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Abstract

The arylamine N-acetyltransferase (NAT) nomenclature committee assigns functional phenotypes 

for human NAT1 alleles in those instances in which the committee determined a consensus has 

been achieved in the scientific literature. In the most recent nomenclature update, the committee 

announced that functional phenotypes for NAT1*10 and NAT1*11 alleles were not provided due 

to lack of consensus. Phenotypic inconsistencies observed among various studies for NAT1*10 
and NAT1*11 may be due to variable allelic expression among different tissues, the limitations of 

the genotyping assays (which mostly relied on techniques not involving direct DNA sequencing), 

the differences in recombinant protein expression systems used (bacteria, yeast, mammalian cell 

lines) and/or the known inherent instability of human NAT1 protein which requires very careful 

handling of native and recombinant cell lysates. Three recent studies provide consistent evidence 

of the mechanistic basis underlying the functional phenotype of NAT1*10 and NAT1*11 as 

“increased-activity” alleles. Some NAT1 variants (e.g. NAT1*14, NAT1*17, and NAT1*22) may 

be designated as “decreased-activity” alleles and other NAT1 variants (e.g., NAT1*15 and 

NAT1*19) may be designated as “no-activity” alleles compared to the NAT1*4 reference allele. 

We propose that phenotypic designations as “rapid” and “slow” acetylator should be discontinued 

for NAT1 alleles, although these designations remain very appropriate for N-acetyltransferase 2 

(NAT2) alleles.

Genetic variants of the arylamine N-acetyltransferases are expressed in human populations 

and a consensus nomenclature for arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) 

alleles or haplotypes was initially published in Pharmacogenetics over 20 years ago [1]. 

Subsequently, additional NAT1 and NAT2 alleles appeared in the scientific literature. In 

order to achieve consensus for identification and naming of new NAT1 and NAT2 alleles, an 

arylamine N-acetyltransferase nomenclature committee was initiated [2] to establish, publish 

and maintain consensus listings of NAT1 and NAT2 alleles on a website originally housed at 

the University of Louisville and presently housed at Democritus University of Thrace (http://
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nat.mbg.duth.gr). As globally the most common functional allele, NAT1*4 has been 

assigned reference allelic status [1]. Therefore, studies comparing the sequence and 

phenotypic impact of other NAT1 alleles use NAT1*4 as a reference for comparison.

Updates and discussions of N-acetyltransferase gene nomenclature have been conducted at 

each of the seven N-acetyltransferase workshops held at three year intervals. At the 4th N-

acetyltransferase workshop held in Alexandroupolis, Greece [3], the N-acetyltransferase 

nomenclature committee was asked to post functional phenotypes for the human NAT1 and 

NAT2 alleles in those instances in which the committee determined a consensus has been 

achieved in the scientific literature. In the most recent N-acetyltransferase nomenclature 

update [4], the committee announced that functional phenotypes for NAT1 and NAT2 alleles 

were provided where consensus is evident in the scientific literature, but that functional 

phenotypes for some alleles such as NAT1*10 and NAT1*11 were not provided due to lack 

of consensus.

NAT1*10 allele

The NAT1*10 allele was first described by Vatsis and Weber [5] and is defined by two single 

nucleotide polymorphisms (SNPs) in the 3’-untranslated region (UTR) of the NAT1 gene, 

namely 1088T>A (c.*215T>A, rs1057126) and 1095C>A (c.*222C>A, rs15561) (Table 1). 

It is the most common NAT1 variant allele, with an average global population frequency of 

about 35–40%. Its allelic prevalence is highest (~53%) in East Asian populations and lowest 

(15–25%) in Europeans [6, 7] (also see the dbSNP database for rs1057126). The 3’-UTR 

polymorphisms cause no amino acid changes, but SNP 1088T>A (c.*215T>A) causes a 

change in polyA-1 (AATAAA→AAAAAA), one of multiple active consensus polyadenylation 

signals of human NAT1 gene [8–10]. NAT1*10 has been reported to be associated with 

slightly elevated NAT1 activity levels in human bladder [11, 12], colon [12], liver [9, 13], 

and white blood cells [9, 14]. Some studies also detected higher levels of carcinogen-DNA 

adducts in bladder and breast tissue of individuals carrying the NAT1*10 allele [11, 15]. As 

described by Hein et al. [16], urinary metabolites were measured in 547 healthy individuals 

administered caffeine. Probit plots of the caffeine urinary metabolites 5-acetylamino-6-

formylamino-3-methyluracil/1-methylxanthine (AFMU/1X) are normally used to separate 

