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Abstract
In the field of computational histopathology, computer-assisted diagnosis systems are important in obtaining patient-

specific diagnosis for various diseases and help precision medicine. Therefore, many studies on automatic analysis methods

for digital pathology images have been reported. In this work, we discuss an automatic feature extraction and disease stage

classification method for glioblastoma multiforme (GBM) histopathological images. In this paper, we use deep convo-

lutional neural networks (Deep CNNs) to acquire feature descriptors and a classification scheme simultaneously. Further,

comparisons with other popular CNNs objectively as well as quantitatively in this challenging classification problem is

undertaken. The experiments using Glioma images from The Cancer Genome Atlas shows that we obtain 96:5% average

classification accuracy for our network and for higher cross validation folds other networks perform similarly with a higher

accuracy of 98:0%. Deep CNNs could extract significant features from the GBM histopathology images with high

accuracy. Overall, the disease stage classification of GBM from histopathological images with deep CNNs is very

promising and with the availability of large scale histopathological image data the deep CNNs are well suited in tackling

this challenging problem.

Keywords Deep learning � Histopathology � Image analysis � Glioblastoma multiforme � Classification � Convolutional
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1 Introduction

This paper discusses a new scheme for histopathological

image analysis to acquire efficient feature descriptors and a

classification scheme at the same time. Recent studies in

histopathology have made promising developments for

analysis that would enable precision medicine and patient-

specific diagnosis [1–3]. In typical clinical practices,

medical doctors or pathologists manually analyze

histopathological images leading to a diagnosis.

We have, however, some problems as follows. The

number of tissue images for diagnosis gives large burdens

to pathologists in the case of manual analysis. For instance,

they have time pressure in the case of diagnosis during

surgery, because they have to analyze a plenty of

histopathological images and make a diagnosis quickly.

Also, evaluation criteria heavily depend on the experiences

and subjectiveness of each medical doctor or pathologist.

The result of the analysis will not be quantitative.
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For these problems, recent research works on Biomed-

ical Informatics use computer vision techniques for com-

putational pathology [4–10]. These papers aim to realize

quick, efficient and quantitative analysis, and some com-

puter vision techniques is used to detect tumors from

histopathological images. These approaches require a

strong feature extraction and classification techniques to

determine a patient’s diagnosis. In other words, we need to

discover strong feature descriptors for given images and

have to develop the best suited classifier at the same time.

It is a difficult task since there are many feature descriptors

that needs to be tested and their numerous available

combinations.

In this work, we propose a disease stage classification

method with Deep Learning techniques for Glioma

histopathological images. This paper employs deep con-

volutional neural network (Deep CNN) as a Deep Learning

model, and construct the data set using Glioma

histopathological images that consists of Hematoxylin and

Eosin (H&E) stained color images for experimental mate-

rials. As a result of our evaluations with deep convolutional

neural network experiments, the final classification accu-

racy of 96:5% was obtained. We further conducted com-

parisons with other popular deep learning pipelines, and

with higher cross validation folds other networks perform

similarly with a highest obtained accuracy of 98:0%.

The rest of this letter is organized as follows. Section 2

reviews previous works in this area, Sect. 3 provides the

details of the glioma histopathology imagery and Sect. 4

provides the experimental results with deep CNN. Sec-

tion 5 concludes the paper.

2 Related works

There are many prior works with respect to histopatho-

logical image analysis [11–16]. For instance, Fu et al. [12]

proposed a nuclei segmentation method and applied CNN

to fluorescence microscopy images. Huang et al. [12]

proposed a neuronal outlines segmentation method and

applied CNN to growth cones images. These authors used

CNN techniques as segmentation to analyze histopatho-

logical images. Lim et al. [14] discussed diabetic macular

edema and used 100 fundus images for evaluation experi-

ments. The method achieved the classification accuracy of

80%: AbuHassan et al. [15] discussed tuberculosis disease

and used tuberculosis (TB) images for evaluation experi-

ments. The method achieved the classification accuracy of

97%, and this value was enough good for practical use.

