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Advances in ultrasound elasticity imaging
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Abstract The most troublesome of ultrasonic B-mode

imaging is the difficulty of accurately diagnosing cancers,

benign tumors, and cysts because they appear similar to

each other in B-mode images. The human soft tissue has

different physical characteristics of ultrasound depending

on whether it is normal or not. In particular, cancers in soft

tissue tend to be harder than the surrounding tissue. Thus,

ultrasound elasticity imaging can be advantageously used

to detect cancers. To measure elasticity, a mechanical force

is applied to a region of interest, and the degree of defor-

mation measured is rendered as an image. Depending on

the method of applying stress and measuring strain, dif-

ferent elasticity imaging modalities have been reported,

including strain imaging, sonoelastography, vibro-acous-

tography, transient elastography, acoustic radiation force

impulse imaging, supersonic imaging, and strain-rate

imaging. In this paper, we introduce various elasticity

imaging methods and explore their technical principles and

characteristics.
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Sonoelastography � Vibro-acoustography � Transient
elastography � ARFI imaging � Supersonic imaging

1 Introduction

Ultrasound imaging shows the anatomical structures of the

human body by imaging the amplitude of received echoes

from the boundaries where the acoustic impedances differ.

Since, however, the acoustic impedances between cancer-

ous and normal tissues are almost identical, cancers in soft

tissue are not clearly delineated from the surrounding tis-

sue, and thus cannot be clearly differentiated [1]. There

have been ongoing research efforts to measure intrinsic

ultrasonic properties of the soft tissue and cancer. Methods

of measuring tissue parameters and presenting their values

as image are known as tissue parameter imaging techniques

[2–8]. Among such parameters, there are the speed of

sound, attenuation coefficient, scatterer density, nonlinear

parameter, and elasticity. The values of these parameters in

lesion tissue are different from those in normal tissue to

within ± 10% [2]. In the case of using reflection mode as

in ultrasonic imaging, an accurate measurement of these

parameters is not easy. However, elasticity can be mea-

sured relatively easily compared to other parameters, and

hence the elasticity imaging mode has been rapidly com-

mercialized [9].

Elasticity imaging measures the stiffness of cancerous

tissue relative to that of the surrounding tissue and repre-

sents the spatial distribution of the stiffness as an image.

Being a traditional method of identifying lesion stiffness,

the palpation technique has been widely used to examine

the state of cancerous tissue close to the surface of the

human body as in the case of diagnosing breast cancer.

However, since the performance of the palpation technique

depends on the skill, experience, and expertise of the

examiner, methods of using ultrasound have been sought

after for more quantitative diagnosis. The measurement of

stiffness can be relatively easily accomplished using the
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reflection mode of a diagnostic ultrasound scanner. Strain

imaging is implemented by applying a force to tissue close

to the skin and measuring the displacement [7]. However,

since the strain imaging is disadvantageous in that the

resulting elasticity distribution is qualitative, the quantita-

tive shear modulus imaging is achieved by measuring the

shear wave speed quantitatively. Since the shear wave can

be generated by a high-intensity ultrasound, it neither

requires special skills on the part of the doctor nor causes

any inconvenience to the patient, aiding in tumor diagnosis.

This paper explains the physics of ultrasound related to

elasticity as well as the principles, advantages, and disad-

vantages of various known elasticity imaging methods.

2 Physics of elasticity

When tissue is subject to external force, the amount of

deformation in tissue depends on its elasticity. The

Young’s modulus is defined as [10]

E ¼ r
e
¼ F

DL
L

� � ð1Þ

where r is the applied stress, e is the strain, and F is the

force applied per unit area. Since the direction of force and

displacement is identical, the Young’s modulus is also

called compressional modulus. The shear modulus repre-

sents the amount of displacement in a configuration where

one surface is fixed and the other is free to move. The shear

modulus is defined as follows [10]:

l ¼ F
Dx
L

� � ð2Þ

In the case of the Young’s modulus, the medium either

compresses or dilates, while in the case of the shear

modulus, the medium only changes its shape without

change in its volume. Fig. 1 shows the concept of the

Young’s modulus and the shear modulus.

