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Abstract In this paper, we focus on classifying cardiac

arrhythmias. The MIT-BIH database is used with 14 orig-

inal classes of labeling which is then mapped into 5 more

general classes, using the Association for the Advancement

of Medical Instrumentation standard. Three types of fea-

tures were selected with a focus on the time–frequency

aspects of ECG signal. After using the Wigner–Ville dis-

tribution the time–frequency plane is split into 9 windows

considering the frequency bandwidth and time duration of

ECG segments and peaks. The summation over these

windows are employed as pseudo-energy features in clas-

sification. The ‘‘subject-oriented’’ scheme is used in clas-

sification, meaning the train and test sets include samples

from different subjects. The subject-oriented method

avoids the possible overfitting issues and guaranties the

authenticity of the classification. The overall sensitivity

and positive predictivity of classification is 99.67 and

98.92%, respectively, which shows a significant improve-

ment over previous studies.

Keywords Cardiac arrhythmia � Classification � Decision

tree � Ensemble learner � Time–frequency analysis �
Wigner–Ville distribution

1 Introduction

Cardiac arrhythmias are group of heart conditions in which

the electrical activities of the heart become irregular.

Arrhythmias usually occur as a result of a malfunction in

the conduction system or when a pulse is originated from

where it wasn’t supposed to. Some arrhythmias can be

extremely dangerous and some of them can happen in an

everyday life of a healthy person. However, studies show

that about 80% of sudden cardiac death is the result of

ventricular arrhythmias. Thus, the early and accurate

detection of arrhythmias is crucial [1].

Electrocardiogram (ECG) is the recording of the elec-

trical activity of the heart which occurs almost periodically

through each heartbeat. Thus, the ECG signal is an excel-

lent source to identify arrhythmias. Some arrhythmias

don’t show any persistent trace in the ECG signal and

consequently a continuous monitoring of ECG is necessary

for some cases. Detection and classification of different

abnormalities in ECG has long been investigated by

researchers in the field of biomedical signal processing.

Our goal in this paper is to introduce a new prospective in

cardiac arrhythmia detection and help to improve the

classification process.

Notable works has been done in analyzing the time-

domain features of ECG signal which include RR intervals,

QT segments, QRS complexes and other morphological

features [2–4]. On the other hand, the spectral domain

offers a different insight and its parameters give a dis-

tinctive representation of signal which can be used for

better diagnosis. Besides the subtle time-domain changes

of some arrhythmias will have an evident impact on the

ECG spectrum.

The most well-known tool for investigating a signal in

frequency domain is the Fourier Transform (FT), which in

& Rashid Ghorbani Afkhami

rashid.ghorbaniafkhami@uon.edu.au

Safa Sultan Qurraie

safa.sultanqurraie@tabrizu.ac.ir

1 Faculty of Electrical and Computer Engineering, University

of Tabriz, 29 Bahman Blvd., Tabriz, Iran

2 Faculty of Engineering and Built Environment, University of

Newcastle, Callaghan, NSW 2308, Australia

123

Biomed. Eng. Lett. (2017) 7:325–332

https://doi.org/10.1007/s13534-017-0043-2

http://orcid.org/0000-0001-8171-4176
http://crossmark.crossref.org/dialog/?doi=10.1007/s13534-017-0043-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13534-017-0043-2&amp;domain=pdf
https://doi.org/10.1007/s13534-017-0043-2


spite of a detailed frequency information, provides no link

to the time domain. Meaning, one wouldn’t know when

different frequencies of signal occur. Each arrhythmia is

triggered in a specific part of the heart’s conduction sys-

tem and each part of the ECG signal corresponds to a

specific part of depolarization or repolarization, FT can’t

provide the sufficient information for an accurate detec-

tion. This problem can be solved with the help of time–

frequency (TF) techniques. Short-time Fourier transform

(STFT) is a popular TF technique, could be used to

compute the energy distribution of the ECG signal; the

features are then extracted from the energy distribution

and used in classification algorithms. There is a tradeoff

in time and frequency resolutions in STFT, limiting

authenticity of the features [5]. Wavelets resolve this

issue by employing a time-scale resolution scheme for

signal analysis. Papers adopting STFT and wavelet tech-

niques for ECG signal processing and arrhythmia classi-

fications report significant improvements compared to

single domain studies [6–9].