These methods, however, need to be followed by human

correction of imperfections, that is, these approaches

require not only customization of the algorithm but also

human intervention. Also, these reports only applied the

developed techniques to some specific diseases like breast

cancer, esophagitis, but not other tissues.

Previously, we focused on Glioma and discussed feature

descriptors for the given images. Tamaki et al. [7] dis-

cussed feature descriptors to distinguish disease from

healthy cases. In the literature, they used Glioma

histopathology images (archived in Allen Brain Institute),

and determined significant feature descriptors to distin-

guish disease from healthy cases. Fukuma et al. [10] dis-

cussed feature descriptors and a classification scheme for

disease stage classification. In the method, they determined

feature descriptors with statistical tests and constructed a

Table 1 Detailed layer

information for our deep CNN

configuration

Layer Type Filter size # of Feature maps Spatial size

0 Input 1 1000� 1000

1 Resize 1 224� 224

2 Conv1 ? ReLU 5� 5 32 224� 224

3 Pool1 2� 2 32 112� 112

4 Conv2 ? ReLU 5� 5 32 112� 112

5 Pool2 2� 2 32 56� 56

6 Conv3 ? ReLU 5� 5 48 56� 56

7 Pool3 2� 2 48 28� 28

8 Conv4 ? ReLU 5� 5 48 28� 28

9 Pool4 2� 2 48 14� 14

10 Conv5 ? ReLU 5� 5 64 14� 14

11 Conv6 ? ReLU 5� 5 64 14� 14

12 Pool6 2� 2 64 7� 7

13 Conv7 ? ReLU 5� 5 128 7� 7

14 FC1 ? ReLU ? Dropout 1024 1� 1

15 FC2 ? Softmax 2 1� 1

16 Output
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scheme for disease stage classification using Support

Vector Machines (SVM) and Random Forests (RF).

Glioma is one of the most malignant tumors occurring in

the brain. The prognosis of Glioma is usually quite poor in

clinical practice. This is the reason for the authors to focus

on Glioma, however, these works just focused on feature

descriptors, and it is hard to know whether these descrip-

tors are perfect for histopathological image analysis or not.

Other feature descriptors may or may not be required for

more advanced analysis. Also, appropriate feature

descriptors should be used for analysis simultaneously

because the combination of the feature descriptors is

essential for accurate classification. The combination

number of feature descriptors are enormous. The previous

studies did not discuss this issue, and the technique is

required to acquire not only sufficient feature descriptors

but also powerful classifier at the same time.

3 Experimental material

Generally, Glioma can be categorized into four grades

based on their disease stage. For example, Glioma of

Grade-1 has a slight illness, and Grade-4 is so serious and

has a poor prognosis. In particular, the average life

expectancy of Grade-4 is 18 approximately months. Also,

Glioma is infiltration growth, therefore it is quite difficult

to remove all of them by surgery. That is the reason why

disease stage classification of Glioma is required for

effective treatments.

The histopathological images are dominated by regions

with many cell nuclei and much cytoplasm. Some images

contain other structures or tissue types, such as vessels,

blood cells. In the imagery, the objects stained deep purple

are cell nuclei, the objects stained bright red are blood

cells, and the light colored regions are primarily cytoplasm.

The images used in this study were obtained from the

publicly available The Cancer Genome Atlas (TCGA) [17]

database. This database has many histopathological images

such as Glioma, Breast Cancer, Esophagitis and so on.

TCGA also contains two types of images, i.e., Lower-

Grade Glioma (LGG) and Glioblastoma multiforme

(GBM). LGG includes images of Grades 1 and 2, GBM

includes images of Grades 3 and 4. In this study, these two

distinct type images were used as the experimental imagery

for automatic analysis. Figure 1 shows example images of

Glioma. In these images, the nuclei were stained deep

purple, and other tissues were stained pale purple and red

by Haematoxylin and Eosin (H&E) staining. Image fea-

tures about the nuclei appear different based on the grade,

and features of the organization are different from each

other. Generally, these differences are believed to result

from the disease progression, including changes in gene

and protein expression.