rapid from slow acetylator phenotypes for NAT2 using a cut-point of 0.6, with the remaining 

activity being attributed to NAT1 [17]. This attribute was used to plot probits of AFMU/1X 

according to NAT1*4 homozygous, NAT1*10 homozygous and NAT1*4/*10 heterozygous 

genotypes. Presence of the NAT1*10 allele resulted in a gene-dose increase in acetylation in 
vivo with NAT1*10/*10 > NAT1*4/*10 > NAT1*4/*4 [16]. This trend could, however, be at 

least partially due to the reported linkage disequilibrium between NAT1*10 and NAT2*4 
alleles [18, 19], with the observed gene-dose increase in acetylation potentially attributed to 

the “rapid acetylator” NAT2*4 allele frequently co-localizing with NAT1*10 on the same 

haplotype. In contrast, in other studies, NAT1*10 did not confer higher N-acetylation in 

blood cells [20–24] or healthy tissue of bladder [25] and breast [26]. Similar observations 

were made in vivo [23, 25, 27] and when measuring carcinogen-hemoglobin [28] or 

carcinogen-DNA [26, 29] adduct formation. Furthermore, transfection of NAT1*10 did not 

increase acetylation activity in COS-1 cells [22, 30]. Consequently, numerous reviews [31–
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37] conclude that these inconsistent findings reflect lack of consensus regarding NAT1*10 
phenotype.

NAT1*11 allele

A similar lack of consensus exists for the NAT1*11 allelic group comprising haplotypes 

NAT1*11A, *11B and *11C [5, 38, 39]. Those three related but distinct haplotypes bear 

combinations of the following variations: c.−344C>T (rs4986988), c.−40A>T (rs4986989), 

c.445G>A (p.Val149Ile, rs4987076; not present in NAT1*11C), c.459G>A (p.Thr153=, 

rs4986990), c.640T>G (p.Ser214Ala, rs4986783), 1095C>A (c.*222C>A, rs15561; not 

present in NAT1*11B), and a 9 bp deletion between nucleotide positions 1065–1090 

(c.*192-c.*217, rs367921464) affecting a stretch of eight TAA repeats adjacent to 

polyadenylation signal polyA-1 [8] (Table 1). Those allelic variants are rare with an average 

global population frequency of about 1.8% and higher prevalence observed in Eurasian 

populations [6] (also see the dbSNP database for rs367921464). Previous studies with 

recombinant NAT1 variants bearing only the coding SNPs of NAT1*11 alleles did not show 

any substantial effects on NAT1 enzymatic function when expression took place in bacterial 

or yeast cells [23, 38, 40, 41]. However, the results were inconsistent between studies when 

the same variants were expressed in mammalian COS-1 cells [22, 42] or when genotype-

phenotype correlation was undertaken for NAT1*11 in blood cells [14, 21]. Inclusion of the 

3’-UTR SNPs in the NAT1*11 recombinant constructs expressed in yeast cells did not 

resolve those ambiguities [22, 30]. Consequently, the functional phenotype for NAT1*11 
alleles has remained elusive [35] and no designation is presently posted on the N-

acetyltransferase nomenclature committee database (http://nat.mbg.duth.gr).

Insights into the mechanistic basis of NAT1*10 and NAT1*11 allelic function

The aforementioned studies have attributed the phenotypic inconsistencies observed for 

NAT1*10 and NAT1*11 to the possible variable allelic expression among different tissues, 

the limitations of the genotyping assays (which mostly relied on techniques not involving 

direct DNA sequencing), the differences in recombinant protein expression systems used 

(bacteria, yeast, mammalian cell lines) and/or the known inherent instability of human NAT1 

protein which requires very careful handling of native and recombinant cell lysates.

More recent studies may provide a mechanistic basis to identify NAT1*10 and NAT1*11 
allelic function. Although the open reading frame of human NAT1 gene is contained in a 

single 873 bp exon, the gene is transcribed into mRNAs with variable 5’- and 3’-UTRs 

formed via alternative splicing of eight upstream non-coding exons and differential 

utilization of at least three downstream polyadenylation signals [8–10, 43, 44] (Figure 1). 