In practice, the human body exhibits the property of

viscoelasticity as well as elasticity. Fig. 2 is a model of the

human elasticity in which E and g represent the elasticity

of the spring member (solid) and the viscosity of the

dashpot member (fluid), respectively. One is the Voigt’s

model, and the other is the Maxwell’s model [11]. Since

the cells of the human body are filled with liquid, the tissue

exhibits the characteristic of porosity. When the tissue is

subjected to an external force, it exhibits a viscoelastic

property due to liquid flow and causes a time delay in the

movement of soft tissue. As a result, the temporal behavior

of strain in the case of a human body is not simply

described by (1).

The soft tissue of the human body is incompressible

because it does not compress under an external force

applied. Thus, the tissue alters its shape only without

change in its volume. The Poisson’s ratio m represents the

negative ratio of the transverse to axial strain, and is close

to 0.5 for the case of the tissue of the human body. The

speed of an ultrasound wave that propagates through the

human body is affected by the value of elasticity. While

propagating, a longitudinal wave compresses and expands

the medium, in which it propagates, in the direction of its

propagation. The speed cl of a longitudinal wave, whose

vibration direction is the same as the propagation direction,

is expressed as [12]

cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1� mÞ

qð1þ mÞð1� 2mÞ

s

ð3Þ

and has a value ranging from 1400 m/s to 1600 m/s. The

speed cs of a shear wave, whose vibration direction is

perpendicular to the propagation direction, is expressed as

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2qð1þ mÞ

r
�

ffiffiffiffiffiffi
l
3q

r
ð4Þ

and ranges from a few to several tens of m/s in the human

soft tissue.

Table 1 shows the categorization of elasticity imaging

methods that are known in the literature according to how

the stress is applied and how the elasticity is measured.

Up to now, among strain imaging methods, acoustic

radiation force impulse (ARFI) imaging, supersonic

imaging methods have been commercialized. In what fol-

lows, we will explain the technical principle of each

imaging method.

(a) (b)

Fig. 1 a Young’s modulus, b shear modulus

Fig. 2 A model of the viscoelastic property of the human body where

E is the elasticity, and g is the viscosity
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3 Strain imaging

For the first time, Ophir et al. imaged the elasticity of

biological tissues in 1991 [7]. They measured the amount

of deformation, i.e., the strain of a medium subjected to

external compression. For objects consisting of tissues with

different stiffness values, the soft tissue tends to deform

more than the hard tissue. Differentiating the displacements

at spatial positions, one can obtain the relative rate of

displacement change.

In practice, for the case of applying an external force to

the human body, the distribution of the stress inside the

body is difficult to estimate in reflection mode. Therefore,

only the strain is measured and imaged. Strain imaging can

be used to diagnose cancer or tumor at locations proximal

to the human skin, such as the breast, prostate, and thyroid.

The Ophir team reported the clinical test results of the

strain imaging technique until the late 1990s to verify its

efficacy [13–15].

The most important signal processing steps in strain

imaging are the estimation of displacement and displace-

ment gradient. When applying compression to the breast or

prostate, the ultrasonographer places the ultrasonic probe to

the skin, pushes it slowly, and then releases. The action is

repeated until a satisfactory strain image is obtained. The

acquisition of ultrasonic echo data proceeds as follows. Echo

data are acquired from a medium of interest before and after

applying compression to it. When subjected to the applied

compression, the scatterers in the medium undergo different

displacements depending on their elasticity. By estimating

the displacement at all imaging points before and after

applying compression and computing the change in dis-

placements relative to adjacent imaging points, one can

obtain a strain image. Fig. 3 shows the process of acquiring

ultrasonic data and estimating strain. Measuring the distance

between some point of interest before compression and that

point after compression yields strain Ssoft for the soft region

and strain Shard for the hard region, as follows:

Ssoft ¼
Ls � L0s

Ls
; Shard ¼

Lh � L0h
Lh

ð5Þ

where Ssoft [ Shard.