Also, the sizes of given images were large, and it might

be unsuited for processing. For this reason, we divided the

original images to patched images whose sizes were

1000� 1000 pixels, and then the patched images including

sufficient nuclei were uses as materials. In this research

work, 100 tissue images were downloaded in each category

Fig. 1 An example of Histopathological images of Glioma from The

Cancer Genome Atlas (TCGA). a Glioblastoma multiforme (GBM),

b lower-grade glioma (LGG). Note the distinct distribution of nuclei

between low grade versus high grade. The shape, distribution, and

morphology of the nuclei features can be used to predict the disease

stage classification. a HGG, b LGG
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and 100 patched images are obtained from a single image.

In this work, 10,000 patched images were used in each

class as experimental material. In the previous work, the

authors used 10 image in each category [18], and the

obtained results did not show a clear distinction between

the disease stages. One explanation could be artifacts in the

image, in the different situation due to differences in the

level of the H&E staining. Therefore, in this work we used

100 LGG images and 100 GBM images respectively to

avoid this problem. Further, We divided the training and

test datasets in each fold based on single images. We did

not use the patch level due to the fact that the obtained

accuracy can be unreasonably high due to strong correla-

tion between the same subject patch images.

4 Experimental method and results

4.1 Overview of deep convolutional neural
network

In this paper, we utilized a Deep Learning method for the

histopathological image analysis to acquire efficient feature

descriptors and a classification scheme at the same time.

This paper employs a Deep Learning method for this

problem. By using Deep Learning method, feature

descriptors are extracted from the data (image, sound, etc.)

automatically, and we can not only extract feature

descriptors from the given images but also construct a

classifier for the problem automatically at the same time.

Deep learning is currently popular in the field of computer

vision and pattern recognition [19, 20] and in particular for

computer assisted biomedical image analysis [21, 22].

Also, it showed outstanding performance in solving various

biomedical image analysis problems [23, 24]. One of the

popular Deep Learning techniques is Deep Convolutional

Neural Network (Deep CNN), which is increasingly

applied in various image analysis problems. There have

been recent applications of these Deep CNN to adapt to

biomedical applications [25, 26, 27]. In this study, we

utilize Deep CNN for Glioma histopathological image to

learn and extract features and check the classification

accuracy in disease stage classification.

In the typical classification and pattern recognition

problems, Deep CNN takes an image as input and produces

a probability map as output. It basically performs multiple

operations through hidden layers to produce some high

level features that can potentially represent the target

classes. The important operations that usually occurs are

convolution, max pooling and rectified linear units (ReLU).

Convolution is responsible for convolving regions with

weights represented as filters to produce activation maps

with discriminative features. The low-level feature maps

usually have low level features such as curves or lines,

while at the end of the network, the high-level represen-

tation can be achieved. Pooling performs down sampling to

collect or combine low-level features in specified area to

gain large invariance and sub-region summarization. ReLU

is a kind of non-linearity which is useful in solving the

gradient vanishing problem caused by the sigmoid func-

tion. Also, it produces a sparse representation that makes

the network fast to learn. Softmax classification is used to

discriminate between classes depending upon the proba-

bilities produced from the fully connected layer.

4.2 Our network architecture

In our work, we utilized Deep CNN for the purpose of

disease stage classification from Glioma histopathological

images. Our adapted Deep CNN receives 1000� 1000

patches of the Glioma images, and outputs two classes for

GBM or LGG. This network has been built on top of the

existing TensorFlow [28]. Experimental environment is

shown in Table 2. Originally, we tried to adopt a network

that has been used for the previous study, which consists of

3 convolution layers, 3 tanh and 3 pooling layers [29].

Table 2 Experimental environment

Operating system Ubuntu 14.04 LTS 64-bit

Memory 32GB

CPU Core i7 6865K 6-core

GPU NVIDIA GeForce GTX 1080Ti 11GB

HDD 2TB

Language Python

Tool TensorFlow

Fig. 2 Architecture of our Deep CNN configuration for Glioma

histopathological images. The approach comprises of 7 convolution, 8

ReLU, 6 pooling, 1 softmax layers. For more information on our

network, see Table 1
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However, we found from our experiments that this network

was not deep enough to capture the properties for our

complex Glioma histopathological images. To obtain better

segmentations, we built a new CNN architecture which is

more deeper. Our new Deep CNN configuration mainly

consists of 7 convolution layers, 8 ReLU and 6 pooling

layers as shown in Fig. 2, with the spatial sizes and feature

maps depth of the corresponding layers are given Table 1.