Using recombinant constructs expressing the sequence of the major transcript of human 

NAT1 gene (comprising upstream non-coding exons 4 and 8, as well as the coding exon and 

an adjacent 888 bp portion encompassing the 3’-UTR), Millner and colleagues [10] studied 

the effects of NAT1*10 polymorphisms relative to NAT1*4 reference allele in mammalian 

CHO cells subjected to transient or stable transfection. Although no differences between 

NAT1*4 and NAT1*10 polyadenylation pattern and no differences in mRNA stability were 

observed, nevertheless cells transfected with NAT1*10 haplotype expressed higher N- and 
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O- acetylation activity, NAT1 mRNA, and immunoreactive protein compared to cells 

transfected with NAT1*4. Incubation of these cells with the arylamine carcinogen 4-

aminobiphenyl showed higher DNA adducts and mutants in cells transfected with NAT1*10 
compared to NAT1*4. Those effects were more pronounced in cells transfected with a third 

variant (named NAT1*10B) combining NAT1*10 SNPs at positions 1088 (c.*215) and 1095 

(c.*222) with additional downstream SNPs linked together in high allelic frequencies 

according to current population data. Such polymorphisms have not been examined by 

previous genotyping studies and could explain the inconsistencies reported for NAT1*10 
phenotype in different studies [10].

In another study, Wang and colleagues [9] measured transcription and translation of 

NAT1*10 and NAT1*11 alleles, assessing the influence of various transcription start sites, 

alternative splicing of 5’-UTR exons and differential usage of polyadenylation sites, 

employing liver biopsies, B-lymphocyte samples and transfected mammalian cell lines 

(HepG2 and HEK293). The determined allele frequencies in clinical samples were 19% for 

NAT1*10 and 2.4% for NAT1*11. These alleles did not significantly affect total levels of 

NAT1 mRNA in either tissue compared to the NAT1*4 allele. The relative abundance of 

alternative transcripts, i.e. NAT1 transcripts bearing variable 5’-UTR sequences (Figure 1), 

was also similar for all three alleles. The two NAT1*11 polymorphisms found upstream of 

the gene coding region (c.−344C>T and c.−40A>T) had no effect on the transcription 

initiation site or the splicing pattern of the 5’-UTR. Moreover, no effect was evident for 

NAT1*11 coding SNPs c.445G>A (p.Val149Ile) and c.640T>G (p.Ser214Ala) on mRNA or 

enzymatic activity levels, consistent with earlier studies outlined above.

The investigators then turned their attention to the region downstream of NAT1 coding exon, 

focusing on the effects of NAT1*10 and NAT1*11 SNPs located within the 3’-UTR of the 

gene [9]. First, they undertook quantification of NAT1*4 transcripts terminated after three 

active polyadenylation signals, located at 213 (polyA-1), 331 (polyA-2) and 734 (polyA-3) 

nucleotides downstream of the coding exon (Figure 1), and determined their relative amount 

to be 30, 60 and 10%, respectively, in both livers and B-lymphocytes. However, using a 

computational algorithm, an effect was predicted on transcriptional strength of polyA-1 

signal due to the adjacent 9 bp deletion of the NAT1*11 allele, unlike NAT1*10 which was 

predicted to have no such effect. Consistent with these predictions, in ten NAT1*4/*11 
heterozygous samples (6 liver and 4 B-lymphocytes), allelic mRNA analyses showed 

NAT1*11 to increase the amount of transcript terminated after polyadenylation signals 

polyA-2 (major) and potentially polyA-3, at the expense of the shorter transcript terminated 

after polyA-1, but without apparent change in the total NAT1 mRNA levels expressed. 

Further luciferase reporter gene assays demonstrated that NAT1*11 enhances translation by 

favoring formation of transcripts with intermediate or long 3’-UTRs, additionally 

implicating three NAT1*11-linked SNPs downstream of polyA-2 signal.

Undertaking a similar investigation for the NAT1*10 allele [9], no apparent differences were 

observed between NAT1*10 and NAT1*4 allelic transcripts expressed, in terms of both the 

total amount of mRNA measured and the relative abundance of generated transcripts with 

variable 3’-UTR lengths. However, compared with NAT1*4, reporter gene assays produced 

higher levels of luciferase activity with NAT1*10 3’-UTR constructs (irrespectively of their 
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length), suggesting some enhancing effect on protein translation efficiency. The above 

findings were further corroborated by measurement of NAT1 protein/enzymatic activity in 

liver and B-cell samples genotyped as NAT1*4/*4, NAT1*4/*10, NAT1*10/*10 and 

NAT1*4/*11. An increase was evident for samples carrying the NAT1*10 allele, and this 

increase was even higher for carriers of the NAT1*11 allele.