Displacements are estimated from RF data using cross-

correlation, autocorrelation, or speckle pattern tracking

[16–18]. To be able to observe strain images in real time, a

fast method of estimating displacements is necessary. The

first practical fast displacement estimation methods are the

phase zero root seeking [17] and the combined autocorre-

lation [18]. The former shifts one signal against the other

so that the phase difference between the two signals

becomes zero, where the amount of shift corresponds to the

displacement. The latter directly converts the phase dif-

ference between the two signals to an estimate of the dis-

placement to reduce the computation time. Both strain

imaging methods operated on complex baseband signals so

the amount of data to be processed was reduced. In addi-

tion, using digital signal processors, they produced strain

images in real time. Pesavento et al. [17] and Shiina et al.

[18] reported clinical results of breast and prostate cancers

obtained in real time. In the late 2000s and early 2010s, the

advances in semiconductor technology and the availability

of graphics processing units for fast computation solved the

processing time bottleneck [19–21].

The waveforms of the echoes before and after applying

compression are different, so displacement estimation

methods based on correlation incur estimation errors. There

were many research efforts geared toward reducing the

estimation errors [22–27]. Among them, some noteworthy

methods are the signal stretching technique that expands

the post-compression echo signal by a factor corresponding

to the amount of the compression to reduce the

Table 1 Classification of elasticity imaging methods according to operating frequency and source of stress

Operating frequency Stress source Imaging parameter Imaging method

Less than 5 Hz Manual palpation Strain Strain imaging

Sine wave less than 500 Hz Mechanical vibration Shear modulus Sonoelastography

Acoustical oscillating radiation force Nonlinearity (resonance frequency) Vibro-acoustography

Impulse Mechanical impulse Shear modulus Transient elastography

Acoustical radiation force impulse Maximum displacement ARFI imaging

Shear modulus Supersonic imaging

Fig. 3 Strain estimation model in strain imaging
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displacement estimation errors due to signal decorrelation,

the linear regression technique that combats against the

deleterious effect of noise in displacement differentiation,

and the central frequency compensation technique.

The spatial resolution of strain imaging depends on the

data window length and is less than several mm [28]. The

lower limit on the achievable spatial resolution when

imaging the human body is considered to be 2 mm. The

human tissue has a Poisson’s ratio of approximately 0.5

and is incompressible. A medium of interest subjected to

stress expands in directions other than the direction of the

applied strain. Upon the application of a large amount of

stress, the distribution of scatterers in a medium where the

ultrasound wave propagates changes, thus increasing the

decorrelation between the pre- and post-compression echo

signals and resulting in large errors in displacement esti-

mation. Strain imaging yields quality images when the

applied strain is less than several percent [29]. Further-

more, the ultrasonic probe should be placed on the skin and

pushed slowly in the scan line direction. The skill of the

ultrasonographer manipulating the ultrasonic probe con-

siderably affects the strain image quality.

4 Sonoelstography

When the human body is subjected to a mechanical sinu-

soidal harmonic vibration, a shear wave having a complex

pattern is generated, which in turn causes the soft tissue to

vibrate. The amplitude of the vibration is smaller in the

hard tissue than that in the soft tissue. As a result, the

movement in the hard tissue is slower than that in the soft

tissue. Fig. 4 shows a data acquisition scheme of sonoe-

lastography. A shear wave is generated by mechanically

vibrating the tissue in a direction parallel to its surface, i.e.,

in the axial direction as shown in the figure. Sonoelastog-

raphy refers to a technique for imaging the vibration speed

using the Doppler principle, and was reported by the Parker

group [30, 31]. The vibration pattern changes significantly

depending on the vibration source frequency and the

medium characteristic. At the time of their publications, it

was difficult to image a fast vibrating medium using clin-

ical ultrasound scanners, so they improved the diagnostic

utility by observing the vibration patterns for various fre-

quencies. Compared to an inverse method that directly

estimates the stiffness distribution, this method is disad-

vantageous because indirectly observing the vibration

pattern makes it difficult to obtain a high-resolution dis-

tribution of stiffness. They alleviated the disadvantage by

observing the vibration of a medium when a low-frequency

shear wave propagated in it.

