HDAC2 was expressed with WT-ROR-γt, but not
when HDAC2 was expressed with the K187R-ROR-γt mutant,
consistent with the possibility that SUMOylation of ROR-γt
recruits HDAC2 to the IL-17 promoter and represses IL-17
expression. For confirmation, we used a catalytically inactive

HDAC2 mutant in which a conserved histidine is replaced with
alanine (HDAC2-H141A)24. Expression of the HDAC2-H141A
mutant did not inhibit IL-17-promoter-driven luciferase activity
(Fig. 4e), indicating that the catalytic activity of HDAC2 was
essential for inhibition of ROR-γt transcriptional activity. Fur-
thermore, shRNA-mediated knockdown of HDAC2 in cLPLs
resulted in significant increases in IL-17A expression (Fig. 5a).
Finally, we generated CD4+ T cell-specific conditional HDAC2
knockout mice (floxed-HDAC2 plus CD4-cre alleles). Flow
cytometric analysis did not show any significant difference in the
numbers of CD4+ or CD8+ T cells between the spleen, lymph
node, and thymus of WT and HDAC2f/f CD4-Cre mice. Simi-
larly, the percentages of CD4+CD25+Foxp3+ T cells, naïve cells,
and effector memory cells were comparable between HDAC2f/f

CD4-Cre and WT mice (Supplementary Fig. 7a–d). Moreover,
HDAC2 deficiency did not affect T cell proliferation or survival
(Supplementary Fig. 8a–b). We then isolated naive CD4+ T cells
from HDAC2f/f CD4-Cre mice and C57BL/6 mice that were
differentiated under Th17-inducing conditions and checked for
IL-17 expression by ELISA and real-time PCR (Fig. 5b). We
observed markedly more IL-17A expression in the HDAC2f/f

CD4-Cre Th17 cells than in the WT Th17 cells. HDAC2 defi-
ciency did not affect the differentiation of T cells into Th1 and
Tregs, although a moderate increase in IL-4 production was
detected in HDAC2f/f CD4-Cre Th2 cells (Supplementary
Fig. 9a–c).
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To gain further evidence for HDAC2-mediated regulation of
ROR-γt, we knocked down ROR-γt in HDAC2f/f CD4-Cre CD4+

T cells using shRNA. The cells were then differentiated under
Th17-inducing conditions, and the level of IL-17 expression was
analyzed by real-time PCR and ELISA. As shown in Fig. 5c–e,
ROR-γt depletion substantially attenuated IL-17A expression.
Thus, SUMOylation of ROR-γt inhibits IL-17 expression via
HDAC2 (Fig. 5f).

The central role of IL-17 has been highlighted in several human
inflammatory diseases including inflammatory bowel diseases,
rheumatoid arthritis, and multiple sclerosis3,25,26. To gain in vivo
evidence for HDAC2-mediated regulation of IL-17-mediated
inflammation, we adoptively transferred WT or HDAC2f/f CD4-
Cre CD4+CD45RBhi cells into Rag1–/– mice. HDAC2f/f CD4-Cre
cells caused greater loss of body weight, higher diarrhea score,
and a higher weight-to-length ratio of the colon than WT cells
(Supplementary Fig. 10a–d). As expected, the expression of
IL-17A was higher in the colonic mucosa of Rag1–/– mice that
received HDAC2f/f CD4-Cre cells than in mice that received
WT cells (Supplementary Fig. 10e). Histological analysis showed
greater infiltration of inflammatory cells, more crypt damage, and
higher clinical scores for Rag1–/– mice that received HDAC2f/f

CD4-Cre cells than those that received WT cells (Supplementary
Fig. 10f–g). Thus, HDAC2f/f CD4-Cre CD4+CD45RBhi cells are
highly colitogenic.

Further, we induced colitis in HDAC2f/f CD4-Cre mice using
the 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) model, where IL-
17 plays a critical role27–29. We administrated TNBS intrarectally

into HDAC2f/f CD4-Cre mice, and the severity of colitis was
compared with that of WT mice. As shown in Fig. 6a, we found
increased mortality in HDAC2f/f CD4-Cre mice compared to WT
control. We found severe body weight loss, rectal bleeding, and
diarrhea among HDAC2f/f CD4-Cre mice (Fig. 6b–d). Also,
HDAC2f/f CD4-Cre mice had shorter and thicker colons than
WT mice (Fig. 6e, f). There was also increased expression of
IL-17a mRNA in the colonic mucosa and increased IL-17A
secretion in the explant colon culture of HDAC2f/f CD4-Cre
compared to WT mice (Fig. 6g). No significant difference in the
level of IL-2, IFN-γ, and IL-4 was observed (Supplementary
Fig. 11). Histological examination showed increased infiltration of
inflammatory cells, more crypt damage, and higher disease scores
in the HDAC2f/f CD4-Cre mice (Fig. 6h–i).