As a supervised classification problem, many machine

learning algorithms have been proposed in literature.

Support vector machine (SVM) [7, 10, 11], self-organizing

map (SOP) [12], artificial neural networks (ANNs) [6, 13],

linear discriminant analysis (LDA) [2, 14], conditional

random filed (CRF) [15], decision trees [16]. Using the

same dataset and exploring various features and dimen-

sionality reduction algorithms helps in forming a fast-

evolving field for ECG arrhythmia classification.

In this paper, we propose the use of time–frequency

windowing for pseudo-energy feature extraction and then

employ an ensemble of decision trees for classification.

The results show that our proposed method is a more

effective method in the analysis and classification of ECG

signals.

The paper is organized as follows; Sect. 2 has the

background materials, in Sect. 3 we introduce our method.

Section 4 provides the classification results and the paper is

concluded in Sect. 5.

2 Background

2.1 Higher order statistics

The conventional lower (first and second) order statistics

are well-known in the field of bio-signal processing.

However, for nonlinear signals the lower order statistics are

not sufficient for a proper representation. Hence the third

and fourth order statistics respectively known as skewness

and kurtosis are proven to be useful by many papers

[9, 10, 16, 17].

For a random variable, x, the third and fourth order

statistics are defined as,

c3 ¼
E x� E xð Þ½ �3
n o

E x� E xð Þ½ �2
n o� �3=2

;

c4 ¼
E x� E xð Þ½ �4
n o

E x� E xð Þ½ �2
n o� �2

� 3:

ð1Þ

in which E denoted the expected value. Skewness provides

a measurement of the lopsidedness of the distribution and

kurtosis gives a relative measurement of the signal’s dis-

tribution with a Gaussian distribution of the same variance.

These higher order statistics can be estimated as,

ĉ3 ¼
PN

i¼1 xi � m̂ð Þ3

N � 1ð Þr̂3
;

ĉ4 ¼
PN

i¼1 xi � m̂ð Þ4

N � 1ð Þr̂4
� 3;

ð2Þ

where xi’s are realizations of the random variable x and m̂

and r̂ are the estimates of the mean and variance

respectively.

2.2 Wigner–Ville distribution

Wigner–Ville distribution (WVD) is a simple form of the

Cohen’s class of bilinear time–frequency representations

with a wide use in various applications. The WVD of the

signal x tð Þ with zero mean is defined as:

Wx t; fð Þ ¼
Z

x t þ s
2

� �
x� t � s

2

� �
e�j2pf sds ð3Þ

where x� tð Þ is the complex conjugate of x tð Þ.
In an ideal case, the WV distribution has an infinite

resolution in time and frequency domains because of the

absence of averaging over any finite time duration [18].

2.3 Ensemble learners

An ensemble of learners is a method for supervised clas-

sification which uses a combination of various weak

learners to form a strong one. A weak learner is defined as

a classifier which can label the results only a slightly better

than a random guess. These weak learners are combined by

different methods such as weighted sum or majority voting.

The important issue in constructing an ensemble learner is

the diversity among the weak learners, because combining

same weak learners would give us no gain. The diversity

can be achieved by different representations of the train set,

called bagging (bootstrap aggregating) [19]. Bagging was
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introduced in 1984 by Breiman [19] and is the most

common bootstrap ensemble method. In order to achieve

diversity in bagging, each weak learner is trained using a

random subset of the main train samples. Given the train

set T for our supervised classifier, bagging generates new

training sets Ti by sampling uniformly from T . with

replacement. These new bootstrap samples each are dif-

ferent from the original set, yet they resemble it in dtri-

bution and variability and are used to train the weak

learners. The weak learners are then combined by voting to

form the classifier [20–22].

3 Methods

In this section, we introduce the methodology used in the

paper. First, we talk about our dataset and then we follow

the overall processing steps as illustrated in Fig. 1. After

preprocessing, which is baseline wandering removal and

beat segmentation, we extract three sets of features, RR-

interval, time–frequency and higher order statistical fea-

tures. These features are then fed into a classifier which is

the final part of the algorithm.