When two vibrators were used that had distinct vibration

frequencies, a low-frequency shear wave was generated by

the beat phenomenon, and propagated slowly in the med-

ium. The shear wave that propagated slowly was referred to

as a crawling wave. Since the medium moved at a low

speed, the vibration was easy to image using the Doppler

imaging modality [32, 33].

Considering the fact that the complex vibration patterns

in the human body are not amenable to quantitative anal-

ysis, it is envisioned that the commercialization of sonoe-

lastography may be difficult.

5 Vibro-acoustography

In a region where two sinusoidal waves superpose, a beat

phenomenon occurs due to nonlinearity. Thus, in a region

where the fields of two continuous ultrasonic waves whose

frequency difference is small superpose, a beat signal

having the difference frequency is generated, and the

medium vibrates at the beat signal frequency. Since the

beat signal has a different vibration amplitude depending

on the elasticity of medium, observing the vibration char-

acteristics with frequency leads us to determine the elas-

ticity [34–37]. Since the beat signal is of low frequency

that is less than several hundred kHz, it can be measured

using a hydrophone. The spatial resolution can be obtained

by controlling the area of the region where ultrasound

signals superpose, and ultrasound waves need to be suc-

cessively focused at every imaging point to produce an

image. Fig. 5 shows a data acquisition scheme of vibro-

acoustography. Increasing the frequency of the beat signal

produces high-resolution elasticity images.

A clinical study showed that the method could image the

calcified artery of the human breast at a higher resolution

than X-ray mammography [37]. Vibro-acoustography fea-

tures high-resolution images, but has a drawback that the

data acquisition time is very long. They modified the

method such that a point of a blood vessel was vibrated by

an ultrasound wave, and the propagation of vibration along

the vessel was observed to detect any vessel anomaly. The

modified method was termed shearwave dispersion ultra-

sound vibrometry (SDUV) [38].Fig. 4 Data acquisition scheme of sonoelastography
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6 Transient elastography

Tissue elasticity can be determined from the propagation

characteristic of a shear wave generated by applying a

mechanical shock to soft tissue within a short time interval.

The transient elastography introduced by the Fink group

uses a mechanical impulse [39]. If a mechanical shock is

applied to the human tissue using a mechanical vibrator, a

longitudinal wave propagates along the shock direction,

and a shear wave is generated in the lateral (i.e., transverse)

direction. The shear modulus can be determined by mea-

suring the speed of the shear wave that propagates slowly

in the human tissue. The tissue motion caused by the

propagating shear wave was observed using a high frame

rate imaging technique [40]. It was clinically shown that

the elasticity of the breast cancer could be quantitatively

measured. However, the transient elastography is cumber-

some to use because it requires a mechanical driver. No

ensuing further research results have been reported.

7 Acoustic radiation force

When applying a stress to the human body using an

ultrasonic probe, the quality of elasticity image depends on

the skill of the ultrasonographer, and the use of a

mechanical mechanism increases the complexity of the

data acquisition system. In the case of using a mechanical

harmonic vibration, noise due to mechanical vibration

gives the patient discomfort. A high-intensity ultrasonic

wave generates a radiation force. Methods have been

investigated to control the magnitude and position of the

stress generated by an acoustic radiation force at a selected

focal point due to a high-intensity ultrasonic wave. Those

methods are advantageous in that there is no need for the

ultrasonographer to move the ultrasonic probe and that

there is no need for any additional mechanical apparatus.