To expand our understanding of the role of HDAC2-mediated
regulation of IL-17-driven inflammation in vivo, we extended our
studies to include experimental autoimmune encephalomyelitis
(EAE), a mouse model of human multiple sclerosis. We
immunized WT and HDAC2f/f CD4-Cre mice with the myelin
oligodendrocyte glycoprotein (MOG35-55) peptide in complete
Freund’s adjuvant. HDAC2f/f CD4-Cre mice developed EAE
faster and with greater severity than WT mice, as indicated by
disease scores (Supplementary Fig. 12a). As expected, the IL-17A
level was significantly higher in spinal cord as well as cultured
splenocytes of HDAC2f/f CD4-Cre mice (Supplementary
Fig. 12b–c). No significant difference in the level of IL-2, IFN-γ,
and IL-4 was observed (Supplementary Fig. 12d–f). Histological
analysis of H&E-stained sections showed increased infiltration of
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inflammatory cells into the spinal cords of HDAC2f/f CD4-Cre
mice compared to WT mice (Supplementary Fig. 12g–h).
Together, these data strongly support a role for HDAC2 in the
repression of IL-17 expression and pathogenic autoimmune
inflammation.

Discussion
SUMOylation is an evolutionarily conserved post-translational
modification that has a central regulatory role in eukaryotic
cells9–11, but its function is not well studied in immune cells.
Here, we show that SUMOylation represses IL-17 gene expres-
sion, which encodes a major proinflammatory cytokine. The
SUMO-conjugating enzyme Ubc9 recognizes a conserved GKAE
motif within IL-17-inducing transcription factor ROR-γt. CD4+

T cells expressing SUMOylation-defective ROR-γt produce
elevated levels of IL-17 and are highly colitogenic upon transfer
to Rag1−/− mice. SUMOylated ROR-γt recruits HDAC2 to the
IL-17 promoter to repress gene expression. Our findings show
a Ubc9–ROR-γt-IL-17 pathway that serves a critical role in
the regulation of IL-17 expression and hence IL-17-mediated
inflammation.

While robust IL-17 responses are essential for the clearance of
pathogens, chronic IL-17 responses can provoke various diseases
including psoriasis, rheumatoid arthritis, spondylitis, multiple

sclerosis, and inflammatory bowel diseases2,30. Our studies show
that ROR-γt is the master transcription factor that controls IL-17
expression, making this molecule an attractive drug target for
precisely controlling IL-17-mediated immunity8. Prior studies
have focused on how ROR-γt expression is regulated and its
role in differentiation of Th17 and innate lymphoid cells. How-
ever, there is a limited understanding of how ROR-γt function
to modulate IL-17 expression is spatiotemporally regulated
in response to inflammatory stimuli without causing excessive
inflammation.

Our study uncovers a detailed mechanism that attenuates IL-17
expression via ROR-γt SUMOylation, which holds therapeutic
potential for clinically boosting IL-17 immunity against patho-
gens or preventing pathological Th17-mediated autoimmunity by
controlling the ROR-γt/IL-17 pathways.

Recent reports have provided insights into the regulation
of ROR-γt protein stability by the ubiquitin-proteasome
pathway7,31. We showed earlier that the E3 ubiquitin ligase
Itch promotes ROR-γt degradation by ubiquitinating it12. The
deubiquitinases USP17 and USP4 have been shown to stabilize
ROR-γt by decreasing ROR-γt ubiquitination32,33. Additionally,
DUBA (OTUD5), another deubiquitinase, has also been shown
to regulate ROR-γt protein stability. Although cross-talk between
ubiquitination and SUMOylation is known9, our studies showed
no apparent effect of SUMOylation on ROR-γt protein stability,
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suggesting distinct regulatory roles for ubiquitination and
SUMOylation of ROR-γt. However, we do not exclude the pos-
sibility of other modification, including acetylation or methyla-
tion, at K187 of ROR-γt.