3.1 Dataset

We have used the MIT-BIH arrhythmia dataset [23] in our

study, which includes various common and life-threatening

arrhythmias. The database has 48 ECG recordings, each

30 min long, consisting two leads. For 45 recordings, the

first lead is modified lead II (MLII) and for the rest it is

modified lead V5. The second lead is a pericardial lead (V1

for 40 of them, V2, V4 or V5 for the others). In this paper

only the first lead of the database has been used. The

original labeling of the dataset has 14 classes of different

rhythms listed as in Table 1. However, the Association for

the Advancement of Medical Instrumentation (AAMI)

[24, 25] recommends 5 more general classes of rhythms as

follows. ‘‘N’’ beats originated from the sinus node, ‘‘S’’,

supraventricular ectopic beats, ‘‘V’’, ventricular ectopic

beats, ‘‘F’’, fusion beats and ‘‘Q’’, unclassified beats. This

standard is adopted by many papers such as

[2, 6–8, 11, 14–16, 26]. The mapping from the 14 original

labels to AAMI standard labels are shown in Table 2. The

heartbeat arrhythmia classification is most commonly

viewed as a supervised classification problem. Thus, in

random division of the train and test sets it is highly pos-

sible that the heartbeats from the same subject would

appear in both sets and having correlated samples in both

sets would cause overfitting and lead to promising results

which are unreachable in practice. To avoid this problem a

‘‘subject-oriented’’ method is introduced in [2] which uses

a patient-based division of the dataset, so a more realistic

classifier can be trained using this scheme. The train and

test sets for this method are shown respectively as DS1 and

Fig. 1 Flowchart of the proposed algorithm

Table 1 MIT-BIH arrhythmia database information (AAMI-ap-

proved data only)

Heartbeat type Anna Total #

Normal rhythm NOR N 74,068

Left bundle branch block LBBB L 8066

Right bundle branch block RBBB R 7246

Atrial premature contraction APC A 2513

Premature ventricular contraction PVC V 6897

Aberrated atrial premature beat AP a 150

Ventricular flutter wave VF ! 472

Fusion of ventricular and normal beat VFN F 802

Non-conducted P-wave (blocked APC) BAP x 193

Nodal (junctional) escape beat NE j 229

Ventricular escape beat VE E 106

Nodal (junctional) escape beat NP J 83

Atrial escape beat AE e 16

Unclassified beat UN Q 17

Total 100,858

a Annotation that is used for each arrhythmia in the database
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DS2 in Table 2. Using this scheme our results will be

comparable with other arrhythmia classification algorithms

such as [11, 14–16].

3.2 Data preprocessing

The MIT-BIH arrhythmia dataset is band-pass filtered at

0.1–100 Hz and then digitized at 360 samples per second

[23]. We have removed the baseline wandering of these

signals using two stages of median filtering as proposed by

[27].

The MIT-BIH database also includes an annotation file

associated with each sample. This file has the information

about the type of the rhythms and the occurrence sample of

the major local maxima for each individual heartbeat.

3.2.1 Beat segmentation

We use the annotation files as our reference in beat seg-

mentation. The local maximums of each heartbeat (R peaks

for most of cases) are extracted from the annotation files

and a fixed number of samples before and after each R peak

is defined for beat segmentation. While [11] uses 100

samples before R peaks and 200 samples after R peaks

(total of 0.83 s), [16] selects 235 total samples (0.25 s

before and 0.40 s after R peaks). Since we are using

2-dimensional time–frequency representations we choose

the total amount of 256 samples (102 samples before R

peaks and 153 after that) to ease the computational pro-

cesses. A sample of beat segmentation is shown in Fig. 2.

3.3 Feature extraction

In this section we introduce the features we have used in

classification. Time–frequency characteristics of ECG

signals along with the RR interval and statistical features

are extracted for classification.

3.3.1 RR interval features

In this paper, we have used two RR-interval features as the

only representatives of the time domain traits of the signal.

The time distance between respective R peaks bare indis-

pensable information about the subjects’ health and con-

sequently the type of the rhythms. ‘‘RR variability’’ or

‘‘heart rate variability (HRV)’’ are the clinical terms used

to investigate changes in the occurrence time of the R

peaks which indicates the importance of these time domain

features. RR based features are very popular in cardiac

arrhythmia classifications and are used in various papers

such as [2, 6, 8, 10–12, 14–16, 28].

