Skip to main content
. 2018 Jun 25;8(3):321–327. doi: 10.1007/s13534-018-0077-0

Table 1.

Detailed layer information for our deep CNN configuration

Layer Type Filter size # of Feature maps Spatial size
0 Input 1 1000×1000
1 Resize 1 224×224
2 Conv1 + ReLU 5×5 32 224×224
3 Pool1 2×2 32 112×112
4 Conv2 + ReLU 5×5 32 112×112
5 Pool2 2×2 32 56×56
6 Conv3 + ReLU 5×5 48 56×56
7 Pool3 2×2 48 28×28
8 Conv4 + ReLU 5×5 48 28×28
9 Pool4 2×2 48 14×14
10 Conv5 + ReLU 5×5 64 14×14
11 Conv6 + ReLU 5×5 64 14×14
12 Pool6 2×2 64 7×7
13 Conv7 + ReLU 5×5 128 7×7
14 FC1 + ReLU + Dropout 1024 1×1
15 FC2 + Softmax 2 1×1
16 Output