In addition to Ubc9, SUMOylation in vivo requires SUMO-E3
ligases, which increase the rate of SUMO conjugation9–11.
In addition to PIAS1, PIAS3, PIASxα, PIASxβ, PIASy, and
RanBP29–11, certain TRIM family members can act as SUMO-E3
ligases that utilize Ubc9 as an E234. At present, which SUMO E3
ligase promotes ROR-γt SUMOylation remains unclear. Also,
SUMOylation is a reversible process and is regulated by SUMO-
specific proteases (SENPs) that include SENP1, SENP2, SENP3,
SENP5, SENP6, SENP7, and SENP835. Whether these SENPs
are involved in deSUMOylation of ROR-γt requires further
investigation.

Histone acetylation by acetyl transferases and deacetylation by
HDACs play a critical role in regulating chromatin structure and
gene expression36. It has been shown that HDAC1 binds to ROR-
γt and reciprocally regulates IL-17 expression with the acetylase
p30023. Our studies show that the binding of HDAC1 is inde-
pendent of ROR-γt SUMOylation, which suggests a distinct role
for HDAC1 and HDAC2 in regulating ROR-γt transcriptional
activity. Our results also show that CD4+ T cell-specific condi-
tional deletion of HDAC2 exacerbates colitis and EAE, and this
is associated with elevated IL-17 expression. These results are in
line with a recent report that HDAC2-/+ (heterozygous) mice
developed severe airway inflammation that was induced by
cigarette smoke, and deletion of IL-17A attenuated smoke-
induced airway remodeling in these mice37. However, we do not
exclude the possibility of defect in acetylation of ROR-γt or other
factors that may contribute to the observed phenotype in
HDAC2f/f CD4-Cre mice.

In summary, our study has revealed a detailed mechanism by
which IL-17-mediated inflammation is regulated by SUMOyla-
tion of ROR-γt. Further exploration of this pathway can expand
our knowledge of post-translational regulation of immune cell
function and help to devise strategies to treat inflammatory
diseases.

Methods
Mice. C57BL/6, Rag1−/−, and Rorctm1Litt/J ROR−/− mice were purchased from
Jackson Laboratory, as were HDAC2f/f mice38. CD4+ T cell-specific conditional
HDAC2 knockout mice were generated by crossing CD4-Cre mice with HDAC2f/f

mice. All mice were housed in microisolator cages in the barrier facility of Baylor
Institute for Immunology Research. All experiments were performed in accordance
with the guidelines of the Institutional Animal Care and Use Committee of Baylor
Research Institute.

Plasmids, antibodies, and reagents. The plasmid Flag-mROR-γt was created
from MIGR-mROR-γt (#24069; Addgene) and cloned into pCMV-Tag2B vector.
Flag-K187R-mROR-γt was generated by site-directed mutagenesis using Flag-
mROR-γt as a template. Myc-Ubc9 (#20082), HA-SUMO1 (#21154), SUMO2
(#48967), SUMO3 (#17361), HDAC2 (#68117), and pGL4-mIL-17pr (#20124)
were purchased from Addgene (Cambridge, MA, USA). Myc-Foxp3 and Myc-
Runx1 plasmids were generated by using the templates MIGR-mFoxp3 (#24067,
Addgene) and HA-Runx1 (#45815, Addgene), respectively. Myc-Ubc9-C93A and
Flag-HDAC2-H141A plasmids were generated by mega primer approach. Lenti-
viral expression clones of mROR-γt and K187R-mROR-γt were constructed by first
subcloning into the pENTR-3C entry vector (Invitrogen, Carlsbad, CA, USA) and
then L-R recombined to pLenti6.2/N-Lumio/V5-DEST. The sequences of all clones
were verified. Antibodies used in these studies were anti-c-Myc (1:1000; #9E10,
Santa Cruz, Dallas, TX, USA), anti-HDAC1 (1:1000; #10E2, Cell Signaling Tech-
nology, Danvers, MA, USA), anti-HDAC2 (1:1000; #C-8, Santa Cruz), anti-
SUMO1 (1:500; #FL-101, Santa Cruz), anti-HDAC2 (#ab12169, Abcam, Cam-
bridge, UK) for ChIP assay, anti-Flag (1:3000; #M2, Sigma, St. Louis, MO, USA),
anti-β-actin (1:2000; #AC-15, Sigma), anti–ROR-γt (1:800; BD Bioscience, Franklin
Lakes, NJ, USA), anti–ROR-γt (clone #AKFS9, eBioscience, San Diego, CA, USA)
for ChIP assay, anti-hemagglutinin (HA) (1:1000; #Y-11, Santa Cruz), V5 antibody
(1:4000; #R960-25, Invitrogen), and Clean-BlotTM IP detection reagent (HRP)
(1:50; Pierce Biotechnology, Waltham, MA, USA). Resazurin Sodium Salt (#R7017)
was from Sigma-Aldrich (St. Louis, MO, USA) and the CFSE cell division tracker