The filter size is 5� 5 for convolutional layers and 3� 3

for pooling layers. Then, we constructed Dropout layer that

rate was 0.5. The last softmax layer is to discriminate

between the two classes to produce a patch which is either

GBM or LGG.

4.3 Other network architecture

To check the performance of our architecture, we com-

pared with some of the most successful convolutional

neural networks. In this paper, we tried the comparison

with following architectures.

• LeNet [30]

• ZFNet [31]

• VGGNet [32]

LeNet is the early and classic CNN model that Yann

LeCun invented in 1998. It consists of 2 convolution lay-

ers, 2 pooling layers, and 3 fully connected layers. ZFNet is

the winning model of ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) 2013. It is a CNN model

that improved AlexNet which is the winning model of

ILSVRC 2012 [33]. It consists of 5 convolution layers, 3

pooling layers, and 3 fully connected layers. The design

concept of the basic architecture follows Neocognitron and

LeNet. VGGNet was proposed by a research group at

Oxford and it was the runners-up of the ILSVRC 2014

competition. 2–4 convolution layers with small filters are

stacked in succession and after that, make it half in size

with a pooling layer. It is characterized by the structure that

repeats these process.

4.4 Experimental results

4.4.1 Our network architecture

Our network was trained for 5000 steps with a mini batch

size of 100 using fourfold cross validation. Average of 4

values produced by each fold is the final classification

accuracy. The training and testing took about a couple of

days by each fold. As a result of this study, the final

classification accuracy was 96.5 % with Fig. 3 shows the

train result and Table 3 shows the classification accuracy.

We note that the previous classification accuracy obtained

using gray scale images was 87:2%. Compared to the

previous result, we could improve the accuracy by using

color images instead of gray scaling images. This result

shows that Glioma histopathological images have mean-

ingful color information. In the future, other feature

descriptors would be required to discover new subtypes

using the obtained feature matrices. This experimental

results found that both of efficient feature descriptors and a

classification scheme acquired at the same time.

4.4.2 Other network architecture

Other network were trained for 100 (LeNet), 1000 (ZFNet)

and 2000 (VGGNet) steps with a mini batch size of 100

using fourfold cross validation. Average of 4 values pro-

duced by each fold is the final classification accuracy. The

training and testing took about 20 min (LeNet), 7 h

(ZFNet) and a couple of days (VGGNet) by each fold. As a

result of this work, the final classification accuracy was

79.4% (LeNet), 95.2% (ZFNet) and 97.0% (VGGNet) with

Fig. 4 shows each train result and Table 4 shows each

classification accuracy. Actually, our Architecture was

based on LeNet. But from this result, VGGNet have a

potential for improvement classification accuracy of

Glioma. Therefore, we may get higher classification
Fig. 3 Training accuracy result of our Deep CNN configuration

Table 3 Classification results of our network for each cross validation

# of Fold Classification accuracy (%)

1 98.4

2 96.1

3 95.8

4 95.8

Average 96.5
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accuracy if we add VGGNet component to our architecture.

Of course, other CNN architecture may have a potential of

more higher accuracy than VGGNet. Therefore, in the

future, we will try many other CNN architectures to

improve our architecture.

5 Conclusion

In this paper, the authors proposed a disease stage classi-

fication method with Deep Learning for Glioma

histopathological images. In particular, Deep Convolu-

tional Neural Network (Deep CNN) was employed as a

Deep Learning model. By using the proposed method, we

obtained a final average classification accuracy of 96:5%.

Currently, we are investigating to discover new subtypes

using the obtained feature matrices and confirm the rela-

tionships between the disease stage and the result of gene

expression analyses. We believe that the proposed deep

CNN method would be of help in the field of medical

decision analysis of brain tumors.
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