While propagating into the human body, a longitudinal

wave vibrates in the same direction as the propagation

direction, and applies a force to the tissue. This force is

referred to as an acoustic radiation force impulse, and has

the following relationship [41]:

F ¼ Wabsorbed

c
¼ 2aI

c
ð6Þ

where F is the acoustical radiation force (kg s-2 cm-2), a
is the attenuation coefficient of the tissue (m-1), Wabsorbed

is the power absorbed by the medium at a given spatial

location (W m-3), c is the speed of ultrasound in the tissue

(m/s), and I is the temporal average intensity at a spatial

location (W m-2).

Fig. 6 shows the principle of exciting an ARFI pulse

using an ultrasonic wave and the generation of a shear

wave. The pushed tissue returns to its original state, gen-

erating a mechanical vibration. Then a generated shear

wave propagates in both directions perpendicular to the

transmit direction of the ultrasonic wave.

Commercially implemented elasticity imaging methods

based on the acoustic radiation force can be divided into

acoustic radiation force impulse (ARFI) imaging [41] that

measures the displacement of the pushed tissue and shear

wave elasticity imaging (SWEI) [42] that measures the

propagation speed of the shear wave generated by the

acoustic radiation force.

7.1 High frame rate imaging

In conventional ultrasonic imaging that acquires one scan

line at a time, it takes approximately several tens of ms to

produce one frame of image. Accordingly, tens of image

frames are displayed per second. However, to observe the

motion of tissue, we need to acquire several thousand

frames per second. To this end, instead of employing the

transmit focusing, a pulsed plane wave is transmitted, and

the echo data are acquired at all receive elements as shown

in Fig. 7. Since the pulsed plane wave passes through all

imaging area, the entire image can be produced by only a

single transmission. Without using transmit focusing, this

method can achieve a frame rate of as high as up to 10,000

Fig. 5 Data acquisition scheme of vibro-acoustography

Fig. 6 Pushing in ARFI and generation of shear wave
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frames per second (fps) depending on the imaging depth

[40]. This method is used to observe tissue movement in

ARFI and shear wave propagation in supersonic imaging,

and recently to image Doppler vector velocity at a high

frame rate [43]. In plane wave transmission, the image

resolution can be improved without decreasing the frame

rate by synthetically focusing the ultrasound fields trans-

mitted in different directions [44].

7.2 Acoustic radiation force impulse imaging

When applying a high-intensity focused ultrasound wave to

a small region, the tissue is pushed by the acoustic radia-

tion force. The maximum displacement of the tissue due to

pushing represents its elasticity, and the time it takes the

pushed tissue to return to its original state represents the

viscosity of the tissue. Fig. 8 shows the different dis-

placements of the soft and hard tissues, with respect to

time, depending on their elasticity. The displacement of the

hard tissue peaks earlier than that of the soft tissue. In

contrast, the maximum displacement is larger in the soft

tissue than in the hard tissue. This principle was employed

in what was termed ARFI imaging [45–49] where a region

of interest was irradiated by a high-intensity focused

ultrasonic impulse, and its movement is monitored using a

high frame rate imaging technique.

The maximum displacement of the tissue, which is

proportional to the elasticity, can be used to differentiate

cancers, In the ARFI technique, the region where a pushing

force is generated is confined to the focal point of a

transmit ultrasound pressure field. Hence, the data acqui-

sition time to obtain an elasticity image of a large area is

several seconds. Siemens has marketed an ARFI imaging

product with a trademark of Virtual Touch, but to over-

come the qualitative nature of ARFI image, the shear wave

speed at a single point is measured, and the tissue elasticity

is displayed as a numerical value along with ARFI image

[50].

Park et al. measured the shear modulus quantitatively

from the displacement versus time curve of an ultrasound

tissue phantom when pushed by an ARFI excitation [51].

The group also introduced a qualitative method of mea-

suring the stiffness of an entire imaging area using a single

plane wave transmission [52]. Foucher et al. diagnosed the

cirrhosis by applying a mechanical impulse to the skin

surface and observing the shear wave propagating inside

the liver [53].