In a more recent study, Mascarenhas and colleagues [45] undertook allele-selective whole-

transcriptome analysis to assess which allelic variants of genes are likely to be recruited 

more efficiently by the polysomes. Levels of polysome-bound mRNA (translatome) are 

better correlated with levels of expressed proteins, allowing more comprehensive insight into 

the possible effects of SNPs located within the 5’- and 3’-UTR of transcriptionally active 

genes. In the course of validating their methodology, the investigators undertook allelic RNA 

ratio analysis to compare total cellular to polysomal RNA using a heterozygous 

NAT1*4/*10 lymphoblast cell line as model. No apparent differences were observed when 

measuring the cytoplasmic mRNA ratio for the two alleles, suggesting that NAT1*10 has no 

significant effect on expression and processing of NAT1 transcripts. However, when the 

analysis was focused on polysomal mRNA, it became evident that NAT1*10 increased 

protein translation by enhancement of mRNA loading to the translational apparatus of cells 

[45]. This is a very significant finding, as it provides a mechanism by which the NAT1*10 
allele may enhance protein expression without affecting transcription of the NAT1 gene [9].

Concluding remarks

Despite some minor differences, the three studies above [9, 10, 45] succeed to reach a 

consensus about the mechanistic basis underlying the functional phenotype of NAT1*10 and 

NAT1*11 as “increased-activity” alleles compared to the NAT1*4 reference function allele. 

Some NAT1 variants (e.g. NAT1*14, NAT1*17 and NAT1*22) may be designated as 

“decreased-activity” alleles and other NAT1 variants (e.g. NAT1*15 and NAT1*19) may be 

designated as “no-activity” alleles compared to NAT1*4.

Designation of variants as “increased-function”, “decreased-function” and “no-function” 

alleles is well established for CYP2D6 gene [46]. We consider phenotypic designations 

described as “increased-activity”, “decreased-activity” and “no-activity” to be most suitable 

for NAT1 alleles. We also propose that phenotypic designations as “rapid” and “slow” 

acetylator should be discontinued for NAT1 alleles, as they have been used inconsistently 

and in different contexts in the literature, often causing confusion. For instance, some 

investigators have used the designation “rapid” allele to describe NAT1*4, while others have 

used the same designation to describe NAT1*10. Similarly, the designation “slow” allele has 

been used to describe low activity alleles (like NAT1*14, NAT1*17 and NAT1*22), but also 

prematurely terminated “null” alleles (like NAT1*15 and NAT1*19). Moreover, we consider 

the term “ultra-rapid” allele to be inappropriate for NAT1*10 and NAT1*11, in view of their 

apparently modest increases in activity. We thus propose that NAT1 variants be grouped as 

“increased-activity”, “decreased-activity” or “no-activity” alleles, with NAT1*4 as the 

“reference” allele. These designations would sufficiently incorporate the different 

mechanisms by which various NAT1 alleles may exert their phenotypic effects (e.g. via 

changes in transcription or translation, protein integrity or turnover, enzymatic activity etc.). 
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However, “rapid” and “slow” acetylator remain very appropriate phenotypic designations for 

N-acetyltransferase 2 (NAT2) alleles, where genotype-phenotype correlations are much 

more straightforward.

Whether or not the presence of NAT1*10 and/or NAT1*11 increased-activity alleles is 

sufficient to modify disease risk (particularly cancer) is subject to ongoing investigations 

discussed by several recent reviews and meta-analyses [37, 47–51]. The NAT1 isoenzyme is 

expressed in many tissues, where it is likely to compete with other xenobiotic metabolizing 

enzymes [52]. Therefore, it is difficult to predict how toxicity of xenobiotic compounds may 

be modulated by NAT1*10 and NAT1*11, as the moderate phenotypic impact of those 

alleles is likely to be influenced by a range of other factors. Furthermore, current evidence 

implicates NAT1 in carcinogenesis via mechanisms not directly relevant to allelic variation 

[37, 53–61].
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Figure 1: 
Overview of NAT1 gene structure and main alternative transcripts. The gene comprises 8 

non-coding exons differentially spliced to generate alternative transcripts with variable 5’-

UTRs. Exon 9 contains the entire open reading frame (ORF) of the gene, as well as the 

adjacent 3’-UTR terminated after three differentially utilized polyadenylation signals located 

at 213 (polyA-1), 331 (polyA-2; major) and 734 (polyA-3) nucleotides downstream of the 

coding exon. Type I transcripts (A,B) are initiated by promoter NATa located upstream of 

non-coding exon 1. Type II transcripts (A-D) are initiated by promoter NATb (major) located 

upstream of non-coding exon 4. The size of introns (in kilobases) is indicated below the 

gene. The figure was compiled from information previously published [7–9, 12] (figure not 

drawn to scale).
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