kit (#423801) was from Biolegend (San Diego, CA, USA). Fc block (#553142, BD
Bioscience), Live Dead Aqua (#L34957, Invitrogen), anti-CD4-FITC (clone GK1.5,
#11-0041-85, eBioscience), anti-CD8-PerCp-cy5.5 (clone 53-6.7, #551162, BD
Pharmingen, Franklin Lakes, NJ, USA), anti-CD44-FITC (clone IM7, #553133, BD
Pharmingen), anti-CD62L-APC-efluorTM 780 (clone MEL-14, #47-0621-82,
eBioscience), anti-CD4-PE (clone GK1.5, #553730, BD Pharmingen), anti-CD25-
PE (clone PC61.5, #12-0251-81, eBioscience), CD4-APC (Clone GK1.5, #17-0041-
81, eBioscience), and Foxp3-PE (FJK-16s, #12-5773-80, eBioscience) were used for
flow cytometry experiments. Ready-SET-Go! ELISA kit for mouse IL-17 was
purchased from eBioscience. The Dual-Luciferase Reporter Assay System kit was
purchased from Promega (Madison, WI, USA). The Amaxa Cell Line Nucleofector
kit was purchased from Lonza (Basel, Switzerland). Ubc9 (sc-36774-V), ROR-γt
(sc-38881-V), and HDAC2 (sc-29346-V) shRNA lentiviral particles were pur-
chased from Santa Cruz Biotechnology. Anti-CD28 (clone-37.51, #102101), anti-
CD3 (clone-145-2C11, #100313), anti-IL4 (clone-11B11, #504102), and anti-IFN-γ
(clone-XMG1.2, #505802) were purchased from BioLegend. Recombinant murine
IL-6 (#216-16-B), recombinant murine IL-12 (#212-12), recombinant human TGF-
β (#100-21), and recombinant murine IL-4 (#214-14) were purchased from
PeproTech.

Cell culture and transfection assay. 293 T and 293FT cells (R700-07) were
purchased from Invitrogen, and Jurkat T cells were purchased from ATCC. The
medium used for these cell lines was Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum. Transfections were carried out using
Lipofectamine 2000 (Invitrogen), except for Jurkat T cells, which underwent
electroporation with the Amaxa kit according to the manufacturer’s instructions.
The luciferase assay was performed using the luciferase reporter gene assay kit
(Promega) according to the manufacturer’s instructions. One day before trans-
fection, 5 × 105 cells were seeded in 6-well culture plates, and the assay was per-
formed after 30 h of transfection.

CD4+ T cell differentiation and lentiviral transduction. CD4+ T cells were
purified from splenocytes by magnetic activated cell sorting beads according to the
manufacturer’s protocol (Miltenyi Biotec, Bergisch Gladbach, Germany). The pur-
ified CD4+ T cells were transduced with lentivirus expressing WT-ROR-γt or
K187R-ROR-γt and differentiated under Th17 polarizing conditions The cells were
then restimulated with 50 ng ml-1 PMA and 1 μg ml−1 ionomycin for 4 h, and
ELISA was performed from culture supernatants. For differentiation, 3 ngml−1 of
IL-12 was used for Th1, 10 ngml−1 of IL-4 for Th2, 1 μg ml−1 of α-IFN-γ, and
5 ngml−1 of TGF-β for Treg, and culture for 5–7 days.

Luciferase assay. Jurkat T cells were transfected with Ubc9, SUMO1, the IL-17
promoter plasmid, and either WT-ROR-γt or K187R-ROR-γt using the Amaxa
Cell Line Nucleofector kit. After 24 h of transfection, cells were stimulated with
PMA (50 ng ml−1) and ionomycin (1 μg ml−1). Lysates were prepared using the
Dual-Luciferase Reporter Assay System kit, and luminescence was measured.