7.3 Supersonic imaging

Methods of generating an acoustic radiation force and

measuring the speed of shear wave include shear wave

elasticity imaging (SWEI) [42] and supersonic imaging

technique [54–56]. The axial vibration of a longitudinal

wave generated by ARFI at the focal point of a transmit

ultrasound field generates a shear wave that vibrates in the

lateral direction. The shear wave propagates very slowly at

a speed of 1 to 10 m/s, but the longitudinal wave propa-

gates at 1540 m/s on average. Thus, by observing the tissue

motion using a high frame rate imaging technique, the

shear wave speed can be measured. The speed of the shear

wave is dependent on the shear modulus of the tissue, as

can be seen in (4). Since the elastic Lamé coefficient is

greater than l by a factor of 106 and the Poisson’s ratio is

close to 0.5 in a soft medium, l can be approximated by

l � 3qc2s ð7Þ

By measuring the propagation speed of the shear wave

in the medium, one can determine the Young’s modulus

quantitatively. Since the shear modulus varies over a wide

range depending on the type of medium, measuring the

shear modulus rather than the Young’s modulus helps to

discern lesions more clearly. The supersonic imaging

technique produces a plane shear wave using the ARFI

technique and measures its propagation speed inside the

medium to determine the shear modulus over the entire

imaging region simultaneously.

Fig. 9 shows the generation and propagation of the plane

shear wave in a lesion under the supersonic imaging

Fig. 7 High frame rate imaging scheme combining plane wave

transmission and receive dynamic focusing

Fig. 8 Comparison of displacements with time, induced by ARFI, for

soft and hard tissues
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technique. The generation of the plane shear wave utilizes

the principle that at a focal point a shear wave is generated

in the lateral direction. If we rapidly shift the focal point in

the axial direction and successively repeat the transmission,

the wavefronts of the generated shear waves superpose,

producing the plane shear wave. The wavefront of the

plane shear wave propagates at a different speed in a

medium with a different shear modulus. The shear modulus

is determined by determining the propagation speed of the

plane shear wave. Bae et al. [57] improved the accuracy of

computing the shear wave speed by considering the prop-

agation direction of the shear wave in a two-dimensional

plane.

8 Strain rate imaging

The 2-D color flow mapping method is widely used in the

diagnosis of heart disease, but it is an indirect diagnostic

method since lesions of the heart wall are discerned using

the distribution of blood flow velocity. The tissue Doppler

method is used to observe the motion of the heart wall

directly. Although the tissue Doppler method is capable of

imaging the moving velocity of the heart wall, the accurate

identification of a lesion that moves at the same velocity as

a normal heart tissue that encloses the lesion is a chal-

lenging task.

Observing the change over time in the motion of the

heart wall enables one to detect lesions. For this purpose,

the strain rate is introduced, and is defined as the temporal

derivative of strain [58, 59] as follows:

_e ¼ de
dt

ð8Þ

By observing the temporal change in the displacement

of the heart wall, we can determine the velocity, strain, and

strain rate. Among them, the strain rate aids in observing

the dynamic motion of the heart wall easily. The temporal

motion of the heart tissue is computed off line by

processing B-mode images acquired at a rate of several

hundred fps.

9 Conclusion

Since the B-mode imaging modality has difficulty in

accurately diagnosing soft tissues, such as cancers, benign

tumors, and cysts, researchers have attempted to find other

ultrasonic methods of imaging tissue parameters. Among

them, the elasticity imaging modality has been successfully

commercialized. Although strain imaging is relatively

straightforward to implement, and has been implemented

by almost every ultrasound scanner manufacturer, it has the

disadvantage that the resulting image is qualitative. Both

ARFI imaging and supersonic imaging, which provide

quantitative elasticity estimates, are effective in the

detection of cancers, and help to reduce discomfort to the

patient because the need for invasive biopsy is obviated.
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