Two RR based features are extracted as pre-RR and

post-RR. Pre-RR is defined as the time distance between

the R peak of the current heartbeat with the R peak of

previous one; and the post-RR is defined as the same dis-

tance for the current and the subsequent heartbeats. Pre-RR

and post-RR features are shown in Fig. 2 for a sample

heartbeat.

Table 2 AAMI recommended labeling with training set (DS1) and testing set (DS2) used in subject-oriented scheme

AAMI class MIT-BIH class Total #

N NOR, LBBB, RBBB, AE, NE 89,625

S APC, AP, BAP, NP 2939

V PVC, VE, VF 7475

F VFN 802

Q UN 17

DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230

DS2 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234

Fig. 2 Short sample from ‘‘101 m.mat’’ showing the beat segmen-

tation and Pre-RR and Post-RR features
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3.4 HOS features

We have used three higher order statistical (HOS) features

because they have proven to be less sensitive to the

morphological changes of signal [29]. In addition, the

nonlinear nature of these features can help in better high-

lighting the dynamic aspects of ECG signal [30]. Skew-

ness, kurtosis and 5th order moment of each signal is

extracted and put into the feature vector.

3.5 Time–frequency features

We have used Wigner–Ville distribution to get a time–

frequency representation of signal and extract pseudo-en-

ergy features. Each signal is represented as a 256 � 256

matrix after using Eq. (3) and is summed over 9 windows

as shown in Fig. 3. W1 covers the high frequency i.e. fre-

quencies higher than 50 Hz. W2 is over the beginning part

of the signal before the potential PR segment; W2 is a

window of 62 ms width over frequencies lower than

50 Hz. W3. and W4 lie on the PR segment with 160 ms

width and frequencies lower than 5 Hz and mid-frequency

between 5 and 50 Hz. P and T waves have most of theirFig. 3 Time–frequency windowing for feature extraction

Fig. 4 Wigner–Ville distribution for a sample first lead (lead II) of a class N, b class S and c class V
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energies over the frequency band lower than 5 Hz and that

is why we have considered two windows over this time

period. W5 and W6 cover the potential occurrence time of

the QRS complex with 120 ms width and with frequencies

lower and higher than 20 Hz. W7 and W8 are over the QT

segment with 420 ms long and frequency margin of 10 Hz.

Finally, W9 covers the part after the potential QT segment

with frequencies lower than 50 Hz. Figure 4 illustrates

three samples of WVD for each class of ‘‘N’’, ‘‘S’’ and ‘‘V’’

with frequencies lower than 50 Hz.

The summation over each window provides a measure

of energy during that time within the specific frequency

range and can be a good feature for differentiating

arrhythmias. Figure 5 shows the mean energy density for

all 9 windows of four main rhymes in our trainset.

Although the Wigner–Ville distribution is criticized for

producing cross terms, the computational advantages it

offers over the other methods such as Choi-Williams dis-

tribution are critical specially in a big database as MIT-

BIH.

It should be mentioned that in order to reduce the

computational costs and avoid the cross terms between

positive and negative frequencies the original signals are

not used in WV distribution. First the analytical signals are

calculated for each heartbeat then the WVD is used.

Analytical signals have the same spectrum for positive

frequencies and zero spectrum for the negative frequencies

can be calculated as in Eq. (4)

xa tð Þ ¼ x tð Þ þ jH x tð Þ½ � ¼ x tð Þ þ j
1

pt
� x tð Þ

� �
ð4Þ

where xa tð Þ is the analytical signal, H :ð Þ is the Hilbert

transform and � is the convolution symbol.

4 Classification results

As shown in Table 3 the total number of 100,858 heart-

beats from five different AAMI-recommended groups of

arrhythmia are used in classification. The test and train sets

are selected as in Table 2, proposed by [2]. 14 extracted

features are normalized and put into the feature vector for a

supervised classification. An ensemble of 100 decision

trees are combined in bagging scheme to form a stable and

accurate classifier. By reducing the variance, bagging

avoids overfitting problems. The prior probability for each

class is set to 0.2; of course, better results can be achieved

by setting prior probabilities proportional to the population

of each class or unbalancing the misclassification cost in

favor of life threatening arrhythmias. However, we didn’t

want to involve any knowledge of class populations in the

classification procedures.