Immunoblot analysis and immunoprecipitation. Cells were lysed in a NP-40 lysis
buffer (50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1% NP-40, supplemented with
cocktail protease inhibitor). Protein estimations were done using the Pierce BCA
protein assay kit according to the manufacturer’s protocol. Protein samples were
resolved on SDS-PAGE and were transferred to the polyvinylidene difluoride
(PVDF) membrane by a wet blot system (Bio-Rad, Hercules, CA, USA). Post-
transfer, the membrane was transferred to a blocking buffer (phosphate-buffered
saline, 5% skimmed milk, and 0.1% Tween-20) for 1 h at room temperature. After
incubation, the blot was washed 3 times (10 min each) with washing buffer (Tris-
buffered saline and 0.1% Tween-20). Subsequently, the membrane was incubated
overnight at 4 °C with primary antibodies diluted in blocking buffer followed by
washing 3 times (10 min each) with washing buffer. The membrane was then
incubated with secondary antibodies conjugated to poly-horseradish peroxidase
(HRP) for another 1 h at room temperature. After subsequent washing, a blot was
developed with ECL (Amersam, Little Chalfont, UK) western blotting detection
reagents. For immunoprecipitation, cells were harvested and lysed in NP-40 buffer
at 4 °C for 20 min. After centrifugation, supernatant was transferred to fresh tubes.
Approximately 10% of the whole-cell lysate was used as input. Whole-cell lysates
were precleared with 20 μL of Protein A/G plus agarose beads (Millipore, Billerica,
MA, USA) for 1 h at 4 °C. Lysates were then incubated with 1 μg of the desired
antibody overnight at 4 °C followed by 1 h incubation at 4 °C with 25 μL of Protein
A/G beads. The immunocomplexes were washed 5 times with NP-40 buffer,
denatured using 4× Laemmli buffer, separated by SDS-PAGE, transferred to PVDF
membranes, and analyzed by immunoblotting. Clean-BlotTM IP detection reagent
(HRP) was used as a secondary antibody in all immunoprecipitation assays.

Protein identification by liquid chromatography-tandem MS. Total lysates were
prepared from cLPLs of WT mice followed by immunoprecipitation with anti-
ROR-γt antibody or control antibody (IgG). Immunoprecipitated proteins were
separated by SDS-PAGE. In-gel digestion with trypsin, followed by protein
identification using liquid chromatography-tandem MS, was performed. Briefly,
tryptic peptides were resolved on a nano-liquid chromatography column
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(Magic AQ C18; Michrom Bioresources, Auburn, CA, USA) and introduced into
an Orbitrap mass spectrometer (Thermo Scientific, Waltham, MA, USA). The
Orbitrap was set to collect a high-resolution MS1 (FWHM 30,000@400 m/z), fol-
lowed by the data-dependent collision-induced dissociation spectra on the “top 9”
ions in the linear ion trap. Spectra were searched against a human protein database
(UniProt release 2011_05) using the X!Tandem/TPP software suite39. Proteins
identified with a Protein Prophet probability ≥ 0.9 and a false discovery rate <2%
were considered for further analysis.

Ubiquitination assay. 293 T cells were transfected with either Flag-WT-ROR-γt or
Flag-K187R-ROR-γt along with Myc-Itch and HA-Ub. MG132 was added 4 h
before cell lysis. Cells were washed 3 times with phosphate-buffered saline and
lysed in NP-40 lysis buffer. Immunoprecipitation was performed using anti-Flag
antibody. ROR-γt-associated ubiquitin was analyzed by immunoblot using anti-
HA antibody.

SUMOylation assay. To assess SUMOylation of ROR-γt, 293 T cells expressing
HA-SUMO1, Myc-Ubc9, and Flag-ROR-γt or Flag-K187R-ROR-γt were lysed in
lysis buffer (NP-40 lysis buffer containing 20 mM N-ethylmeimide, 1% SDS) and
incubated for 10 min at 95 °C. Finally, samples were diluted with NP-40 lysis buffer
containing 20 mM N-ethylmaleimide prior to immunoprecipitation. Protein
immunoprecipitation studies were performed using anti-Flag antibody and
immunoblotted with anti-HA antibody to detect the SUMOylated form of ROR-γt.

RNA-Seq library preparation and data analysis. RNA was isolated from Th17
cells expressing either WT-ROR-γt or a SUMO-deficient mutant of ROR-γt using
Qiagen RNA easy mini kit. Poly-A enriched NGS library construction was per-
formed using the KAPA mRNA HyperPrep Kit (KAPA Biosystems, Wilmington,
MA, USA) according to the manufacturer’s protocol. Quality of the individual
libraries was assessed using the High Sensitivity DNA Kit (Agilent, Santa Clara,
CA, USA). Individual libraries were quantitated via qPCR using the KAPA Library
Quantification Kit, Universal (KAPA Biosystems) and equimolar pooled. Final
pooled libraries were sequenced on an Illumina NextSeq 500 with paired-end 75
bases read lengths. Sequencing read quality was evaluated using FastQC. Reads
after quality and adapter trimming by Cutadapt were aligned with HiSat2 to
GRCm38. Read counts were generated by the featureCounts program using the
annotations from GENCODE M15. Differential gene expression analysis was
performed using DESeq2.

Real-time PCR analysis. Total RNA was prepared using the RNeasy Mini kit
(Qiagen, Hilden, Germany) followed by cDNA synthesis using the Verso cDNA Kit
(Thermo Scientific, Waltham, MA, USA). Quantitative real-time PCR was per-
formed on a Mastercycler Realplex2 (Eppendorf, Hamburg, Germany) using
lightCycler 480 SYBR-Green Master Mix (Roche, Basel, Switzerland). All reactions
were completed in triplicate. The expression of individual genes was normalized to
the expression of actin. The following cycling parameters were used: 95 °C for 2
min, followed by 40 cycles of 95 °C for 15 s, an annealing temperature of 55 °C for
15 s, and 72 °C for 20 s. The primer sequences for the genes are as follows:

IL-17A forward primer: 5ʹ-TTTAACTCCCTTGGCGCAAAA-3ʹ
IL-17A reverse primer: 5ʹ-CTTTCCCTCCGCATTGACAC-3ʹ
IL-17F forward primer: 5ʹ-CTGGAGGATAACACTGTGAGAGT-3ʹ
IL-17F reverse primer: 5ʹ-TGCTGAATGGCGACGGAGTTC-3ʹ
ROR-γt forward primer: 5ʹ-TACCTTGGCCAAAACAGAGG-3ʹ
ROR-γt reverse primer: 5ʹ-ATGCCTGGTTTCCTCAAAA-3ʹ
mIL23R forward primer: 5′-GCTCGGATTTGGTATAAAGG-3′
mIL23R reverse primer: 5ʹ- ACTTGGTATCTATGTAGGTAGG-3ʹ
mFoxp3 forward primer: 5ʹ-CCCATCCCCAGGAGTCTTG-3ʹ
mFoxp3 reverse primer: 5ʹ-ACCATGACTAGGGGCACTGTA-3ʹ
mIL-4 forward primer: 5ʹ-GGTCTCAACCCCCAGCTAG-3ʹ
mIL-4 reverse primer: 5ʹ-GCCGATGATCTCTCTCAAGT-3ʹ
mIL-2 forward primer: 5ʹ-GTGCTCCTTGTCAACAGCG-3ʹ
mIL-2 reverse primer: 5ʹ-GGGGAGTTTCAGGTTCCTGTA-3ʹ
mIFN-γ forward primer: 5ʹ-GAACTGGCAAAAGGATGGTGA-3ʹ
mIFN-γ reverse primer: 5ʹ-TGTGGGTTGTTGACCTCAAAC-3ʹ
β-Actin forward primer: 5ʹ-GAAATCGTGCGTGACATCAAAG-3ʹ
β-Actin reverse primer: 5ʹ-TGTAGTTTCATGGATGCCACAG-3ʹ

Adoptive transfer of Th17 cells. The CD4+CD25–CD45RBhi cells were trans-
duced with lentivirus expressing either WT-ROR-γt or K187R-ROR-γt and cul-
tured under Th17 conditions as described above. The lentiviral-transduced Th17
cells (5 × 105 cells/mice) were injected intraperitoneally into 8-week-old Rag1−/−

mice, and the mice were monitored for body weight and diarrhea score up to
6 weeks.