4.1 Performance metrics

Various approaches are adopted in literature to evaluate the

classification results. In this paper, we have considered

sensitivity and positive predictivity to compare the algo-

rithm with previous studies. Sensitivity (Se) can be defined

as the measure of successfully classified positive samples,

Se ¼ TP

TPþ FN
� 100; ð5Þ

in which FN is the total number of misclassified positive

samples and TP is the total number of correctly classified

positive samples. Positive predictivity (Pp) measures

Fig. 5 Mean of energy density for 4 windows and three main

arrhythmia classes

Table 3 Results of classification

Class Total # Train Test Se (%) Pp (%)

N 89,625 45,807 43,818 99.79 99.14

S 2939 999 1940 94.28 95.96

V 7475 4257 3218 95.37 94.14

F 802 414 388 12.11 51.09

Q 17 8 9 100 100

Total 100,858 51,485 49,373 99.67 98.92

Table 4 Confusion matrix for the results

Reference Predicted results

N S V F Q

N 43,726 42 6 44 0

S 41 1829 70 0 0

V 120 28 3069 1 0

F 219 7 115 47 0

Q 0 0 0 0 9
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success rate among samples classified as positive and can

be defined as,

Pp ¼ TP

TPþ FP
� 100; ð6Þ

where FP is the total number of falsely classified negative

samples.

4.2 Results

The results of classification are shown in Table 3 which

has the total sensitivity and positive predictivity of 99.67

and 98.92%. The Table 4 illustrates the confusion matrix,

the high amount of misclassified samples for class ‘‘F’’ is

evident. However, there are only 693 misclassified beats in

total which is 1.4% of the test set. Table 5 shows the

overall results of our method compared with previous

works. Only the results for three main classes of ‘‘N’’, ‘‘S’’

and ‘‘V’’ are mentioned in papers so the Se and Pp are

compared for these classes. The proposed method shows a

significant improvement of classification accuracy over our

previous work [16] and other papers with same database,

indicating the importance of TF role in ECG analysis.

5 Conclusion

In this paper, we have proposed a new algorithm based on

time–frequency representation to extract features for car-

diac arrhythmia classification. Considering the normal time

duration of QRS complex, PR interval and QT interval and

the normal bandwidth of each P wave, T wave and QRS

complex, 9 TF windows are selected. The summation over

these windows along with RR-interval and HOS features

are used in classification. An ensemble of decision trees is

used with subject-oriented scheme. The results show

extremely high accuracy in the three main classes of ‘‘N’’,

‘‘S’’ and ‘‘V’’, which contain over 99% of the database.

The ‘‘F’’ class on the other hand has many misclassified

samples as it is the case in other papers too. The TF fea-

tures as a measure of energy are proven to be effective for

heartbeat classification.
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26. Rodriguez J, Goñi A, Illarramendi A. Real-time classification of

ECGs on a PDA. IEEE Trans Inf Technol Biomed.

2005;9(1):23–34.

27. Awodeyi A, Alty S, Ghavami M. Median filter approach for

removal of baseline wander in photoplethysmography signals. In:

European Modelling Symposium (EMS), Manchester; 2013.

28. Prasad G, Sahambi J. Classification of ECG arrhythmias using

multi-resolution analysis and neural networks. In: Conference on

Convergent Technologies for the Asia-Pacific Region, TENCON,

vol. 1, p. 227–231, 2003.

29. Martis R, Acharya R, Ray A. Application of higher order

cumulants to ECG signals for the cardiac health diagnosis. In:

International Conference of the IEEE EMBS, Boston; 2011.

30. Ebrahimzadeh A, Khazaee A. Higher order statistics for auto-

mated classification of ECG beats. In: International conference on

electrical and control engineering (ICECE), Yichang; 2011.

332 Biomed. Eng. Lett. (2017) 7:325–332

123

http://ecg.mit.edu/dbinfo.html

	ECG arrhythmia classification using time frequency distribution techniques
	Abstract
	Introduction
	Background
	Higher order statistics
	Wigner--Ville distribution
	Ensemble learners

	Methods
	Dataset
	Data preprocessing
	Beat segmentation

	Feature extraction
	RR interval features

	HOS features
	Time--frequency features

	Classification results
	Performance metrics
	Results

	Conclusion
	References