Chromatin immunoprecipitation assay. The cells were cross-linked with 1% (v/v)
methanol-free formaldehyde for 10 min (histone modification) and processed
according to the protocol described in the Chromatin Immunoprecipitation Assay
Kit (Millipore). Antibody chromatin complexes were pulled down using protein A/

G beads, washed, and then eluted. After cross-link reversal and proteinase K
treatment, immunoprecipitated DNA was purified using the ChIP DNA Clean kit
(Zymo Research, Irvine, CA, USA). PCR was carried out with appropriate primers.
An equal amount of chromatin solution was precipitated. IgG antibody was used as
a negative control. The primer sequences for PCR are as follows:

mIL-17 promoter forward primer: 5ʹ-GACAGATGTTGCCCGTCATA-3ʹ
mIL-17 promoter reverse primer: 5ʹ-CAACAAGCGCCTTGTACATTAG-3ʹ

TNBS-induced colitis. Colitis was induced in 6-to-8-week-old mice by pre-
sensitizing their skin with 150 μl of 1% TNBS (Sigma, St Louis, MO) in an acetone/
olive oil mix (4:1) followed by rectal administration of 2.5% TNBS in ethanol after
7 days of presensitization. Control mice were treated with 50 μl of 50% ethanol
alone. Body weight was measured every day and calculated as percent change in
weight compared to baseline. Mice were killed on day 8 after rectal administration
of TNBS. Stool consistency, occult blood, and histology were scored. Briefly, stool
scores were calculated as follows: 0=well-formed pellets, 2= semiformed stool,
and 4= liquid stool that adhered to the anus. Bleeding scores were calculated as
follows: 0= no blood, 2= visible blood traces in stool, and 4= gross rectal
bleeding. Stool consistency scores and bleeding scores were added and presented as
clinical scores. Histology were calculated as follows: 0= no evidence of inflam-
mation, 1= low level of inflammation, with scattered infiltrating mononuclear
cells, 2=moderate inflammation, 3= high level of inflammation, with increased
vascular density and marked wall thickening, 4=maximal severity of inflamma-
tion with complete crypt loss.

Cell proliferation assay. Purified CD4+ T cells were labeled with 5 μM CFSE for
10 min at 37 °C and cultured in the presence of α-CD3 and α-CD28 antibodies for
72 h. Cell proliferation was analyzed by FACS according to CFSE dilution and cell
number counts. Cell viability was measured using Resazurin Sodium Salt (#R7017,
Sigma). Purified CD4+ T cells were incubated 1-4 h with 0.01% Resazurin Sodium
Salt and fluorescence intensity was measured.

Experimental encephalitis model. Wild type (WT) and HDAC2f/f CD4-Cre mice
10–12 weeks of age were immunized subcutaneously on day 0 with 100 μg MOG
(35–55) peptide. Pertussis toxin in 100 μl saline was injected subcutaneously twice
(once each on days 0 and 1). Disease severity was assigned scores on the following
scale: 0, no disease; 0.5, stiff tail; 1, limp tail; 1.5, limp tail with inability to right; 2,
paralysis of one limb; 2.5, paralysis of one limb and weakness of another limb; 3,
complete paralysis of both hind limbs; 4 moribund; 5, death.

T cell–induced colitis. Splenocytes from WT and HDAC2f/f CD4-Cre mice were
enriched for CD4+ T cells by using the CD4+ T Cell Isolation Kit (MACS Miltenyi
Biotech). Cells were then stained with antibodies against PE–CD45RB (16 A) and
FITC-CD4 (GK1.5) (all from BD Pharmingen) and were then sorted for CD4
+CD45RBhi populations. Rag1–/– mice were injected intraperitoneally with 5 × 105

CD4+CD45RBhi cells and monitored for body weight and diarrhea score up to
6 weeks.

Densitometry analysis. To measure the levels of SUMOylated protein, the
intensity of SUMOylated and unSUMOylated bands was quantified by densito-
metry using ImageJ version 1.43 software (National Institutes of Health, Bethesda,
MD, USA). We considered the densitometry values of SUMOylated and unSU-
MOylated areas as 100% protein. From this value, we then calculated the per-
centage of SUMOylated and unSUMOylated proteins.

Statistical analysis. The data were analyzed with GraphPad Prism 4 software
(La Jolla, CA, USA) to determine statistical significance using the paired Student’s
t-test. The data are expressed as mean ± S.D. A p-value < 0.05 was considered
significant.

Data availability
The raw data for RNAseq analysis have been deposited in the GEO data base under
accession code GSE116407. The authors declare that all data supporting the
findings of this study are available within the article and its supplementary file or
from the corresponding author upon reasonable request.
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